JPH0421645A - Preparation of hydroxy aromatic compound - Google Patents

Preparation of hydroxy aromatic compound

Info

Publication number
JPH0421645A
JPH0421645A JP2125423A JP12542390A JPH0421645A JP H0421645 A JPH0421645 A JP H0421645A JP 2125423 A JP2125423 A JP 2125423A JP 12542390 A JP12542390 A JP 12542390A JP H0421645 A JPH0421645 A JP H0421645A
Authority
JP
Japan
Prior art keywords
aromatic compound
crystalline aluminosilicate
catalyst
chlorobenzene
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2125423A
Other languages
Japanese (ja)
Inventor
Masahiko Furuya
方彦 古谷
Hitoshi Nakajima
斉 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Utilization of Light Oil
Original Assignee
Research Association for Utilization of Light Oil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Utilization of Light Oil filed Critical Research Association for Utilization of Light Oil
Priority to JP2125423A priority Critical patent/JPH0421645A/en
Publication of JPH0421645A publication Critical patent/JPH0421645A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To prepare the subject compound stably and in a high yield by hydrolyzing a halogenated aromatic compound in the presence of a specific catalyst prepared by heating a mixture of a crystalline aluminosilicate and the group VIII element in the presence of steam. CONSTITUTION:When a halogenated aromatic compound is hydrolyzed to prepare a hydroxy aromatic compound, a metal cation-containing crystalline aluminosilicate containing 0.01-20wt.%, preferably 0.1-10wt.%, especially 0.2-5wt.%, of the group VIII metal is employed as a catalyst to provide the objective compound stably in high selectivity and in high yield, the metal cation- containing crystalline aluminosilicate catalyst being prepared by heating a mixture of a crystalline aluminosilicate preferably comprising a high silica of a pentasil structure having a silica/alumina ratio of 20-100 and the group VIII element metal salt, especially a nickel halide in the presence of steam preferably at 300-650 deg.C, especially at 400-550 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ハロゲン化芳香族化合物を加水分解し、ヒド
ロキシ芳香族化合物を製造する方法に関する。さらに詳
しくは、結晶性アルミノシリケートと第8族元素の金属
塩の混合物を水蒸気の存在下に加熱処理することにより
鋼製された金属カチオン含有結晶性アルミノシリケート
を加水分解触媒として用いることを特徴とするヒドロキ
シ芳香族化合物の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a hydroxyaromatic compound by hydrolyzing a halogenated aromatic compound. More specifically, it is characterized in that a metal cation-containing crystalline aluminosilicate made into steel by heat-treating a mixture of a crystalline aluminosilicate and a metal salt of a Group 8 element in the presence of steam is used as a hydrolysis catalyst. The present invention relates to a method for producing a hydroxy aromatic compound.

(従来の技術) 金属カチオン含有結晶性アルミノシリケートの鋼製方法
としては、金属塩の溶液特に水溶液を用い、液相におい
て結晶性アルミノシリケートと接触させ、カチオン交換
することにより実施されている。また、メタロシリケー
トの合成方法として、金属塩特にハロゲン化合物、塩化
アルミニウム等を高温気相においてハイシリカゼオライ
トと接触させ、結晶格子に金属元素を導入する方法が知
られている。
(Prior Art) A method for manufacturing steel from crystalline aluminosilicate containing metal cations is carried out by using a solution, particularly an aqueous solution, of a metal salt, bringing it into contact with crystalline aluminosilicate in the liquid phase, and exchanging the cations. Furthermore, as a method for synthesizing metallosilicates, a method is known in which metal salts, particularly halogen compounds, aluminum chloride, etc. are brought into contact with high-silica zeolite in a high-temperature gas phase to introduce metal elements into the crystal lattice.

