JPH03143547A - Catalyst for decomposition of nitrogen oxide - Google Patents

Catalyst for decomposition of nitrogen oxide

Info

Publication number
JPH03143547A
JPH03143547A JP28199689A JP28199689A JPH03143547A JP H03143547 A JPH03143547 A JP H03143547A JP 28199689 A JP28199689 A JP 28199689A JP 28199689 A JP28199689 A JP 28199689A JP H03143547 A JPH03143547 A JP H03143547A
Authority
JP
Japan
Prior art keywords
crystalline silicate
catalyst
copper
activity
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28199689A
Other languages
Japanese (ja)
Inventor
Tetsuya Imai
哲也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28199689A priority Critical patent/JPH03143547A/en
Priority to CA002045128A priority patent/CA2045128C/en
Priority to EP90915829A priority patent/EP0451291B1/en
Priority to DE69020539T priority patent/DE69020539T2/en
Priority to US07/721,659 priority patent/US5254515A/en
Priority to PCT/JP1990/001394 priority patent/WO1991006508A1/en
Publication of JPH03143547A publication Critical patent/JPH03143547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst having very high activity to the decomposition reaction of NO and maintaining the activity by incorporating copper into crystalline silicate having a specified compsn. CONSTITUTION:Crystalline silicate represented by a chemical formula (1.0+ or -0.4)R2 O.(aM2O3 bAl2O3).ySiO2 (where the oxides show molar ratio, R is an alkali metal ion and/or H, M is an ion of an element such as a group VIII element or a rare earth element, a+b=1, a>0, b>0 and y>12) in a dehydrated state is used. Copper is incorporated into the crystalline silicate by immersion in an aq. soln. of copper sulfate, copper nitrate, etc., or other method. The resulting catalyst has very high activity to the decomposition reaction of NO and maintains the activity over a long time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒素酸化物(以下、NOxと略称する)を含有
するガスからNOxを除去する触媒に関し、さらに詳し
くはNOxを直接分解する触媒に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a catalyst that removes NOx from gas containing nitrogen oxides (hereinafter abbreviated as NOx), and more particularly relates to a catalyst that directly decomposes NOx. .

〔従来の技術〕[Conventional technology]

工業プラント、自動車等から排出される燃焼排ガス中の
NOxは光化学スモッグの発生原因ともなり得る物質で
あり、環境保全の立場からその除去方法の開発は、重大
かつ緊急の社会的課題である。NOxの中でもNOは特
に除去が困難であり、これまでにも種々の方法が検討さ
れてきた。例えば接触還元法は有効な手段のひとつとし
ては提案され開発が進められているが、アンモニア、水
素あるいは一酸化炭素等の還元剤を必要とし、更に未反
応還元剤を回収、あるいは分解するための特別の装置を
必要とする。これに対して接触分解法は還元剤などの特
別な添加剤を必要とせず、触媒層を通すだけで窒素と酸
素に分解する方法であり、プロセスも単純であることか
ら最も望ましい方法である。従来の研究によれば、Pt
 、 CuO、CO3O4などにNO分解活性が認めら
れたが、何れも分解生成物である酸素の被毒作用を受け
るため、実用触媒とはなり得なかった〔「表面」著者、
内島俊雄、νol。
NOx in combustion exhaust gas emitted from industrial plants, automobiles, etc. is a substance that can cause photochemical smog, and the development of a method for removing it from the standpoint of environmental conservation is a serious and urgent social issue. Among NOx, NO is particularly difficult to remove, and various methods have been studied so far. For example, the catalytic reduction method has been proposed as an effective method and is under development, but it requires a reducing agent such as ammonia, hydrogen, or carbon monoxide, and it also requires a reduction agent to recover or decompose the unreacted reducing agent. Requires special equipment. On the other hand, the catalytic cracking method does not require special additives such as reducing agents, and decomposes into nitrogen and oxygen simply by passing through a catalyst layer, and is the most desirable method because the process is simple. According to previous research, Pt
, CuO, CO3O4, etc. were found to have NO decomposition activity, but they could not be used as practical catalysts because they were poisoned by the decomposition product oxygen [Surface, author,
Toshio Uchijima, νol.

18.Nα3 (1980)132頁〕。18. Nα3 (1980) p. 132].

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記触媒に代わる触媒としてシリカゲルやゼオライトに
Cuをイオン交換する方法が提案されているが、次のよ
うな問題がある。
A method of ion-exchanging Cu with silica gel or zeolite has been proposed as a catalyst to replace the above catalyst, but there are the following problems.

(1)  イオン交換法によってシリカゲルに銅イオン
を担持した触媒は、初期活性はかなり高いが、時間とと
もに活性が急激に低下する。
(1) A catalyst in which copper ions are supported on silica gel by an ion exchange method has a fairly high initial activity, but the activity rapidly decreases over time.

(2)Y型ゼオライトやモルデナイトを用いて銅でイオ
ン交換した触媒は、酸素の存在下では分解活性が低い。
(2) Catalysts that are ion-exchanged with copper using Y-type zeolite or mordenite have low decomposition activity in the presence of oxygen.

