JPH04349115A - Production of crystalline silicate - Google Patents

Production of crystalline silicate

Info

Publication number
JPH04349115A
JPH04349115A JP11836091A JP11836091A JPH04349115A JP H04349115 A JPH04349115 A JP H04349115A JP 11836091 A JP11836091 A JP 11836091A JP 11836091 A JP11836091 A JP 11836091A JP H04349115 A JPH04349115 A JP H04349115A
Authority
JP
Japan
Prior art keywords
crystalline silicate
water
ions
raw material
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11836091A
Other languages
Japanese (ja)
Other versions
JP3192677B2 (en
Inventor
Shigeru Nojima
繁 野島
Hiroshi Fujita
浩 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11836091A priority Critical patent/JP3192677B2/en
Publication of JPH04349115A publication Critical patent/JPH04349115A/en
Application granted granted Critical
Publication of JP3192677B2 publication Critical patent/JP3192677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To produce crystalline silicate having a specified chemical compsn. in an org. additive-free state. CONSTITUTION:When crystalline silicate having a chemical compsn. represented by a formula (0.1-2.0)R2/nO.[aM2O3.bAl2O3 ].ySiO2 when expressed by molar ratio among oxides in a dehydrated form and having a specified interplanar spacing (alpha value) in powder X-ray diffraction is produced, a water-soluble salt as starting material for M2O3 is added to a water-soluble starting material mixture consisting of a silica source, an alumina source and a mono- or divalent metallic salt and they are held under conditions in hydrothermal synthesis. In the formula, R is one or more kinds of mono- or divalent ions, n is the valence of R, M is ions of one or more kinds of elements selected from among group VIII elements, rate earth elements, Ti, V, Cr, Nb, Sb, Bi and Ga, a+b=1, a>1, b>=1 and y>=12.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は結晶性シリケートの新規
な製造方法に関し、特に本発明は有機添加物を含まない
状態で特定の化学組成を有する結晶性シリケートを製造
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new method for producing crystalline silicates, and more particularly, the present invention relates to a method for producing crystalline silicates having a specific chemical composition in the absence of organic additives.

【0002】0002

【従来の技術】ゼオライトは多数の立体構造を有し、モ
レキュラーシーブとして吸着剤やガスの分離等に用いら
れ、最近では炭化水素のクラッキング、異性化等の炭化
水素の転換用触媒さらに脱硝触媒等として広く用いられ
るようなってきた。通常ゼオライトは結晶性アルミノシ
リケートであり、全アルミニウム及びケイ素原子対酸素
原子の比率が1:2になるように酸素原子の共有によっ
て結合されたSiO4 及びAlO4 − 四面体の硬
質三次元構造を有している。
[Prior Art] Zeolites have many tertiary structures and are used as adsorbents and gas separations as molecular sieves.Recently, zeolites have been used as catalysts for hydrocarbon conversion such as hydrocarbon cracking and isomerization, as well as denitrification catalysts. It has come to be widely used as Typically, zeolites are crystalline aluminosilicates with a rigid three-dimensional structure of SiO4 and AlO4 - tetrahedra bonded by covalent oxygen atoms such that the ratio of total aluminum and silicon atoms to oxygen atoms is 1:2. ing.

【0003】一方、Alの代わりにAlのイオン半径と
同程度の3価のカチオンを使用してもゼオライト構造中
のSiO4 四面体と同様の形態で3価のカチオンの四
面体が形成されることが判明している(特公平2−35
692号公報)。
On the other hand, even if a trivalent cation with the same ionic radius as Al is used instead of Al, a trivalent cation tetrahedron is formed in the same form as the SiO4 tetrahedron in the zeolite structure. It has been found that (Tokuhei 2-35
Publication No. 692).