ハロゲン化芳香族化合物から気相で加水分解し、フェノ
ール類を製造する方法としては、銅を担持した希土類金
属リン酸塩を触媒に用いる方法(特開昭47−2793
6号公報)、金属成分含有の結晶性アルミノシリケート
を触媒として用いる方法(特開昭62−19233’0
−号公報、特開昭62−281834号公報)、結晶性
ボロシリケートを触媒とする方法(特開昭62−240
635号公報)、結晶性鉄シリケートを触媒にする方法
(特開昭62−240636号公報)、結晶性クロモシ
リケートを触媒に用いる方法(特開昭62−24063
4号公報)が知られている。
As a method for producing phenols by hydrolyzing halogenated aromatic compounds in the gas phase, a method using a copper-supported rare earth metal phosphate as a catalyst (Japanese Unexamined Patent Publication No. 47-2793
6), a method using crystalline aluminosilicate containing a metal component as a catalyst (Japanese Patent Application Laid-Open No. 1982-19233'0
JP-A No. 62-281834), a method using crystalline borosilicate as a catalyst (JP-A No. 62-240
635), a method using crystalline iron silicate as a catalyst (Japanese Unexamined Patent Publication No. 62-240636), a method using crystalline chromosilicate as a catalyst (Japanese Unexamined Patent Publication No. 62-24063)
4) is known.

(発明が解決しようとする課題) しかしながら、金属塩の溶液を用いてイオン交換する方
法は、特にハイシリカゼオライトにおいては多価カーチ
オンの導入は難しい等の問題点を有している。従来の銅
成分を主な活性成分とするへロベンゼンの加水分解触媒
は、反応中に銅が飛散減少し、活性低下をもたらす問題
点を有している。
(Problems to be Solved by the Invention) However, the method of ion exchange using a metal salt solution has problems such as difficulty in introducing polyvalent cations, especially in high silica zeolite. Conventional helobenzene hydrolysis catalysts containing copper as the main active ingredient have a problem in that copper scatters and decreases during the reaction, resulting in a decrease in activity.

(課題を解決するための手段) 本発明者らは、ハロゲン化芳香族化合物の加水分解によ
りヒドロキシ芳香族化合物を製造する方法について鋭意
検討を加えた結果、驚(べきことに、第8族元素の金属
塩と結晶性アルミノシリケートの混合組成物を水蒸気の
存在下に加熱処理し、鋼製した金属カチオン含有結晶性
アルミノシリケートを加水分解触媒として用いることに
より、ハロゲン化芳香族化合物の加水分解によるヒドロ
キシ芳香族化合物が高収率で、かつ、安定的に製造でき
ることを見出し、本発明を完成するに至ったのである。
(Means for Solving the Problems) The present inventors have conducted intensive studies on a method for producing a hydroxy aromatic compound by hydrolysis of a halogenated aromatic compound, and have surprisingly found that a group 8 element A mixed composition of a metal salt and a crystalline aluminosilicate is heat-treated in the presence of steam, and a steel-made metal cation-containing crystalline aluminosilicate is used as a hydrolysis catalyst. They discovered that hydroxy aromatic compounds can be produced stably in high yield and completed the present invention.

本発明に用いられる結晶性アルミノシリケートとしては
、ペンタシル構造を有するハイシリカの結晶性アルミノ
シリケートが好ましい。例えば、ZSM−5、ZSM−
11、AZ−1(特開昭59−12821号)を挙げる
ことができる。シリカ/アルミナ比としては20以上、
100以下のものが好ましい。
The crystalline aluminosilicate used in the present invention is preferably a high-silica crystalline aluminosilicate having a pentasil structure. For example, ZSM-5, ZSM-
11, AZ-1 (Japanese Unexamined Patent Publication No. 59-12821). The silica/alumina ratio is 20 or more,
Preferably, it is 100 or less.

本発明に用いられる金属の塩としては、第8族の金属の
塩であって、例えば、金属カチオンとしては鉄、コバル
ト、ニッケル、ルテニウム、ロジウム、パラジウム、白
金等のカチオンが、陰イオンとしてはハロゲン根、硫酸
根、リン酸根、硝酸根、水酸板、炭酸根等無機の陰イオ
ンが用いられる。特に金属成分としてはニッケルが、陰
イオンとしてはハロゲン根が好ましい。
The metal salt used in the present invention is a Group 8 metal salt, for example, the metal cation is iron, cobalt, nickel, ruthenium, rhodium, palladium, platinum, etc., and the anion is iron, cobalt, nickel, ruthenium, rhodium, palladium, platinum, etc. Inorganic anions such as halogen, sulfate, phosphate, nitrate, hydroxyl, carbonate, etc. are used. In particular, nickel is preferred as the metal component, and halogen radicals are preferred as the anion.