(3)  Z S M −5型ゼオライトを用いて銅で
イオン交換した触媒が提案されているが、NO分解活性
は高いがNOがN2に転化する選択性(2NO−、N、
+o2)が低いという問題がある。(特開昭60−12
5250号公報)。
(3) A catalyst in which ZSM-5 type zeolite is ion-exchanged with copper has been proposed, but although the NO decomposition activity is high, the selectivity for converting NO to N2 (2NO-, N,
+o2) is low. (Unexamined Japanese Patent Publication No. 60-12
5250).

〔課題を解決するための手段〕[Means to solve the problem]

本発明は従来技術が有する上記の問題を解決することを
目的としたものであり、特定の組成、結晶構造を有する
結晶性シリケートに銅をイオン交換したものが、Noの
接触分解触媒として極めて高い活性を示すばかりでなく
、NOのN2への選択性が高く、かつ酸素、SOxの共
存下においても活性が安定していることを見出し、本発
明を完成するに至った。
The purpose of the present invention is to solve the above-mentioned problems of the prior art, and the present invention is based on the fact that copper is ion-exchanged with crystalline silicate having a specific composition and crystal structure. The present inventors have found that not only does it exhibit activity, but it also has high selectivity for NO to N2, and its activity is stable even in the coexistence of oxygen and SOx, leading to the completion of the present invention.

すなわち、本発明は脱水された状態において、酸化物の
モル比で (1,0±0.4)R2[]’  〔a−M2o3−b
−A12o3〕・ysio2(上記式中、Rはアルカリ
金属イオン及び/又は水素、M:■族元素、希土類元素
、チタン、バナジウム、クロム、ニオブ、アンチモンか
らなる群から選ばれた1種以上の元素のイオン、a+b
=1.a>0.b>O,y>12) の化学式を有する結晶性シリケートに銅を含有させてな
ることを特徴とする窒素酸化物分解触媒である。
That is, in the present invention, in a dehydrated state, the molar ratio of oxides is (1,0±0.4)R2[]' [a-M2o3-b
-A12o3]・ysio2 (in the above formula, R is an alkali metal ion and/or hydrogen, M: one or more elements selected from the group consisting of group ■ elements, rare earth elements, titanium, vanadium, chromium, niobium, and antimony) ion, a+b
=1. a>0. The present invention is a nitrogen oxide decomposition catalyst characterized by containing copper in a crystalline silicate having the chemical formula: b>O, y>12).

〔作用〕[Effect]

本発明の触媒はNOの分解反応に極めて高い活性を示し
、またその活性が長時間にわたって持続する。本発明の
触媒の作用については、イオン交換した銅イオンの酸化
還元サイクル(Cu”≠Cu” )が容易で、酸素を比
較的低温で放出する機構と、本発明の触媒の特異的結晶
構造とその構造安定性及び耐熱性等が複合的に作用して
いるものと考えられる。
The catalyst of the present invention exhibits extremely high activity in the NO decomposition reaction, and this activity lasts for a long time. Regarding the action of the catalyst of the present invention, the redox cycle of ion-exchanged copper ions (Cu"≠Cu") is easy, and the mechanism of releasing oxygen at a relatively low temperature, and the specific crystal structure of the catalyst of the present invention. It is thought that the structural stability, heat resistance, etc. act in a complex manner.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

ゼオライトはギリシャ語の「沸騰する石」を語源とする
ことに示される如く沸石水を含む結晶性アルミノシリケ
ートであり、その組成は一般的に次の式で表わされる。
Zeolite is a crystalline aluminosilicate containing zeolite water, as shown by its origin from the Greek word "boiling stone", and its composition is generally expressed by the following formula.

XM2/II O”^1203 ・ys+zo HZ+
(20(ここでnは陽イオンMの原子価、Xは0.8〜
2の範囲の数、yは2以上の数、2は0以上の数である
。) その基本構造は珪素を中心として4つの酸素がその頂点
に配位したSin、四面体と、この珪素の代りにアルミ
ニウムがその中心にあるAIO,四面体とがO/(AI
+Si)の原子比が2となるように互いに酸素を共有し
て規則正しく三次元的に結合したものである。その結果
、この四面体同士の結合方式の違いによって大きさ、形
の異なる細孔を有する三次元的網目構造が形成される。
XM2/II O"^1203 ・ys+zo HZ+
(20 (where n is the valence of the cation M, X is 0.8~
A number in the range of 2, y is a number greater than or equal to 2, and 2 is a number greater than or equal to 0. ) Its basic structure consists of a Si tetrahedron with silicon at its center and four oxygen atoms coordinated at its vertices, and an AIO tetrahedron with aluminum at its center instead of silicon.
+Si) are regularly bonded three-dimensionally by sharing oxygen with each other so that the atomic ratio is 2. As a result, a three-dimensional network structure having pores of different sizes and shapes is formed due to the different bonding methods between the tetrahedra.

またAIOイ四面体の負電荷はアルカリ金属またはアル
カリ土類金属等の陽イオンと結合することにより電気的
に中和されている。一般にこのようにして形成される細
孔は2〜3人から10数人の大きさを有するが、AlO
4四面体と結合している金属陽イオンを、大きさまたは
原子価の異なる他の金属陽イオンと交換することによっ
て細孔の大きさを変えることができる。
Further, the negative charge of the AIOi tetrahedron is electrically neutralized by bonding with a cation such as an alkali metal or an alkaline earth metal. Generally, the pores formed in this way have a size of 2 to 3 to more than 10 pores, but AlO
The pore size can be changed by replacing the metal cation associated with the tetratrahedron with another metal cation of different size or valence.

