JP3192677B2 - Method for producing crystalline silicate - Google Patents

Method for producing crystalline silicate

Info

Publication number
JP3192677B2
JP3192677B2 JP11836091A JP11836091A JP3192677B2 JP 3192677 B2 JP3192677 B2 JP 3192677B2 JP 11836091 A JP11836091 A JP 11836091A JP 11836091 A JP11836091 A JP 11836091A JP 3192677 B2 JP3192677 B2 JP 3192677B2
Authority
JP
Japan
Prior art keywords
crystalline silicate
ratio
crystalline
raw material
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11836091A
Other languages
Japanese (ja)
Other versions
JPH04349115A (en
Inventor
野島  繁
浩 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11836091A priority Critical patent/JP3192677B2/en
Publication of JPH04349115A publication Critical patent/JPH04349115A/en
Application granted granted Critical
Publication of JP3192677B2 publication Critical patent/JP3192677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は結晶性シリケートの新規
な製造方法に関し、特に本発明は有機添加物を含まない
状態で特定の化学組成を有する結晶性シリケートを製造
する方法に関する。
The present invention relates to a novel method for producing a crystalline silicate, and more particularly to a method for producing a crystalline silicate having a specific chemical composition in the absence of organic additives.

【0002】[0002]

【従来の技術】ゼオライトは多数の立体構造を有し、モ
レキュラーシーブとして吸着剤やガスの分離等に用いら
れ、最近では炭化水素のクラッキング、異性化等の炭化
水素の転換用触媒さらに脱硝触媒等として広く用いられ
るようなってきた。通常ゼオライトは結晶性アルミノシ
リケートであり、全アルミニウム及びケイ素原子対酸素
原子の比率が1:2になるように酸素原子の共有によっ
て結合されたSiO4 及びAlO4 - 四面体の硬質三次
元構造を有している。
2. Description of the Related Art Zeolite has a large number of three-dimensional structures and is used as a molecular sieve for separating adsorbents and gases. Recently, catalysts for hydrocarbon conversion such as cracking and isomerization of hydrocarbons, and denitration catalysts, etc. It has become widely used as. Usually the zeolite is a crystalline aluminosilicate, the ratio of total aluminum and silicon atoms to oxygen atoms is 1: SiO 4 are linked by sharing of oxygen atoms at 2 and AlO 4 - tetrahedra rigid three-dimensional structure Have.

【0003】一方、Alの代わりにAlのイオン半径と
同程度の3価のカチオンを使用してもゼオライト構造中
のSiO4 四面体と同様の形態で3価のカチオンの四面
体が形成されることが判明している(特公平2−356
92号公報)。
[0003] On the other hand, even if a trivalent cation having the same radius as the ionic radius of Al is used instead of Al, a tetrahedron of the trivalent cation is formed in the same form as the SiO 4 tetrahedron in the zeolite structure. (Tokuhei 2-356)
No. 92).

【0004】ゼオライト中のAlの一部又は全部を遷移
金属にかえることにより触媒性能に著しい変化が認めら
れている。例えばメタノールやその他の含酸素有機化合
物の芳香族転換反応において、従来のZSM−5と称さ
れるゼオライトなどでは副生成物であるデュレンが数%
生成するが、このような結晶性シリケートを用いた場
合、デュレンなどのC10以上の芳香族生成物が殆んど生
成しない結果が得られている。さらに窒素酸化物の直接
分解反応(2N0→N2 +O2 )においても、Cuイオ
ン交換したこのような結晶性シリケートは従来のZSM
−5と称せられるゼオライトに比べて副反応が抑制さ
れ、選択的に上記反応のみが進行することが報告されて
いる(特願平01−281996)。
[0004] It has been recognized that the conversion of some or all of Al in the zeolite to a transition metal significantly changes the catalytic performance. For example, in the aromatic conversion reaction of methanol or other oxygen-containing organic compounds, in a conventional zeolite called ZSM-5, durene as a by-product is a few%.
But it produces, when using such a crystalline silicate, as a result of C 10 or more aromatic products not throat generate N殆such durene is obtained. Further, in the direct decomposition reaction of nitrogen oxides (2N0 → N 2 + O 2 ), such a crystalline silicate subjected to Cu ion exchange can be used in a conventional ZSM.
It has been reported that a side reaction is suppressed as compared with zeolite referred to as -5, and only the above-mentioned reaction proceeds selectively (Japanese Patent Application No. 01-281996).