【0004】ゼオライト中のAlの一部又は全部を遷移
金属にかえることにより触媒性能に著しい変化が認めら
れている。例えばメタノールやその他の含酸素有機化合
物の芳香族転換反応において、従来のZSM−5と称さ
れるゼオライトなどでは副生成物であるデュレンが数%
生成するが、このような結晶性シリケートを用いた場合
、デュレンなどのC10以上の芳香族生成物が殆んど生
成しない結果が得られている。さらに窒素酸化物の直接
分解反応(2N0→N2 +O2 )においても、Cu
イオン交換したこのような結晶性シリケートは従来のZ
SM−5と称せられるゼオライトに比べて副反応が抑制
され、選択的に上記反応のみが進行することが報告され
ている(特願平01−281996)。
[0004] Significant changes in catalytic performance have been observed by replacing part or all of the Al in zeolite with a transition metal. For example, in the aromatic conversion reaction of methanol and other oxygen-containing organic compounds, conventional zeolite called ZSM-5 contains several percent of durene as a by-product.
However, when such a crystalline silicate is used, results have been obtained in which almost no C10 or higher aromatic products such as durene are produced. Furthermore, in the direct decomposition reaction of nitrogen oxides (2N0→N2 +O2), Cu
Such ion-exchanged crystalline silicates are similar to conventional Z
It has been reported that side reactions are suppressed compared to the zeolite called SM-5, and only the above reactions proceed selectively (Japanese Patent Application No. 01-281996).

【0005】これまでこのような結晶性シリケートは有
機窒素含有化合物等を用いて水熱合成法により製造され
ていた。使用する有機物としては i)  第1級アミン・・・n−プロピルアミン、モノ
エタノールアミン等 ii)   第2級アミン・・・ジプロピルアミン、ジ
エタノールアミン等 iii)  第3級アミン・・・トリプロピルアミン、
トリエタノールアミン等 iv)   その他の有機窒素化合物・・・ピリジン、
ピラジン等 が挙げられ、上記有機窒素化合物以外の有機物としてエ
タノール、メタノール等のアルコール類、アセトン等の
ケトン類、ジエチルエーテル等のエーテル類、エステル
類等も用いられている。上記有機物は結晶化促進剤とし
て作用し、細孔の交差部に有機物が存在し、結晶の核と
して、良質のシリケートを得ることを可能にすると言わ
れている。
Until now, such crystalline silicates have been produced by hydrothermal synthesis using organic nitrogen-containing compounds. The organic substances used are i) Primary amines...n-propylamine, monoethanolamine, etc. ii) Secondary amines...dipropylamine, diethanolamine, etc. iii) Tertiary amines...tripropylamine ,
Triethanolamine etc. iv) Other organic nitrogen compounds...Pyridine,
Examples include pyrazine, and other organic substances other than the organic nitrogen compounds mentioned above include alcohols such as ethanol and methanol, ketones such as acetone, ethers such as diethyl ether, and esters. It is said that the above-mentioned organic substance acts as a crystallization accelerator, and that the organic substance is present at the intersection of the pores and serves as a crystal nucleus, making it possible to obtain high-quality silicate.

【0006】しかし、上記有機化合物はコストが高く、
一部には毒性が問題となる。結晶性シリケートが合成さ
れた際、有機化合物が細孔内に取り込まれており、取り
除くため焼成操作を行っても、有機物が残留することが
生じたり、又は瞬時に高温燃焼が生じ、脱メタル(Al
、Fe・・・等)の現象が生じる等の不具合点が生じて
いる。
However, the above organic compounds are expensive and
Toxicity is an issue for some. When crystalline silicate is synthesized, organic compounds are incorporated into the pores, and even if a firing operation is performed to remove them, organic compounds may remain, or instantaneous high-temperature combustion may occur, resulting in demetalization ( Al
, Fe, etc.) have occurred.