ゼオライトはこの細孔を利用した気体、液体の工業的乾
燥剤または2種以上の分子の混合物中の分子同士を吸着
分離する分子篩として、また、金属陽イオンを水素イオ
ンと交換したものは固体酸として作用するため、この性
質を利用した工業用触媒としても広く用いられている。
Zeolite can be used as a gas or liquid industrial desiccant that utilizes these pores, or as a molecular sieve that adsorbs and separates molecules in a mixture of two or more molecules. Zeolite can also be used as a solid acid in which metal cations are exchanged with hydrogen ions. Because of this property, it is widely used as an industrial catalyst.

ゼオライトには数多くの種類があり、X線回折図で特徴
づけられる結晶構造の違いによりそれぞれ異なるゼオラ
イト塩が付けられている。
There are many types of zeolites, each with a different zeolite salt attached to them depending on their crystal structure, which is characterized by X-ray diffraction patterns.

天然に産出するものとしてはチャバサイト、エリオナイ
ト、モルデナイト、クリノプチロライト等があり、また
台底ゼオライトとしてはA。
Naturally occurring zeolites include chabasite, erionite, mordenite, clinoptilolite, etc., and zeolite A is the bottom zeolite.

X、Y、  ラージ、ボートモルデナイト、23M5な
どがよく知られている。
X, Y, large, boat mordenite, 23M5, etc. are well known.

これらの多くのゼオライトの中で本発明に使用可能なも
のは、特定の組成構造を有する結晶性シリケートに限定
される。本発明の結晶性シリケートは天然には存在しな
いが、次の方法で台底される。
Among these many zeolites, those that can be used in the present invention are limited to crystalline silicates having a specific compositional structure. Although the crystalline silicate of the present invention does not exist in nature, it can be obtained by the following method.

本発明で使用する上記結晶性シリケートは、シリカの給
源、■族元素、希土類元素、チタン、バナジウム、クロ
ム、ニオブ、アンチモンの酸化物の給源、アルミナの給
源、アルカリの給源、水及び有機窒素含有化合物を含有
する反応混合物をつくり、この混合物を結晶性シリケー
トが生成するのに至る時間及び温度で加熱することによ
り台底される。
The crystalline silicate used in the present invention is a source of silica, a source of group Ⅰ elements, rare earth elements, titanium, vanadium, chromium, niobium, and antimony oxides, a source of alumina, a source of alkali, and a source containing water and organic nitrogen. This is accomplished by forming a reaction mixture containing the compounds and heating the mixture for a time and at a temperature that results in the formation of a crystalline silicate.

シリカの給源はぜオライド台底において普通に使用され
るシリカの化合物であれば、いずれのシリカの給源であ
ってもよく、例えば固型シリカ粉末、コロイド状シリカ
、又は水ガラス等のケイ酸塩などが用いられる。
The source of silica can be any silica compound commonly used in zeolide platforms, such as solid silica powder, colloidal silica, or silicates such as water glass. etc. are used.

■族元素、希土類元素、チタン、バナジウム、クロム、
ニオブ、アンチモンの給源は、これらの硫酸塩、硝酸塩
、塩化物などの化合物が用いられる。
■Group elements, rare earth elements, titanium, vanadium, chromium,
Compounds such as sulfates, nitrates, and chlorides of these are used as sources of niobium and antimony.

■族元素の例としては、鉄、コバルト、ルテニウム、ロ
ジウム、白金、パラジウムなどがあり、また希土類元素
としては、ランタン、セリウム、ネオジウムなどがある
Examples of group (2) elements include iron, cobalt, ruthenium, rhodium, platinum, palladium, etc., and rare earth elements include lanthanum, cerium, neodymium, etc.

アルミナの給源は、アルミン酸ソーダが最も適している
が、塩化物、硝酸塩、硫酸塩、酸化物又は水酸化物など
の化合物が用いられる。
The source of alumina is most preferably sodium aluminate, but compounds such as chlorides, nitrates, sulfates, oxides or hydroxides can be used.

アルカリの給源は、ナトリウムなどのアルカリ金属の水
酸化物、又はアルミン酸、ケイ酸との化合物などが用い
られる。
As the alkali source, a hydroxide of an alkali metal such as sodium, or a compound with aluminic acid or silicic acid is used.

結晶性シリケートの水熱合成原料の一つである有機窒素
含有化合物としては、以下に示すものが使用できる。
As the organic nitrogen-containing compound which is one of the raw materials for hydrothermal synthesis of crystalline silicate, the following can be used.

(1)  有機アミン類: n−プロピルアミン、モノエタノールアミンなどの第1
級アミン、 ジプロピルアミン、ジェタノールアミンなどの第2級ア
ミン、 トリプロピルアミン、トリエタノールアミンなどの第3
級アミン、 又はエチレンジアミン、ジグリコールアミンなど、 又は上記化合物とハロゲン化炭化水素(臭化プロピルな
ど)と混合物、 その他テトラプロピルアンモニウム塩ナトの第4級アン
モニウム塩など、 (2)有機アミン以外の有機窒素含有化合物:ビリジン
、ピラジン、ピラゾールなど、これらの各種有機化合物
は例示であって、本発明はこれらに何等限定されるもの
ではない。
(1) Organic amines: primary organic amines such as n-propylamine and monoethanolamine
secondary amines such as dipropylamine and jetanolamine, and tertiary amines such as tripropylamine and triethanolamine.
(2) Organic substances other than organic amines, such as ethylenediamine, diglycolamine, etc., or mixtures of the above compounds with halogenated hydrocarbons (propyl bromide, etc.), other quaternary ammonium salts such as tetrapropylammonium salts, etc. Nitrogen-containing compounds: These various organic compounds such as pyridine, pyrazine, and pyrazole are illustrative, and the present invention is not limited thereto.