【0005】これまでこのような結晶性シリケートは有
機窒素含有化合物等を用いて水熱合成法により製造され
ていた。使用する有機物としては i) 第1級アミン・・・n−プロピルアミン、モノエ
タノールアミン等 ii) 第2級アミン・・・ジプロピルアミン、ジエタノ
ールアミン等 iii) 第3級アミン・・・トリプロピルアミン、トリエ
タノールアミン等 iv) その他の有機窒素化合物・・・ピリジン、ピラジ
ン等 が挙げられ、上記有機窒素化合物以外の有機物としてエ
タノール、メタノール等のアルコール類、アセトン等の
ケトン類、ジエチルエーテル等のエーテル類、エステル
類等も用いられている。上記有機物は結晶化促進剤とし
て作用し、細孔の交差部に有機物が存在し、結晶の核と
して、良質のシリケートを得ることを可能にすると言わ
れている。
Hitherto, such a crystalline silicate has been produced by a hydrothermal synthesis method using an organic nitrogen-containing compound or the like. Examples of the organic substances used include i) primary amines: n-propylamine, monoethanolamine, etc. ii) secondary amines: dipropylamine, diethanolamine, etc. iii) tertiary amines: tripropylamine Iv) Other organic nitrogen compounds: pyridine, pyrazine and the like. Examples of organic substances other than the organic nitrogen compounds include alcohols such as ethanol and methanol, ketones such as acetone, and ethers such as diethyl ether. And esters are also used. It is said that the above-mentioned organic substance acts as a crystallization accelerator, and that the organic substance is present at the intersection of the pores, thereby enabling a high-quality silicate to be obtained as a crystal nucleus.

【0006】しかし、上記有機化合物はコストが高く、
一部には毒性が問題となる。結晶性シリケートが合成さ
れた際、有機化合物が細孔内に取り込まれており、取り
除くため焼成操作を行っても、有機物が残留することが
生じたり、又は瞬時に高温燃焼が生じ、脱メタル(A
l、Fe・・・等)の現象が生じる等の不具合点が生じ
ている。
However, the above-mentioned organic compounds are expensive,
In some cases toxicity is a problem. When the crystalline silicate is synthesized, the organic compound is taken into the pores, and even if a baking operation is performed to remove the organic silicate, an organic substance may remain or instantaneous high-temperature combustion may occur, resulting in demetalization ( A
1, Fe... etc.).

【0007】[0007]

【発明が解決しようとする課題】これらの欠点を除くた
めに有機添加物を用いない結晶性シリケートを製造する
方法が提案されている。例えば有機添加物を全く含まな
いシリカ、アルミナ、アルカリ金属塩等よりなる水性原
料混合物を自然圧で80〜210℃、40〜200時間
保持して結晶性シリケートを生成する方法(特公昭56
−49851号公報)が提案されているが、結晶中にモ
ルデナイト等の副生成物が共存しており、純度のよい結
晶性シリケートを得ることはできない。
In order to eliminate these disadvantages, there has been proposed a method for producing a crystalline silicate without using an organic additive. For example, a method of producing a crystalline silicate by holding an aqueous raw material mixture comprising silica, alumina, alkali metal salt and the like containing no organic additives at 80 to 210 ° C. for 40 to 200 hours under natural pressure (Japanese Patent Publication No. Sho 56)
-49851 JP) have been proposed, which coexist byproducts mordenite in the crystal, it is impossible to get a good crystalline silicate purity.