【0007】[0007]

【発明が解決しようとする課題】これらの欠点を除くた
めに有機添加物を用いない結晶性シリケートを製造する
方法が提案されている。例えば有機添加物を全く含まな
いシリカ、アルミナ、アルカリ金属塩等よりなる水性原
料混合物を自然圧で80〜210℃、40〜200時間
保持して結晶性シリケートを生成する方法(特公昭56
−49851号公報)がていなんされているが、結晶中
にモルデナイト等の副生成物が共存しており、純度のよ
い結晶性シリケートを得ることはできない。
SUMMARY OF THE INVENTION In order to eliminate these drawbacks, methods for producing crystalline silicates without using organic additives have been proposed. For example, a method of producing crystalline silicate by holding an aqueous raw material mixture of silica, alumina, alkali metal salts, etc. under natural pressure at 80 to 210°C for 40 to 200 hours (Japanese Patent Publication Publication No. 1983)
49851), but by-products such as mordenite coexist in the crystals, making it impossible to obtain crystalline silicate with good purity.

【0008】本発明は上記技術水準に鑑み、原料として
有機添加物を用いず、かつ上記方法におけるような副生
成物の共存のない結晶性シリケートの製造方法を提供し
ようとするものである。
In view of the above-mentioned state of the art, the present invention aims to provide a method for producing crystalline silicate without using organic additives as raw materials and without the coexistence of by-products as in the above-mentioned methods.

【0009】[0009]

【課題を解決するための手段】本発明は脱水された形態
において、酸化物のモル比で表わして、(0.1〜2.
0)R2/n O・〔aM2 O3 ・bAl2 O3
 〕・ySiO2 (上記式中、R:1種又はそれ以上
の1価又は2価イオン、n:Rの原子価、M:VIII
族元素、希土類元素、Ti、V、Cr、Nb、Sb、B
i、Gaからなる群より選ばれた1種以上の元素イオン
、a+b=1、a>1、b≧0、y≧12)の化学組成
を有し、かつ下記表1に示す粉末X線回折における格子
面間隔(α値)を有する結晶性シリケートを製造するに
当って、シリカ源、アルミナ源及び1価又は2価金属塩
よりなる水性原料混合物に、更にM2 O3 (M:上
記定義と同じ)に基づく水溶性原料塩を添加し、水熱合
成条件下に保持することを特徴とする結晶性シリケート
の製造方法である。
SUMMARY OF THE INVENTION The present invention provides that, in dehydrated form, the molar ratio of oxides (0.1 to 2.
0) R2/n O・[aM2 O3 ・bAl2 O3
]・ySiO2 (In the above formula, R: one or more monovalent or divalent ions, n: valence of R, M: VIII
group elements, rare earth elements, Ti, V, Cr, Nb, Sb, B
i, one or more element ions selected from the group consisting of Ga, a+b=1, a>1, b≧0, y≧12), and has a powder X-ray diffraction analysis shown in Table 1 below. In producing crystalline silicate having a lattice spacing (α value) of ) is a method for producing crystalline silicate, which is characterized by adding a water-soluble raw material salt based on the method and maintaining it under hydrothermal synthesis conditions.

【表1】[Table 1]

【0010】従来、例えばテトラプロピルアンモニウム
ブロマイドなどの有機物を用いて結晶性シリケートを製
造する場合、下記のようなモル組成の水性混合物から出
発して製造されていた。 SiO2 /(Al2 O3 +M2 O3 ):12
〜3000(好ましくは20〜200) H2 O/SiO2         :5〜1000
(好ましくは7〜200) R2/n O/SiO2       :0.02〜1
.0(好ましくは0.05〜0.2) H2 O/R2/n O        :5〜100
0(好ましくは10〜300) 有機化合物/(Al2 O3 +M2 O3 ):1〜
100(好ましくは5〜50)
Conventionally, when producing crystalline silicate using an organic substance such as tetrapropylammonium bromide, it has been produced starting from an aqueous mixture having the following molar composition. SiO2/(Al2O3 +M2O3): 12
~3000 (preferably 20-200) H2O/SiO2: 5-1000
(preferably 7-200) R2/n O/SiO2: 0.02-1
.. 0 (preferably 0.05-0.2) H2O/R2/nO: 5-100
0 (preferably 10-300) Organic compound/(Al2O3 +M2O3): 1-
100 (preferably 5-50)