本発明の結晶性シリケートは、従来のゼオライトの構造
中のA1の一部が■族元素、希土類元素、チタン、バナ
ジウム、クロム、ニオブ、アンチモンに置きかわったも
のであり、さらにS 102/ (M203十八+20
3)比が12以上であることを特徴としており、下記の
モル組成の反応混合物から製造される。
The crystalline silicate of the present invention has a part of A1 in the structure of conventional zeolite replaced with a group II element, a rare earth element, titanium, vanadium, chromium, niobium, or antimony, and further contains S102/(M203 Eighteen + twenty
3) It is characterized by a ratio of 12 or more, and is produced from a reaction mixture having the following molar composition.

5iO7/(M203+Al203)    12〜3
000(好ましくは、20〜200) OHVSiOz       O〜1.0(好ましくは
、0.2〜0.8) lf、o/5iOz       2〜1000(好ま
しくは、10〜200) 有機窒素含有化合物/ (M203+Al203)(好
ましくは、5〜50) 本発明の結晶性シリケートは前記原料混合物を結晶性シ
リケートが生成するに充分な温度と時間加熱することに
より台底されるが、水熱合成温度は80〜300℃好ま
しくは130〜200℃の範囲であり、また水熱合成時
間は0.5〜14日、好ましくは1−10日である。
5iO7/(M203+Al203) 12~3
000 (preferably 20-200) OHVSiOz O-1.0 (preferably 0.2-0.8) lf, o/5iOz 2-1000 (preferably 10-200) Organic nitrogen-containing compound/ (M203+Al203 ) (preferably 5 to 50) The crystalline silicate of the present invention is stabilized by heating the raw material mixture at a temperature and for a time sufficient to form the crystalline silicate, but the hydrothermal synthesis temperature is 80 to 300. The temperature is preferably in the range of 130 to 200°C, and the hydrothermal synthesis time is 0.5 to 14 days, preferably 1 to 10 days.

圧力は特に制限を受けないが、自圧で実施するのが望ま
、しい。
Although the pressure is not particularly limited, it is preferable to use autogenous pressure.

水熱合成反応は所望の温度に原料混合物を加熱し、必要
であれば攪拌下に結晶性シリケートが形成されるまで継
続される。かくして結晶が形成された後、反応混合物を
室温まで冷却し、濾過し、水洗を行い、結晶を分別する
。さらに普通は100℃以上で5〜24時間程度乾燥が
行われる。
The hydrothermal synthesis reaction is continued by heating the raw material mixture to the desired temperature, with stirring if necessary, until crystalline silicate is formed. After crystals have thus formed, the reaction mixture is cooled to room temperature, filtered, washed with water, and the crystals are separated. Furthermore, drying is usually performed at 100° C. or higher for about 5 to 24 hours.

前述した方法で製造された結晶性シリケートは、周知の
技術により、そのままで、あるいは従来から触媒成型用
として用いられている粘結剤等と混合して適当な大きさ
に成型して、触媒として使用されうる。
The crystalline silicate produced by the above-mentioned method can be molded into an appropriate size as it is or mixed with a binder etc. conventionally used for catalyst molding, using well-known techniques, and used as a catalyst. can be used.

本発明の結晶性シリケートは一定の結晶構造を有する規
則正しい多孔性の結晶性物質であり、一般に表1に示す
X線回折パターンを示す。
The crystalline silicate of the present invention is a regularly porous crystalline material having a certain crystal structure and generally exhibits the X-ray diffraction pattern shown in Table 1.

表 上記の水熱合成で得られる結晶性シリケートは、Na+
などのアルカリ金属イオン、(C3L) 、N”などの
有機窒素含有化合物のイオンを含有している。これらの
イオンの一部又は全部を水素イオンに置換するためには
、空気中で400〜700℃の範囲の温度で2〜48時
間焼戊す焼成とにより有機窒素含有化合物を除去した後
、塩酸などの強酸に浸漬して直接H型にする方法、又は
アンモニウム化合物の水溶液に浸漬してNH4型にした
後、焼成によりH型にする方法などがある。
The crystalline silicate obtained by the hydrothermal synthesis shown in the table above is Na+
It contains alkali metal ions such as (C3L), ions of organic nitrogen-containing compounds such as N''. In order to replace some or all of these ions with hydrogen ions, it is necessary to After removing organic nitrogen-containing compounds by calcination at a temperature in the range of 2 to 48 hours, immersion in a strong acid such as hydrochloric acid to form H-form directly, or immersion in an aqueous solution of an ammonium compound to form NH4 There is a method of forming the material into a mold and then baking it into an H shape.