【0008】本発明は上記技術水準に鑑み、原料として
有機添加物を用いず、かつ上記方法におけるような副生
成物の共存のない結晶性シリケートの製造方法を提供し
ようとするものである。
The present invention has been made in view of the above-mentioned state of the art, and aims to provide a method for producing a crystalline silicate which does not use an organic additive as a raw material and has no coexistence of by-products as in the above-mentioned method.

【0009】本発明は脱水された形態において、酸化物
のモル比で表わして、(0.1〜2.0)R2/n O・
〔aM2 3 ・bAl2 3 〕・ySiO2(上記式
中、R:1種又はそれ以上の1価又は2価イオン、n:
Rの原子価、M:Fe+Co、Fe+V、Ni、Ru、
La、Ce、Ti、V、Cr、Nb、Biからなる群よ
り選ばれた1種以上の元素イオン、a+b=1、a>
0、b>0、y≧12)の化学組成を有し、かつ表Aに
示す粉末X線回折における格子面間隔(α値)を有する
結晶性シリケートを製造するに当って、シリカ源、アル
ミナ源、1価又は2価金属塩及びM2 3 (M:上記定
義と同じ)に基づく水溶性原料塩よりなる水性原料混合
物のスラリーを調製し、その際、H2 O/R2/n O比が
5〜20でかつR2/n O/(Al2 3 +M2 3 )比
が5〜20の場合にはpHを7〜9.5の範囲に、H2
O/R2/n O比が20〜300でかつR2/n O/(Al
2 3 +M2 3 )比が1〜8の場合にはpHを11〜
14の範囲に調製し、水熱合成条件下に保持することを
特徴とする結晶性シリケートの製造方法である。
In the present invention, in the dehydrated form, (0.1-2.0) R 2 / n O ·
During [aM 2 O 3 · bAl 2 O 3 ] · ySiO 2 (above formula, R: 1 or more monovalent or divalent ion, n:
R valence, M: Fe + Co, Fe + V, Ni, Ru,
One or more element ions selected from the group consisting of La, Ce, Ti, V, Cr, Nb , and Bi, a + b = 1, a>
0, b> 0, y ≧ 12) and producing a crystalline silicate having a lattice spacing (α value) in powder X-ray diffraction shown in Table A, a silica source, alumina source, monovalent or divalent metal salt and M 2 O 3: a slurry of aqueous raw material mixture comprising a water-soluble material based salts (M same as defined above) is prepared, this time, H 2 O / R 2 / n the pH in the range of 7-9.5 when O ratio and a 5~20 R 2 / n O / ( Al 2 O 3 + M 2 O 3) ratio of 5 to 20, H 2
O / R2 / nO ratio is 20-300 and R2 / nO / (Al
2 O 3 + M 2 O 3 ) ratio of 11 to a pH in the case of 1-8
A method for producing a crystalline silicate, which is prepared in the range of 14 and maintained under hydrothermal synthesis conditions.

【表2】 [Table 2]

【0010】従来、例えばテトラプロピルアンモニウム
ブロマイドなどの有機物を用いて結晶性シリケートを製
造する場合、下記のようなモル組成の水性混合物から出
発して製造されていた。 SiO2 /(Al2 3 +M2 3 ):12〜3000
(好ましくは20〜200) H2 O/SiO2 :5〜1000(好ましくは
7〜200) R2/n O/SiO2 :0.02〜1.0(好まし
くは0.05〜0.2) H2 O/R2/n O :5〜1000(好ましくは
10〜300) 有機化合物/(Al2 3 +M2 3 ):1〜100
(好ましくは5〜50)
Conventionally, when a crystalline silicate is produced using an organic substance such as tetrapropylammonium bromide, it has been produced starting from an aqueous mixture having the following molar composition. SiO 2 / (Al 2 O 3 + M 2 O 3 ): 12-3000
(Preferably 20~200) H 2 O / SiO 2 : 5~1000 ( preferably 7~200) R 2 / n O / SiO 2: 0.02~1.0 ( preferably 0.05 to 0.2 ) H 2 O / R 2 / n O: 5~1000 ( preferably 10-300) organic compound / (Al 2 O 3 + M 2 O 3): 1~100
(Preferably 5 to 50)