第8族金属の含有量としては0.01〜20重量%、好
ましくは0.1〜10重量%、さらに好ましくは0.2
〜5重量%が用いられる。
The content of Group 8 metal is 0.01 to 20% by weight, preferably 0.1 to 10% by weight, more preferably 0.2% by weight.
~5% by weight is used.

加熱処理の温度としては300°C〜650°Cが好ま
しく、400°C〜550°Cが特に好ましい。
The temperature of the heat treatment is preferably 300°C to 650°C, particularly preferably 400°C to 550°C.

温度が余り高過ぎると、結晶性アルミノシリケートの構
造の破壊、格子中のアルミニウムの脱離が大きくなり好
ましくなく、温度が低すぎると、充分な所望イオンの含
有が達成できない。
If the temperature is too high, the structure of the crystalline aluminosilicate will be destroyed and the aluminum in the lattice will be largely eliminated, which is undesirable. If the temperature is too low, sufficient desired ion content cannot be achieved.

本発明方法による触媒鋼製の一例を示すと、結晶性アル
ミノシリケート粉末と金属の塩例えば塩化ニッケル粉末
を、乳鉢により均一に混合した後、圧縮成型し、適度の
粒度としたものを加熱処理容器に入れ、水蒸気の存在下
に所定温度に加熱することにより実施できる。
An example of catalytic steel made by the method of the present invention is that crystalline aluminosilicate powder and a metal salt, such as nickel chloride powder, are mixed uniformly in a mortar and then compression molded to give an appropriate particle size. This can be carried out by heating the mixture to a predetermined temperature in the presence of water vapor.

本発明に用いられるハロゲン化芳香族化合物としては、
塩素原子、臭素原子のいずれか1つ以上が芳香族核に直
接置換したものであって、例えば、クロロベンゼン、ジ
クロロヘンゼン、プロモヘンゼン、ジプロモヘンゼン、
クロロトルエン、ブロモトルエン、クロロキシレン、ブ
ロモキシレン等のハロゲン置換ヘンガン類、クロロナフ
タレン、ブロモナフタレン等のハロゲン置換ナフタレン
類等を挙げることができる。
The halogenated aromatic compounds used in the present invention include:
One or more of a chlorine atom or a bromine atom is directly substituted on an aromatic nucleus, such as chlorobenzene, dichlorohenzene, promohenzene, dipromohenzene,
Examples include halogen-substituted hemanganese such as chlorotoluene, bromotoluene, chloroxylene, and bromoxylene, and halogen-substituted naphthalenes such as chloronaphthalene and bromonaphthalene.

さらに、本発明に用いる結晶性アルミノシリケートは、
前処理としてスチーム存在下で200〜700“Cの温
度で処理するか、スチーム非存在下で600〜850°
Cの温度下で熱処理したものが反応生成物の選択性、触
媒の安定性から好ましく用いられる。
Furthermore, the crystalline aluminosilicate used in the present invention is
Pre-treatment at a temperature of 200-700"C in the presence of steam or 600-850"C in the absence of steam
A catalyst heat-treated at a temperature of C is preferably used in view of the selectivity of the reaction product and the stability of the catalyst.

ハロゲン化芳香族化合物の加水分解条件としては、原料
ハロゲン化芳香族化合物により異なるが、通常250°
C〜600°Cの温度、好ましくは300°C〜550
°Cの温度、さらに好ましくは350°C〜500°C
の反応温度が、水のハロゲン化芳香族化合物に対するモ
ル比としては0.5〜100、好ましくは1〜50、さ
らに好ましくは2〜20が用いられる。原料ハロゲン化
芳香族化合物の供給速度としては、重量時間空間速度(
WH3V)で0.05〜20ur−’、好ましくは0.
1〜10Hr−’が用いられる。
The hydrolysis conditions for halogenated aromatic compounds vary depending on the raw material halogenated aromatic compound, but are usually 250°
Temperature from 300°C to 550°C, preferably from 300°C to 550°C
temperature of °C, more preferably 350°C to 500°C
The molar ratio of water to the halogenated aromatic compound is from 0.5 to 100, preferably from 1 to 50, more preferably from 2 to 20. The feed rate of the raw material halogenated aromatic compound is the weight hourly space velocity (
WH3V) from 0.05 to 20 ur-', preferably 0.
1 to 10 Hr-' is used.