上記方法で得られる結晶性シリケート中のアルカリ金属
イオン、水素イオンなどのイオン交換サイトは、次の方
法によって銅イオンに交換され、本発明の触媒(以下、
本触媒と略す)が尋られる。
Ion exchange sites such as alkali metal ions and hydrogen ions in the crystalline silicate obtained by the above method are exchanged with copper ions by the following method, and the catalyst of the present invention (hereinafter referred to as
(abbreviated as “this catalyst”) is asked.

イオン交換は硫酸銅、硝酸銅などの鉱酸塩または酢酸銅
などの有機酸塩を溶解した水溶液中に結晶性シリケート
を浸漬するなどの通常の方法によって行われる。水溶液
中の銅イオンの濃度は、目的とする銅イオン交換率によ
って任意に選ぶことができ、銅イオンはCu” 、 C
u”CuDH+のいずれかの形で結晶性シリケート中の
陽イオンと交換している。イオン交換終了後は水で充分
洗浄した後、乾燥して本触媒が得られる。本触媒の銅イ
オン交換率は、触媒基剤である結晶性シリケート中に含
有される交換可能な全陽イオンの少なくとも10%以上
であることが必須であり、交換率が高い程NO分解活性
が高いので、好ましくは40〜200%の範囲である。
Ion exchange is performed by a conventional method such as immersing the crystalline silicate in an aqueous solution containing a mineral acid salt such as copper sulfate or copper nitrate or an organic acid salt such as copper acetate. The concentration of copper ions in the aqueous solution can be arbitrarily selected depending on the desired copper ion exchange rate.
The cations in the crystalline silicate are exchanged in the form of u''CuDH+. After ion exchange, the catalyst is obtained by thoroughly washing with water and drying. Copper ion exchange rate of the catalyst is essential to be at least 10% of the total exchangeable cations contained in the crystalline silicate that is the catalyst base, and the higher the exchange rate is, the higher the NO decomposition activity is, so it is preferably 40~ The range is 200%.

交換率10%以下では有効なNo分解活性を示さない。No effective No decomposition activity is shown at an exchange rate of 10% or less.

銅のイオン交換率は、イオン交換サイトの中の銅イオン
の割合を示すものであり、Na” 2原子とCu”1原
子がイオン交換するとして計算している。
The ion exchange rate of copper indicates the proportion of copper ions in ion exchange sites, and is calculated assuming that two Na'' atoms and one Cu'' atom undergo ion exchange.

従って交換率200%とは、イオン交換サイト全部が銅
でイオン交換された状態(Cuが1個の状態でイオン交
換されている)を示す。
Therefore, an exchange rate of 200% indicates a state in which all ion exchange sites are ion-exchanged with copper (one Cu is ion-exchanged).

本発明のNO分解触媒は従来の触媒と比較して使用温度
、範囲が広く、300〜1000℃の範囲、好ましくは
、400〜700℃の範囲で用いられる。
The NO decomposition catalyst of the present invention can be used in a wider temperature range than conventional catalysts, and is used in a range of 300 to 1000°C, preferably in a range of 400 to 700°C.

本触媒の工業的使用に際しては、適当な形に底形して使
用することが望ましい。例えば、シリカ、アルミナ等の
無機酸化物または粘土をバインダーとし、場合により有
機物等の成形助剤を使用して球状、柱状、ハニカム状に
底形する。
When using this catalyst industrially, it is desirable to use it in an appropriate bottom shape. For example, using an inorganic oxide such as silica or alumina or clay as a binder, and optionally using a forming aid such as an organic substance, the bottom shape is formed into a spherical, columnar, or honeycomb shape.

銅イオンで交換する前の結晶性シリケートをあらかじめ
底形し、その成形体を銅イオンで交換したものでも本発
明の触媒とみなすことができる。成形体の大きさは特に
制限されない。
A crystalline silicate that has not yet been exchanged with copper ions is shaped into a bottom shape and the formed body is exchanged with copper ions can also be considered as the catalyst of the present invention. The size of the molded body is not particularly limited.

〔実施例1〕 結晶性シリケートを次のようにして台底した。[Example 1] The crystalline silicate was prepared as follows.

水ガラス、硫酸第二鉄、硫酸アルミニウム、水を 36Na20’ (0,1Fe2[13” 0.9A]
203) ’ 80SiL・1600H20 のモル比になるように調合し、これに硫酸を適当量添加
し、上記混合物のpHが9前後になるようにした後、有
機窒素含有化合物としてプロピルアミン、臭化プロピル
をFe2O+ 、 八1203の合計のモル数の20倍
加え、よく混合し、500CCのステンレス製オートク
レーブにはり込んだ。
Water glass, ferric sulfate, aluminum sulfate, water to 36Na20' (0,1Fe2 [13" 0.9A]
203) ' Mix to a molar ratio of 80SiL/1600H20, add an appropriate amount of sulfuric acid to make the pH of the mixture around 9, and add propylamine and propyl bromide as organic nitrogen-containing compounds. was added in an amount 20 times the total number of moles of Fe2O+ and 81203, mixed well, and placed in a 500CC stainless steel autoclave.

上記混合物を約500 rpmにて攪拌しながら160
℃、で3時間反応させた。冷却後、固形分を濾過し、洗
浄水のpHが約8になるまで充分水洗し、110℃で1
2時間乾燥し、550℃で3時間焼成した。
The above mixture was heated at 160 rpm while stirring at approximately 500 rpm.
The reaction was carried out at ℃ for 3 hours. After cooling, the solid content was filtered, thoroughly washed with water until the pH of the washing water became approximately 8, and then heated at 110°C for 1 hour.
It was dried for 2 hours and fired at 550°C for 3 hours.