【0011】本発明におけるように、有機化合物を添加
しない場合には結晶性シリケートを純度よく合成するに
は上記モル組成はあてはまらないが、添加する金属酸化
物(M2 3 )源に基づく水溶性原料塩が結晶化促進剤
として有効に働くことが判り、本発明は下記モル組成条
件にて所定の結晶性シリケートが合成できることを見出
したものである。
As in the present invention, when the organic compound is not added, the above molar composition does not apply to the synthesis of crystalline silicate with high purity, but the aqueous solution based on the added metal oxide (M 2 O 3 ) source is used. It has been found that the crystalline raw material salt works effectively as a crystallization accelerator, and the present invention has found that a predetermined crystalline silicate can be synthesized under the following molar composition conditions.

【0012】反応混合物のモル組成は SiO2 /(Al2 3 +M2 3 ):12〜100
(好ましくは20〜60) H2 O/SiO2 :5〜1000
(好ましくは7〜200)
The molar composition of the reaction mixture is SiO 2 / (Al 2 O 3 + M 2 O 3 ): 12 to 100
(Preferably 20 to 60) H 2 O / SiO 2 : 5 to 1000
(Preferably 7 to 200)

【0013】さらに、生成ゲル時のpH、すなわちゲル
中のH+ (水素イオン)濃度が重要因子となり、H2
/R2/n O比が5〜20で、かつR2/n O/(Al2
3 +M2 3 )比が5〜20でスラリーを調製する場合
にはpHは7〜9.5の範囲に、又H2 O/R2/n O比
が20〜300で、かつR2/n O/(Al2 3 +M 2
3 )比が1〜8で調製する場合にはpHは11〜14
の範囲に調製しなければならない。
Further, the pH of the formed gel, ie, the gel
H in+(Hydrogen ion) concentration is an important factor.TwoO
/ R2 / nO ratio is 5 to 20 and R2 / nO / (AlTwoO
Three+ MTwoOThree) When preparing a slurry with a ratio of 5 to 20
PH ranges from 7 to 9.5 and HTwoO / R2 / nO ratio
Is 20 to 300 and R2 / nO / (AlTwoOThree+ M Two
OThree) When the ratio is adjusted to 1 to 8, the pH is 11 to 14.
Must be prepared.

【0014】さらに、又、本発明結晶性シリケートは前
記原料混合物を結晶性シリケートが生成するに充分な温
度と時間加熱することにより合成されるが、水熱合成温
度は80〜300℃、好ましくは130〜200℃の範
囲にあり、また、水熱合成時間は0.5〜14日好まし
くは1〜10日である。
Further, the crystalline silicate of the present invention is synthesized by heating the above-mentioned raw material mixture at a temperature and for a time sufficient to produce the crystalline silicate. The hydrothermal synthesis temperature is 80 to 300 ° C., preferably It is in the range of 130 to 200 ° C, and the hydrothermal synthesis time is 0.5 to 14 days, preferably 1 to 10 days.

【0015】[0015]

【作用】本発明方法にて添加する金属酸化物(M
2 3 )に基づく水溶性原料塩の金属イオンが細孔交差
部の中心的なカチオンの働きを有し、結晶成長を促進す
る重要な働きを示すことがわかった。この水溶性原料塩
の金属イオンはFe+Co、Fe+V、Ni、希土類元
素、Ti、V、Cr、Nb、Sb、Biである。
The metal oxide added in the method of the present invention (M
It has been found that the metal ion of the water-soluble raw material salt based on 2 O 3 ) has the function of a central cation at the pore intersection, and exhibits an important function of promoting crystal growth. Metal ions of the water soluble material salts are Fe + Co, Fe + V, Ni, rare earth elements, Ti, V, Cr, Nb , Sb, B i.