【0011】本発明におけるように、有機化合物を添加
しない場合には結晶性シリケートを純度よく合成するに
は上記モル組成はあってはならないが、添加する金属酸
化物(M2 O3 )源に基づく水溶性原料塩が結晶化
促進剤として有効に働くことが判り、本発明は下記モル
組成条件にて所定の結晶性シリケートが合成できること
を見出したものである。
As in the present invention, when no organic compound is added, the above molar composition must not exist in order to synthesize crystalline silicate with high purity; It has been found that the crystalline raw material salt acts effectively as a crystallization accelerator, and the present invention is based on the discovery that a predetermined crystalline silicate can be synthesized under the following molar composition conditions.

【0012】反応混合物のモル組成は SiO2 /(Al2 O3 +M2 O3 ):12
〜100(好ましくは20〜60) H2 O/SiO2                
   :5〜1000(好ましくは7〜200)
The molar composition of the reaction mixture is SiO2/(Al2O3 +M2O3):12
~100 (preferably 20-60) H2O/SiO2
:5-1000 (preferably 7-200)

【0013】さらに、生成ゲル時のpH、すなわちゲル
中のH+ (水素イオン)濃度が重要因子となり、H2
 O/R2/n O比が5〜20で、かつR2/n O
/(Al2 O3 +M2 O3 )比が5〜20でス
ラリーを調製する場合にはpHは7〜9.5の範囲に、
又H2 O/R2/n O比が20〜300で、かつR
2/n O/(Al2 O3 +M2 O3 )比が1
〜8で調製する場合にはpHは11〜14の範囲に調製
しなければならない。
Furthermore, the pH at the time of the gel formation, that is, the H+ (hydrogen ion) concentration in the gel, is an important factor;
O/R2/n O ratio is 5 to 20, and R2/n O
/(Al2O3 +M2O3) When preparing a slurry with a ratio of 5 to 20, the pH is in the range of 7 to 9.5,
In addition, the H2O/R2/nO ratio is 20 to 300, and R
2/n O/(Al2 O3 + M2 O3) ratio is 1
-8, the pH must be adjusted to a range of 11-14.

【0014】さらに、又、本発明結晶性シリケートは前
記原料混合物を結晶性シリケートが生成するに充分な温
度と時間加熱することにより合成されるが、水熱合成温
度は80〜300℃、好ましくは130〜200℃の範
囲にあり、また、水熱合成時間は0.5〜14日好まし
くは1〜10日である。
Furthermore, the crystalline silicate of the present invention is synthesized by heating the raw material mixture at a temperature and time sufficient to form the crystalline silicate, and the hydrothermal synthesis temperature is 80 to 300°C, preferably The temperature is in the range of 130 to 200°C, and the hydrothermal synthesis time is 0.5 to 14 days, preferably 1 to 10 days.

【0015】[0015]

【作用】本発明方法にて添加する金属酸化物(M2 O
3 )に基づく水溶性原料塩の金属イオンが細孔交差部
の中心的なカチオンの働きを有し、結晶成長を促進する
重要な働きを示すことがわかった。この水溶性原料塩の
金属イオンはVIII族元素、希土類元素、Ti、V、
Cr、Nb、Sb、Bi、Gaである。
[Function] Metal oxide (M2O
It was found that the metal ions in the water-soluble raw material salt based on 3) function as central cations at pore intersections and play an important role in promoting crystal growth. The metal ions of this water-soluble raw material salt include Group VIII elements, rare earth elements, Ti, V,
These are Cr, Nb, Sb, Bi, and Ga.