この生成物の結晶粒径はlμ前後であり、酸化物のモル
比で表わした組成は、脱水の形態で表わして (H,Na) 20 ’ (0,IFf32L ’ 0
.9A1.03) ” 80SiLであった。これを結
晶性シリケート1と称する。
The crystal grain size of this product is around lμ, and the composition expressed in terms of molar ratio of oxides is (H,Na)20'(0,IFf32L'0
.. 9A1.03)" 80SiL. This is referred to as crystalline silicate 1.

この結晶性シリケート1を台底する場合、原料の中で塩
酸の代わりに硝酸などを用いても、又塩化デンタンの代
わりに硝酸ランタンを用いても、又水ガラスの代わりに
シリカゾルを用いても同様のシリケートが得られた。
When making this crystalline silicate 1, it is possible to use nitric acid instead of hydrochloric acid, lanthanum nitrate instead of dentane chloride, or silica sol instead of water glass among the raw materials. A similar silicate was obtained.

又、水熱合成条件として160℃で3日間反応させる代
わりに170℃または180℃で2日間反応させても同
様のシリケートが得られた。
Furthermore, similar silicates were obtained by reacting at 170°C or 180°C for 2 days instead of at 160°C for 3 days as the hydrothermal synthesis conditions.

結晶性シリケート1の原料調合時の硫酸第二鉄と硫酸ア
ルミニウムの添加量をFe、O,とAl2O3のモル比
に換算して下記のように変えた以外は、結晶性シリケー
ト1の場合と同じ操作を繰り返して結晶性シリケート2
〜4を調製した。
Same as for crystalline silicate 1, except that the amounts of ferric sulfate and aluminum sulfate added when preparing the raw materials for crystalline silicate 1 were converted into molar ratios of Fe, O, and Al2O3 and changed as shown below. Repeat the operation to obtain crystalline silicate 2
~4 was prepared.

結晶性シリケート ■の調合時において、 硫酸 の代わりに塩酸を用い、また硫酸第二鉄の代わりに、塩
化コバルト、塩化ルテニウム、塩化ロジウム、塩化ラン
タン、塩化セリウム、塩化チタン、塩化バナジウム、塩
化クロム、塩化アンチモンを各々酸化物換算でFe2O
+と同じモル数だけ添加した以外は結晶性シリケート1
と同じ操作を繰り返して結晶性シリケート5〜13を調
製した。これらの結晶性シリケートの有機窒素含有化合
物を除外した組成は、酸化物のモル比(脱水の形態)で
表わして、 (H,Na) 20 ’ (0,1M203 ’ 0.
9AI、03) ’ 80Si[12であった。ここで
MはCa、 Ru、 Rh、 La。
When preparing crystalline silicate ■, hydrochloric acid is used instead of sulfuric acid, and cobalt chloride, ruthenium chloride, rhodium chloride, lanthanum chloride, cerium chloride, titanium chloride, vanadium chloride, chromium chloride, Antimony chloride is converted into oxide as Fe2O
Crystalline silicate 1 except that the same number of moles as + was added.
Crystalline silicates 5 to 13 were prepared by repeating the same operation. The composition of these crystalline silicates, excluding organic nitrogen-containing compounds, is expressed as the molar ratio of oxides (in dehydrated form): (H,Na)20'(0,1M203'0.
9AI, 03)' 80Si[12. Here, M is Ca, Ru, Rh, La.

Ce、 Ti 、 V、 Cr、 Sb  (結晶性シ
リケート5〜13の番号順)である。
Ce, Ti, V, Cr, Sb (in numerical order of crystalline silicates 5 to 13).

また結晶性シリケート1において調合時の5102/ 
(0,IFeJ、+ 0.9A1203)比を20.2
00とした以外は結晶性シリケートlと同じ操作を繰り
返して各々結晶性シリケー)14.15を調製した。
In addition, in crystalline silicate 1, 5102/
(0,IFeJ,+0.9A1203) ratio to 20.2
Crystalline silicate 14 and 15 were prepared by repeating the same operation as for crystalline silicate 1, except that 00 was used.

以上の結晶性シリケート1〜15の粉末X線回折パター
ンは表1に示すパターンを示すことが確認された。
It was confirmed that the powder X-ray diffraction patterns of the above crystalline silicates 1 to 15 showed the patterns shown in Table 1.

以上の結晶性シリケート1〜15のそれぞれ10gを酢
酸銅1gを500ccの水に溶解した水溶液の中に入れ
、室温にて12時間攪拌するイオン交換操作を行った。
10 g of each of the above crystalline silicates 1 to 15 were placed in an aqueous solution in which 1 g of copper acetate was dissolved in 500 cc of water, and an ion exchange operation was performed by stirring at room temperature for 12 hours.

このイオン交換操作を3回繰り返し行った後、水洗し、
100℃で12時間乾燥し、触媒l〜15(結晶シリケ
ートの番号に対応)を調製した。
After repeating this ion exchange operation three times, wash with water,
Catalysts 1 to 15 (corresponding to the crystalline silicate numbers) were prepared by drying at 100° C. for 12 hours.