(発明の効果) 本発明の方法によれば、ハロゲン化芳香族化合物よりヒ
ドロキシ芳香族化合物を高選択率、高収率で、かつ、安
定的に製造することができる。
(Effects of the Invention) According to the method of the present invention, a hydroxy aromatic compound can be stably produced from a halogenated aromatic compound with high selectivity and high yield.

(実施例) 以下に本発明の実施例を挙げて具体的に説明するが、本
発明は、これに限定されるものではない。
(Example) The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto.

実施例1 公知の方法によりZSM−5(SiO□/AZZOz=
45)を水熱合成し、次いで、常法により塩化ナトリウ
ム水溶液を用いてナトリウム型とし、これに塩化ニッケ
ルをニッケルとして0.6重量%添加し、自動乳鉢で約
30分間混合し、圧縮成型した後、8〜20メツシユに
破砕した。このものを10■径の石英製反応管に10g
充填し、加熱炉により450℃に加熱し、水を2cc/
hrの速度で供給し、2時間加熱処理した。次いで、定
量ポンプでクロロベンゼン、水を各々所定量供給し、加
水分解反応を実施した。
Example 1 ZSM-5 (SiO□/AZZOz=
45) was hydrothermally synthesized, and then made into a sodium form using a sodium chloride aqueous solution by a conventional method, 0.6% by weight of nickel chloride was added as nickel, mixed for about 30 minutes in an automatic mortar, and compression molded. After that, it was crushed into 8 to 20 mesh pieces. Put 10g of this into a 10cm diameter quartz reaction tube.
Fill it, heat it to 450℃ in a heating furnace, and add 2cc/water.
The mixture was supplied at a rate of 2 hours and heat treated for 2 hours. Next, predetermined amounts of chlorobenzene and water were supplied using a metering pump to carry out a hydrolysis reaction.

反応条件として、450°C1水/クロロベンゼンモル
比6、クロロベンゼンの供給IW HS V トして0
 、 3 Hr−’、希釈剤として窒素ガスをクロロベ
ンゼンと当モル量供給し反応させた。通液開始後1〜2
時間目のサンプリング液の分析より、クロロベンゼンの
転化率50%、フェノール収率44mo/!%であり、
副生物はベンゼンがほとんどで、ベンゼンとフェノール
の合計の選択率は99%を示した。
The reaction conditions were 450°C, 1 water/chlorobenzene molar ratio 6, and chlorobenzene supply IW HS V to 0.
, 3 Hr-', nitrogen gas was supplied as a diluent in an equimolar amount to chlorobenzene, and the reaction was caused. 1-2 after starting liquid passage
Analysis of the sampled liquid at the 1st hour revealed that the conversion rate of chlorobenzene was 50% and the phenol yield was 44 mo/! %,
Most of the by-products were benzene, and the total selectivity for benzene and phenol was 99%.

実施例2 実施例1と同様に、ただし、塩化ニッケルの替わりに硫
酸ニッケルを用いた他は、同様の方法条件で触媒を鋼製
し、クロロベンゼンの加水分解触媒として用いた。加水
分解条件は実施例1と同じで、その結果はクロロベンゼ
ンの転化率36%、フェノールの収率32.5%であっ
た。
Example 2 A catalyst was made of steel and used as a chlorobenzene hydrolysis catalyst in the same manner as in Example 1, except that nickel sulfate was used instead of nickel chloride. The hydrolysis conditions were the same as in Example 1, and the results were a chlorobenzene conversion of 36% and a phenol yield of 32.5%.

実施例3 実施例1と同様に、ただし、塩化ニッケルの替わりに硝
酸ニッケルを用いた他は、同様の方法条件で触媒を鋼製
し、クロロベンゼンの加水分解触媒に用いた。加水分解
条件は実施例1と同じで、その結果は、クロロベンゼン
の転化率45%、フェノール選択率85.8%、ベンゼ
ン選択率13゜5%であった。
Example 3 A catalyst was made of steel and used as a chlorobenzene hydrolysis catalyst in the same manner as in Example 1, except that nickel nitrate was used instead of nickel chloride. The hydrolysis conditions were the same as in Example 1, and the results were a chlorobenzene conversion of 45%, a phenol selectivity of 85.8%, and a benzene selectivity of 13.5%.