【0016】さらに、上記金属イオンは生成した結晶性
シリケート中においても重要な触媒活性点として働き、
とりわけ、銅を担持した本発明結晶性シリケートは窒素
酸化物の直接分解反応(2NO→N2 +O2 )、排
気ガスの浄化反応(例えば9NO+C3 H6 → 9
/2N2 ・3CO2 +3H2 O)等に高活性を有
することが判明している。
Furthermore, the above-mentioned metal ions also function as important catalytic active sites in the produced crystalline silicate,
In particular, the copper-supported crystalline silicate of the present invention can be used for direct decomposition reactions of nitrogen oxides (2NO→N2 +O2) and exhaust gas purification reactions (for example, 9NO+C3 H6 → 9
/2N2 ・3CO2 +3H2 O), etc., has been found to have high activity.

【0017】なお、添加する金属酸化物に基づく水溶性
原料塩は塩化物、硝酸塩、硫酸塩、酢酸塩など、いずれ
も可能であり、特に限定されるものではない。以下、本
発明の結晶性シリケートの製造方法を実施例をもって説
明する。
The water-soluble raw material salt based on the metal oxide to be added may be any of chlorides, nitrates, sulfates, acetates, etc., and is not particularly limited. Hereinafter, the method for producing crystalline silicate of the present invention will be explained with reference to Examples.

【0018】[0018]

【実施例】【Example】

(例1)アルミン酸ソーダ(林純薬社製純度85%)1
98.1g、カセイソーダ(林純薬社特級製)211.
7gを水4018gに溶解し、溶液Aとする。一方、シ
リカゾル溶液(日産化学製スノーテックスO:SiO2
 20%)9180gに水4320gを加え、さらにこ
の水溶液に塩化第2鉄27g、塩化コバルト145gを
溶解させ、溶液Bを得る。
(Example 1) Sodium aluminate (manufactured by Hayashi Junyaku Co., Ltd. purity 85%) 1
98.1g, caustic soda (made by Hayashi Junyakusha special grade) 211.
7g was dissolved in 4018g of water to prepare solution A. On the other hand, silica sol solution (Nissan Chemical Snowtex O: SiO2
Solution B is obtained by adding 4320 g of water to 9180 g of 20%) and further dissolving 27 g of ferric chloride and 145 g of cobalt chloride in this aqueous solution.

【0019】次に溶液Aと溶液Bを均等に他の容器に添
加して中和し均一pH(pH=12.6)において混合
攪拌することによりゲルを生成させる。このゲルをステ
ンレス製オートクレーブにセットし、160℃で72時
間自己発生圧力下に保持して結晶性シリケートを合成し
た。
Next, solution A and solution B are added equally to another container, neutralized, and mixed and stirred at a uniform pH (pH=12.6) to form a gel. This gel was placed in a stainless steel autoclave and kept under self-generated pressure at 160° C. for 72 hours to synthesize crystalline silicate.

【0020】反応終了後、生成物のろ過洗浄を行い、そ
の後120℃で乾燥を行った。これによって結晶性シリ
ケート1を得、粉末X線回折の結果、前記表1に示す結
晶パターンを有することが判明した。
After the reaction was completed, the product was filtered and washed, and then dried at 120°C. As a result, Crystalline Silicate 1 was obtained, and as a result of powder X-ray diffraction, it was found to have a crystal pattern shown in Table 1 above.

【0021】(例2)水ガラス1号(徳山曹達製、Si
O2 37%含有)5616gを水5429gに溶解し
、溶液Aを得る。一方、水4165gに塩化ナトリウム
262gと硫酸アルミニウム749g、塩化第2鉄22
gと塩化コバルト15g、さらに濃塩酸1700gを添
加し、溶解させて溶液Bを得る。
(Example 2) Water glass No. 1 (manufactured by Tokuyama Soda, Si
Solution A is obtained by dissolving 5616 g of O2 (containing 37%) in 5429 g of water. On the other hand, in 4165 g of water, 262 g of sodium chloride, 749 g of aluminum sulfate, and 22 g of ferric chloride.
g, 15 g of cobalt chloride, and 1700 g of concentrated hydrochloric acid are added and dissolved to obtain solution B.