触媒1〜15を16〜32メツシユに整粒し、触媒0.
5gを常圧固定床流過式反応器に充填し、次の反応条件
下で活性評価試験を行った。その結果を表2に示す。
Catalysts 1 to 15 were sized into 16 to 32 meshes, and catalysts 0.
5 g was packed into an atmospheric fixed bed flow reactor, and an activity evaluation test was conducted under the following reaction conditions. The results are shown in Table 2.

ガス組11j2 + NO:0.5%、0.1%、11
eバランスガス流量:INl/h、  反応温度:50
0℃表 なお、反応したNOは全てN2,0□に転化(2NO→
N2+02) しており選択性の高いことがわかった。
Gas group 11j2 + NO: 0.5%, 0.1%, 11
e Balance gas flow rate: INl/h, reaction temperature: 50
0℃ table Note that all of the reacted NO is converted to N2,0□ (2NO→
N2+02), indicating high selectivity.

〔実施例2〕 実施例1の触媒lを0.5 g 、常圧固定床流過式反
応器に充填し、反応条件をかえて、活性評価試験を行っ
た。その結果を表3に示す。
[Example 2] 0.5 g of the catalyst 1 of Example 1 was charged into an atmospheric fixed bed flow reactor, and an activity evaluation test was conducted under different reaction conditions. The results are shown in Table 3.

なお、反応したNOは全てN2.02に転化していた。Note that all of the reacted NO was converted to N2.02.

以上のように本発明の触媒はS02が含有したガスを用
いても活性が高いこと、また活性の経時変化が少ないこ
とがわかった。
As described above, it was found that the catalyst of the present invention has high activity even when using a gas containing S02, and that the activity changes little over time.

〔実施例3〕 実施例1の結晶性シリケート1の原料調合時の硫酸第二
鉄の代わりに塩化第二鉄と塩化クロムの混合物を用い、 36Na20’ (0,09Fe2L ’ 0.0IC
rzL ’ 0.9AI203)・80SiO□・16
00H2[1 のモル比になるように調合した点以外は、結晶性シリケ
ート1と同じ方法で結晶性シリケート16を得、同じ方
法でCuイオン交換を行い(ただしイオン交換操作2回
繰り返した)触媒16(Cuイオン交換率110%)を
得た。
[Example 3] A mixture of ferric chloride and chromium chloride was used instead of ferric sulfate when preparing the raw material for crystalline silicate 1 in Example 1, and 36Na20'(0,09Fe2L' 0.0IC
rzL' 0.9AI203)・80SiO□・16
Crystalline silicate 16 was obtained in the same manner as crystalline silicate 1, except that it was prepared in a molar ratio of 00H2[1], and Cu ion exchange was performed in the same manner (however, the ion exchange operation was repeated twice). 16 (Cu ion exchange rate 110%) was obtained.

実施例1と同じ活性評価を行った結果、NO転化率は8
0%であった。
As a result of the same activity evaluation as in Example 1, the NO conversion rate was 8.
It was 0%.

〔比較例〕[Comparative example]

実施例1の結晶性シリケート■の原料調合時の硫酸第二
鉄を添加せず 36Na、O” Al2O3・80Si02’ 160
0H,0のモル比になるように調合し、これに塩酸を適
当量添加し、上記混合物のpHが9前後になるようにし
た・後、有機窒素含有化合物として臭化テトラプロピル
アンモニウムをAIzOzの20倍加えた以外は実施例
1と同じ操作を繰返した。
When preparing raw materials for crystalline silicate (■) in Example 1, ferric sulfate was not added.
The mixture was mixed to have a molar ratio of 0H, 0, and an appropriate amount of hydrochloric acid was added thereto so that the pH of the mixture was around 9. After that, tetrapropylammonium bromide was added as an organic nitrogen-containing compound to AIzOz. The same operation as in Example 1 was repeated except that the amount was added 20 times.

実施例1と同様、銅でイオン交換しくCuイオン交換率
105%)、同じ条件活性評価を行った結果、NO転化
率は74%と高かったが、反応したNOのN2への転化
率は72%と低く、NO2などの副生が多いことがわか
った。
As in Example 1, ion exchange with copper (Cu ion exchange rate 105%) and activity evaluation under the same conditions revealed that the NO conversion rate was as high as 74%, but the conversion rate of reacted NO to N2 was 72%. %, indicating that there are many by-products such as NO2.

〔発明の効果〕〔Effect of the invention〕

以上、実施例に示したように、本発明の結晶性シリケー
トに銅を含有させた触媒は、排ガス中のNOxをN2.
02に分解する触媒として有効に使用できる。
As shown in the examples above, the catalyst containing copper in crystalline silicate of the present invention reduces NOx in exhaust gas to N2.
It can be effectively used as a catalyst for decomposing into 02.