比較例1 実施例1のNa交換23M−5を常法により硝酸ニッケ
ルの水溶液と接触させ、ニッケル交換のZSM−5触媒
を得た。このものは、ニッケルとして0.45重量%含
有していた。
Comparative Example 1 The Na-exchanged 23M-5 of Example 1 was brought into contact with an aqueous solution of nickel nitrate in a conventional manner to obtain a nickel-exchanged ZSM-5 catalyst. This material contained 0.45% by weight of nickel.

このニッケル交換触媒を、実施例1と同様にクロロベン
ゼンの加水分解触媒に用いた。その結果はクロロベンゼ
ンの転化率46%、フェノール選択率84%を示した。
This nickel exchange catalyst was used as a chlorobenzene hydrolysis catalyst in the same manner as in Example 1. The results showed a chlorobenzene conversion rate of 46% and a phenol selectivity of 84%.

比較例2 実施例1のNa交換23M−5に硝酸ニッケル水溶液を
含浸、蒸発乾固後、100℃で3時間乾燥、次いで、5
00°Cで2時間空気中において仮焼後、成型し、ニッ
ケルとして0. 5重量%を含有する触媒を鋼製し、実
施例1と同様にクロロベンゼンの加水分解触媒に供した
。その結果は、クロロベンゼンの転化率33%、フェノ
ールの選択率83%であった。
Comparative Example 2 Na-exchanged 23M-5 of Example 1 was impregnated with a nickel nitrate aqueous solution, evaporated to dryness, dried at 100°C for 3 hours, and then
After calcination in the air at 00°C for 2 hours, it is molded and the nickel is 0. A catalyst containing 5% by weight was made of steel and used as a chlorobenzene hydrolysis catalyst in the same manner as in Example 1. The results were a chlorobenzene conversion rate of 33% and a phenol selectivity of 83%.

実施例4 実施例1と同様に、ただし、Na型23M−5を450
℃、20時間水蒸気分圧0.Bats中で加熱処理し、
次いで、硝酸銅水溶液を用いイオン交換、水洗、乾燥し
、0.08重量%の銅を含むゼオライトを得た。これに
塩化ニッケル粉末をニッケルとして0.6重量%混合し
、実施例1と同様に、ただし、500°Cで処理した。
Example 4 Same as Example 1, except that Na type 23M-5 was added to 450
℃, 20 hours water vapor partial pressure 0. Heat treated in Bats,
Next, ion exchange was performed using an aqueous copper nitrate solution, water washing, and drying to obtain a zeolite containing 0.08% by weight of copper. This was mixed with 0.6% by weight of nickel chloride powder as nickel, and treated in the same manner as in Example 1, but at 500°C.

この触媒を、実施例1と同様にクロロベンゼンの加水分
解触媒に用いた0反応条件は450°c、WH3V=0
゜28Hr−’、水/クロロベンゼフモル比5.8、窒
素/クロロベンゼンモル比9で実施した。その結果は2
〜3時間目のクロロベンゼン転化率42%、フェノール
選択率92%を示した。さらに反応を進メ、lO〜12
時間目のクロロベンゼン転化率は35%、フェノール選
択率93%、24〜25時間目の転化率は30%であっ
た。
This catalyst was used as a chlorobenzene hydrolysis catalyst in the same manner as in Example 1. The reaction conditions were 450°C, WH3V=0
The reaction was carried out at a temperature of 28 Hr-', a water/chlorobenzef molar ratio of 5.8, and a nitrogen/chlorobenzene molar ratio of 9. The result is 2
A chlorobenzene conversion rate of 42% and a phenol selectivity of 92% were shown for ~3 hours. Continue the reaction, lO ~ 12
The conversion rate of chlorobenzene at 1 hour was 35%, the phenol selectivity was 93%, and the conversion rate at 24 to 25 hours was 30%.

反応後の触媒を解析したところ、ニッケル、銅とも減少
は認められなかった。
When the catalyst was analyzed after the reaction, no decrease was observed in either nickel or copper.