【0022】次に溶液Aと溶液Bを例1と同様に均等に
他の容器に加えて中和し、均一pH(pH=8.5)に
おいて混合攪拌することによりゲルを生成させた。この
ゲルをステンレス製オートクレーブにセットして100
℃に24時間、170℃に48時間自己発生圧力下に保
持して結晶性シリケートを合成した。
Next, solution A and solution B were equally added to another container in the same manner as in Example 1, neutralized, and mixed and stirred at a uniform pH (pH=8.5) to form a gel. Set this gel in a stainless steel autoclave and
C. for 24 hours and 170.degree. C. for 48 hours under autogenous pressure to synthesize crystalline silicate.

【0023】この結晶性シリケート2を粉末X線回折の
結果、前記表1に示す結晶パターンを有することが判明
した。
As a result of powder X-ray diffraction, this crystalline silicate 2 was found to have a crystal pattern shown in Table 1 above.

【0024】(例3)例1において塩化第2鉄、塩化コ
バルトの代わりに硝酸ランタンを42g添加し、他は方
法は例1と同様の方法にて合成し、結晶性シリケート3
を得た。
(Example 3) Crystalline silicate 3 was synthesized in the same manner as in Example 1 except that 42 g of lanthanum nitrate was added instead of ferric chloride and cobalt chloride in Example 1.
I got it.

【0025】又、同様に硝酸セリウム28g、四塩化チ
タン26g、三塩化バナジウム16gと塩化第2鉄18
g、塩化ニオブ6gと塩化ビスマス26g、硝酸クロム
38gを塩化第2鉄と塩化コバルトの代わりに各々添加
し、例1と同様な方法において、結晶性シリケート4、
5、6、7、8を得た。
Similarly, 28 g of cerium nitrate, 26 g of titanium tetrachloride, 16 g of vanadium trichloride and 18 g of ferric chloride
In the same manner as in Example 1, crystalline silicate 4,
5, 6, 7, and 8 were obtained.

【0026】これらの結晶性シリケートはいずれも粉末
X線回折の結果、前記表1に示す回折パターンを有して
いた。
As a result of powder X-ray diffraction, all of these crystalline silicates had the diffraction patterns shown in Table 1 above.

【0027】(例4)例2において、塩化第2鉄と塩化
コバルトの代わりに塩化ルテニウム6g、塩化ニッケル
26g、硝酸ガリウム24gを添加し、例1と同様な方
法において結晶性シリケート9、10、11を得た。
(Example 4) In Example 2, 6 g of ruthenium chloride, 26 g of nickel chloride, and 24 g of gallium nitrate were added instead of ferric chloride and cobalt chloride, and in the same manner as in Example 1, crystalline silicates 9, 10, I got 11.

【0028】これらの結晶性シリケートの粉末X線回折
の結果、前記表1に示す回折パターンを有していた。
As a result of powder X-ray diffraction of these crystalline silicates, they had the diffraction patterns shown in Table 1 above.

【0029】(比較例)例1及び2において塩化第2鉄
と塩化コバルトと添加しない組成において、有機物を添
加しない条件で例1及び2の方法にて、結晶性シリケー
ト12、13を得た。
(Comparative Example) Crystalline silicates 12 and 13 were obtained by the method of Examples 1 and 2 in the compositions of Examples 1 and 2 in which ferric chloride and cobalt chloride were not added and under the condition that no organic matter was added.

【0030】これらの結晶性シリケートの粉末X線回折
の結果、結晶性シリケート12はほとんど非晶質、結晶
性シリケート13はほとんどモルデナイト型結晶構造を
形成することが判明した。
As a result of powder X-ray diffraction of these crystalline silicates, it was found that crystalline silicate 12 was almost amorphous, and crystalline silicate 13 almost formed a mordenite type crystal structure.