Claims (1)

【特許請求の範囲】 脱水された状態において、酸化物のモル比で(1.0±
0.4)R_2O・〔a・M_2O_3・b・Al_2
O_3〕・ySiO_2(上記式中、Rはアルカリ金属
イオン及び/又は水素、M:VIII族元素、希土類元素、
チタン、バナジウム、クロム、ニオブ、アンチモンから
なる群から選ばれた1種以上の元素のイオン、a+b=
1、a>0、b>0、y>12) の化学式を有する結晶性シリケートに銅を含有させてな
ることを特徴とする窒素酸化物分解触媒。
[Claims] In a dehydrated state, the molar ratio of oxides is (1.0±
0.4) R_2O・[a・M_2O_3・b・Al_2
O_3]・ySiO_2 (in the above formula, R is an alkali metal ion and/or hydrogen, M: group VIII element, rare earth element,
Ions of one or more elements selected from the group consisting of titanium, vanadium, chromium, niobium, and antimony, a+b=
1, a>0, b>0, y>12) A nitrogen oxide decomposition catalyst characterized by containing copper in a crystalline silicate having the chemical formula:
JP28199689A 1989-10-31 1989-10-31 Catalyst for decomposition of nitrogen oxide Pending JPH03143547A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP28199689A JPH03143547A (en) 1989-10-31 1989-10-31 Catalyst for decomposition of nitrogen oxide
CA002045128A CA2045128C (en) 1989-10-31 1990-10-30 A catalyst for decomposing nitrogen oxides and a method of purifying a waste gas containing nitrogen oxides
EP90915829A EP0451291B1 (en) 1989-10-31 1990-10-30 Catalyst for nitrogen oxide decomposition and method of cleaning nitrogen oxide-containing exhaust gas
DE69020539T DE69020539T2 (en) 1989-10-31 1990-10-30 CATALYST FOR THE DECOMPOSITION OF NITROXIDE AND METHOD FOR PURIFYING EXHAUST GAS CONTAINING NITROGEN.
US07/721,659 US5254515A (en) 1989-10-31 1990-10-30 Catalyst for decomposing nitrogen oxides and a method of purifying a waste gas containing nitrogen oxides
PCT/JP1990/001394 WO1991006508A1 (en) 1989-10-31 1990-10-30 Catalyst for nitrogen oxide decomposition and method of cleaning nitrogen oxide-containing exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28199689A JPH03143547A (en) 1989-10-31 1989-10-31 Catalyst for decomposition of nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH03143547A true JPH03143547A (en) 1991-06-19

Family

ID=17646776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28199689A Pending JPH03143547A (en) 1989-10-31 1989-10-31 Catalyst for decomposition of nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH03143547A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791644A (en) * 1993-09-17 1995-04-04 Mitsubishi Heavy Ind Ltd Exhaust gas boiler
JP2011521871A (en) * 2008-05-21 2011-07-28 ビーエーエスエフ ソシエタス・ヨーロピア Process for direct synthesis of Cu-containing zeolites with CHA structure
JP2018202407A (en) * 2017-05-31 2018-12-27 古河電気工業株式会社 No decomposition catalyst structure, no decomposition treatment device and method for producing no decomposition catalyst structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791644A (en) * 1993-09-17 1995-04-04 Mitsubishi Heavy Ind Ltd Exhaust gas boiler
JP2011521871A (en) * 2008-05-21 2011-07-28 ビーエーエスエフ ソシエタス・ヨーロピア Process for direct synthesis of Cu-containing zeolites with CHA structure
US8715618B2 (en) 2008-05-21 2014-05-06 Basf Se Process for the direct synthesis of Cu containing zeolites having CHA structure
US9272272B2 (en) 2008-05-21 2016-03-01 Basf Se Process for the direct synthesis of Cu containing zeolites having CHA structure
JP2018202407A (en) * 2017-05-31 2018-12-27 古河電気工業株式会社 No decomposition catalyst structure, no decomposition treatment device and method for producing no decomposition catalyst structure

Similar Documents

Publication Publication Date Title
JPS60125250A (en) Catalytic cracking catalyst of nitrogen oxide and use thereof
JP4957176B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
US5254515A (en) Catalyst for decomposing nitrogen oxides and a method of purifying a waste gas containing nitrogen oxides
JPH0456667B2 (en)
JPH03118836A (en) Catalyst for contact decomposition of nitrogen oxides and contact decomposition method
JPH03143547A (en) Catalyst for decomposition of nitrogen oxide
JP2659840B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP2734480B2 (en) Nitrogen oxide decomposition catalyst
JPS5815023A (en) Crystalline aluminosilicate composition
JPH04349115A (en) Production of crystalline silicate
JPH0528279B2 (en)
JP2734476B2 (en) Catalyst for direct catalytic cracking of nitrogen oxides
JPH0435747A (en) Catalyst for decomposition of nitrogen oxide
JP2695668B2 (en) Purification method of exhaust gas containing nitrogen oxides
CA2037814A1 (en) Catalyst and method for catalytically decomposing nitrogen oxides
JPH044045A (en) Catalyst for processing exhaust gas
JP2555636B2 (en) Method for producing copper-containing zeolite compact
JPH01228554A (en) Platinum group metal supporting mordenite and manufacture thereof
JP3211254B2 (en) Nitrogen oxide adsorbent
JPH03101837A (en) Production of catalyst for decomposition of nitrogen oxide
JPS60100528A (en) Production of hydrocarbon
JPH03127628A (en) Direct catalytic cracking catalyst for nitrogen oxides
JPH09122494A (en) Synthetic zeolite zsm-5 containing cu, manufacture thereof and manufacture of nitrogen oxide decomposition catalyst
JPS624327B2 (en)
JP3286996B2 (en) Exhaust gas purification catalyst