(ほか1名)(1 other person)

Claims (1)

【特許請求の範囲】[Claims] ハロゲン化芳香族化合物を加水分解し、ヒドロキシ芳香
族化合物に転換するに際して、結晶性アルミノシリケー
トと第8族元素の金属塩の混合物を水蒸気の存在下に加
熱処理して鋼製された金属カチオン含有結晶性アルミノ
シリケートを加水分解触媒として用いることを特徴とす
るヒドロキシ芳香族化合物の製造方法。
A metal cation-containing steel made by heat-treating a mixture of crystalline aluminosilicate and a metal salt of a Group 8 element in the presence of water vapor when a halogenated aromatic compound is hydrolyzed and converted into a hydroxy aromatic compound. A method for producing a hydroxy aromatic compound, characterized in that a crystalline aluminosilicate is used as a hydrolysis catalyst.
JP2125423A 1990-05-17 1990-05-17 Preparation of hydroxy aromatic compound Pending JPH0421645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2125423A JPH0421645A (en) 1990-05-17 1990-05-17 Preparation of hydroxy aromatic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2125423A JPH0421645A (en) 1990-05-17 1990-05-17 Preparation of hydroxy aromatic compound

Publications (1)

Publication Number Publication Date
JPH0421645A true JPH0421645A (en) 1992-01-24

Family

ID=14909736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2125423A Pending JPH0421645A (en) 1990-05-17 1990-05-17 Preparation of hydroxy aromatic compound

Country Status (1)

Country Link
JP (1) JPH0421645A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069464A (en) * 1993-02-03 1994-01-18 Asahi Chem Ind Co Ltd Production of aryl hydroxide compound
WO1998007516A1 (en) * 1996-08-20 1998-02-26 Monsanto Company Selective introduction of active sites for hydroxylation of benzene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069464A (en) * 1993-02-03 1994-01-18 Asahi Chem Ind Co Ltd Production of aryl hydroxide compound
JPH07110825B2 (en) * 1993-02-03 1995-11-29 旭化成工業株式会社 Phenol manufacturing method
WO1998007516A1 (en) * 1996-08-20 1998-02-26 Monsanto Company Selective introduction of active sites for hydroxylation of benzene

Similar Documents

Publication Publication Date Title
CA1115259A (en) Method for preparing aluminosilicates, their use as catalyst supports and catalysts, and method for producing catalysts therefrom
JPH0729962B2 (en) Method for producing phenols
CN108622914A (en) The method that IZM-2 zeolites are synthesized in the presence of template 1,6- bis- (methyl piperidine) hexane dihydroxides
CN109071245A (en) Method for directly synthesizing iron-containing AEI- zeolite catalyst
KR20060002765A (en) Porous crystalline material(zeolite itq-24), preparation method thereof and use of same in the catalytic conversion of organic compounds
EP1405825B1 (en) Porous crystalline material (zeolite itq-21), the preparation method thereof and the use of same in the catalytic conversion of organic compounds
JPH0421645A (en) Preparation of hydroxy aromatic compound
EP1466866B1 (en) Porous crystalline material (itq-21) and the method of obtaining same in the absence of fluoride ions
JPS61221164A (en) Manufacture of fatty dinitrile
JPH047039A (en) Production of catalyst
JPH04117338A (en) Production of aromatic hydroxide
JPH04117339A (en) Production of aromatic hydroxide
JPS62192330A (en) Production of aryl hydroxide
JPH0597428A (en) Modified horgiacite type zeolite and its production
JPH0570391A (en) Method for producing aromatic hydroxide
JPH059141A (en) Production of hydroxy aromatic compound
JP2002028492A (en) Producing method of diakanolamine, catalyst for producing dialkanolamine and producing method thereof
JPH0551533B2 (en)
JPH01319447A (en) Production of phenols
JPH0240237A (en) Dehydrogenation catalyst and production of formaldehyde using the same dehydrogenation catalyst
JPH03143547A (en) Catalyst for decomposition of nitrogen oxide
JPH0570390A (en) Method for producing aromatic hydroxide
JPS6311331B2 (en)
JPH062572B2 (en) Method for producing crystalline silicate
JPH01110639A (en) Production of cycloalkanol