【0031】以上、例1〜4及び比較例をまとめて下記
表2に示す。
[0031] Examples 1 to 4 and comparative examples are summarized in Table 2 below.

【表2】[Table 2]

【0032】[0032]

【発明の効果】実施例にて示すように、特定の金属酸化
物に基づく水溶液原料塩を結晶性シリケートの原料中、
添加することにより、従来有機物を添加せず、合成する
ことが不可能であった結晶性シリケートを容易に合成す
ることが可能となった。なお添加した金属イオンは結晶
性シリケート中で触媒活性種として有効に作用し銅を担
持した結晶性シリケート1〜11は窒素酸化物の直接分
解反応(2NO→N2 +O2 )や排気ガスの浄化反
応(9NO+C3 H6 → 9/2N2 ・3CO2
 +3H2 O)等に高活性を有することが判明した。
Effects of the Invention As shown in the examples, when an aqueous raw material salt based on a specific metal oxide is used as a raw material for crystalline silicate,
By adding it, it has become possible to easily synthesize crystalline silicate, which has conventionally been impossible to synthesize without adding organic substances. The added metal ions effectively act as catalytically active species in the crystalline silicate, and the copper-supported crystalline silicates 1 to 11 are capable of direct decomposition reactions of nitrogen oxides (2NO→N2 + O2) and exhaust gas purification reactions ( 9NO+C3 H6 → 9/2N2 ・3CO2
+3H2O), etc., was found to have high activity.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  脱水された形態において、酸化物のモ
ル比で表わして、 (0.1〜2.0)R2/n O・〔aM2 O3 ・
bAl2 O3 〕・ySiO2 (上記式中、R:1
種又はそれ以上の1価又は2価イオン、n:Rの原子価
、M:VIII族元素、希土類元素、Ti、V、Cr、
Nb、Sb、Bi、Gaからなる群より選ばれた1種以
上の元素イオン、a+b=1、a>1、b≧0、y≧1
2)の化学組成を有し、かつ本文で詳記する表1に示す
粉末X線回折における格子面間隔(α値)を有する結晶
性シリケートを製造するに当って、シリカ源、アルミナ
源及び1価又は2価金属塩よりなる水性原料混合物に、
更にM2 O3 (M:上記定義と同じ)に基づく水溶
性原料塩を添加し、水熱合成条件下に保持することを特
徴とする結晶性シリケートの製造方法。
1. In dehydrated form, expressed as molar ratio of oxides: (0.1-2.0)R2/n O.[aM2 O3.
bAl2O3 ]・ySiO2 (In the above formula, R: 1
species or more monovalent or divalent ions, n: valence of R, M: group VIII element, rare earth element, Ti, V, Cr,
One or more element ions selected from the group consisting of Nb, Sb, Bi, and Ga, a+b=1, a>1, b≧0, y≧1
2) In producing a crystalline silicate having the chemical composition of To an aqueous raw material mixture consisting of a valent or divalent metal salt,
A method for producing crystalline silicate, which further comprises adding a water-soluble raw material salt based on M2O3 (M: the same as defined above) and maintaining the mixture under hydrothermal synthesis conditions.
JP11836091A 1991-05-23 1991-05-23 Method for producing crystalline silicate Expired - Fee Related JP3192677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11836091A JP3192677B2 (en) 1991-05-23 1991-05-23 Method for producing crystalline silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11836091A JP3192677B2 (en) 1991-05-23 1991-05-23 Method for producing crystalline silicate

Publications (2)

Publication Number Publication Date
JPH04349115A true JPH04349115A (en) 1992-12-03
JP3192677B2 JP3192677B2 (en) 2001-07-30

Family

ID=14734783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11836091A Expired - Fee Related JP3192677B2 (en) 1991-05-23 1991-05-23 Method for producing crystalline silicate

Country Status (1)

Country Link
JP (1) JP3192677B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618512A (en) * 1995-11-30 1997-04-08 Arco Chemical Technology, L.P. Niobium-containing zeolites
JP2005112686A (en) * 2003-10-09 2005-04-28 National Institute Of Advanced Industrial & Technology Method of manufacturing mordenite type metallosilicate
JP2013203557A (en) * 2012-03-27 2013-10-07 Takeji Hirota Method for producing zeolite-like sintered compact, and zeolite-like sintered compact

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2327318A1 (en) 2009-11-27 2011-06-01 Philip Morris Products S.A. An electrically heated smoking system with internal or external heater
GB201700136D0 (en) 2017-01-05 2017-02-22 British American Tobacco Investments Ltd Aerosol generating device and article
GB201700620D0 (en) 2017-01-13 2017-03-01 British American Tobacco Investments Ltd Aerosol generating device and article
GB201720338D0 (en) 2017-12-06 2018-01-17 British American Tobacco Investments Ltd Component for an aerosol-generating apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618512A (en) * 1995-11-30 1997-04-08 Arco Chemical Technology, L.P. Niobium-containing zeolites
US5679749A (en) * 1995-11-30 1997-10-21 Arco Chemical Technology, L.P. Olefin epoxidation using niobium-containing zeolites
JP2005112686A (en) * 2003-10-09 2005-04-28 National Institute Of Advanced Industrial & Technology Method of manufacturing mordenite type metallosilicate
JP4538624B2 (en) * 2003-10-09 2010-09-08 独立行政法人産業技術総合研究所 Method for producing mordenite-type metallosilicate
JP2013203557A (en) * 2012-03-27 2013-10-07 Takeji Hirota Method for producing zeolite-like sintered compact, and zeolite-like sintered compact

Also Published As

Publication number Publication date
JP3192677B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
CN107750232B (en) Direct synthesis of Cu-CHA by combining Cu complex and tetraethylammonium and its use in catalysis
US5013537A (en) Process for the synthesis of zeolites of the ferrisilicate type, products so obtained
JP7005399B2 (en) Method for synthesizing IZM-2 zeolite in the presence of template 1,6-bis (methylpiperidinium) hexanedibromid
JP7085375B2 (en) Method for synthesizing IZM-2 zeolite in the presence of template 1,6-bis (methylpiperidinium) hexanedihydroxydo
AU2002323356A1 (en) Small crystallite zeolite CHA
CN106276952A (en) Preparation has the method for the zeolite of CHA structure
EP2340230B1 (en) Method of preparing ssz-74
JPH0250045B2 (en)
US5328675A (en) Transition-metal-aluminosilicate hydrocarbon conversion catalysts having an L type structure, ECR-22-D
JP4386643B2 (en) Porous crystalline material (zeolite ITQ-21), process for its production and its use in catalytic conversion of organic compounds
US5338525A (en) MFI-type zeolite and its preparation process
JPH04349115A (en) Production of crystalline silicate
US5192520A (en) Synthesis of aluminosilicate zeolites of faujasite structure
US7867473B2 (en) Process for preparation of a MEL-structural-type zeolite
JP2010090025A (en) Method for preparation of zeolite with mtw-type structure
US5254515A (en) Catalyst for decomposing nitrogen oxides and a method of purifying a waste gas containing nitrogen oxides
TW201424838A (en) Production of catalysts based on boron zeolites
JPS646816B2 (en)
JP4462933B2 (en) Porous crystalline material (ITQ-21) and process for its preparation in the absence of fluoride ions
CN112551543A (en) Process for preparing IZM-2 zeolite in the presence of a mixture of nitrogen-containing organic structuring agent in the hydroxide and bromide form
JP2697037B2 (en) Crystalline metal silicate and method for producing the same
US5215736A (en) Mordenite type zeolite and its preparation process
JPH0232205B2 (en)
KR102667235B1 (en) How to make molecular sieve SSZ-63
US20170158520A1 (en) Synthesis of aluminosilicate zeolites having the offretite structure

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010417

LAPS Cancellation because of no payment of annual fees