【0016】さらに、上記金属イオンは生成した結晶性
シリケート中においても重要な触媒活性点として働き、
とりわけ、銅を担持した本発明結晶性シリケートは窒素
酸化物の直接分解反応(2NO→N2 +O2 )、排気ガ
スの浄化反応(例えば9NO+C3 6 → 9/2N2 ・3
CO2 +3H2 O)等に高活性を有することが判明して
いる。
Further, the above metal ions function as important catalytic active sites in the generated crystalline silicate,
Especially, the present invention crystalline silicates carrying the copper direct decomposition reaction of nitrogen oxides (2NO → N 2 + O 2 ), purification reaction of the exhaust gas (e.g. 9NO + C 3 H 6 → 9 / 2N 2 · 3
(CO 2 + 3H 2 O) has been found to have high activity.

【0017】なお、添加する金属酸化物に基づく水溶性
原料塩は塩化物、硝酸塩、硫酸塩、酢酸塩など、いずれ
も可能であり、特に限定されるものではない。以下、本
発明の結晶性シリケートの製造方法を実施例をもって説
明する。
The water-soluble raw material salt based on the metal oxide to be added can be any of chloride, nitrate, sulfate, acetate and the like, and is not particularly limited. Hereinafter, the method for producing a crystalline silicate of the present invention will be described with reference to examples.

【0018】[0018]

【実施例】【Example】

(例1)アルミン酸ソーダ(林純薬社製純度85%)1
98.1g、カセイソーダ(林純薬社特級製)211.
7gを水4018gに溶解し、溶液Aとする。一方、シ
リカゾル溶液(日産化学製スノーテックスO:SiO2
20%)9180gに水4320gを加え、さらにこの
水溶液に塩化第2鉄27g、塩化コバルト145gを溶
解させ、溶液Bを得る。
(Example 1) Sodium aluminate (Purity 85%, manufactured by Hayashi Junyaku Co., Ltd.) 1
98.1 g, caustic soda (manufactured by Hayashi Junyaku Co., Ltd.) 211.
7 g is dissolved in 4018 g of water to obtain a solution A. On the other hand, a silica sol solution (Nissan Chemical Snowtex O: SiO 2
(20%) 4320 g of water was added to 9180 g, and 27 g of ferric chloride and 145 g of cobalt chloride were further dissolved in this aqueous solution to obtain a solution B.

【0019】次に溶液Aと溶液Bを均等に他の容器に添
加して中和し均一pH(pH=12.6)において混合
攪拌することによりゲルを生成させる。このゲルをステ
ンレス製オートクレーブにセットし、160℃で72時
間自己発生圧力下に保持して結晶性シリケートを合成し
た。
Next, the solution A and the solution B are uniformly added to another container, neutralized, and mixed and stirred at a uniform pH (pH = 12.6) to form a gel. The gel was set in a stainless steel autoclave, and maintained at 160 ° C. for 72 hours under self-generated pressure to synthesize a crystalline silicate.

【0020】反応終了後、生成物のろ過洗浄を行い、そ
の後120℃で乾燥を行った。これによって結晶性シリ
ケート1を得、粉末X線回折の結果、前記表Aに示す結
晶パターンを有することが判明した。
After completion of the reaction, the product was filtered and washed, and then dried at 120 ° C. As a result, crystalline silicate 1 was obtained, and as a result of powder X-ray diffraction, it was found to have the crystal pattern shown in Table A above.

【0021】(例2)水ガラス1号(徳山曹達製、Si
2 37%含有)5616gを水5429gに溶解し、
溶液Aを得る。一方、水4165gに塩化ナトリウム2
62gと硫酸アルミニウム749g、塩化第2鉄22g
と塩化コバルト15g、さらに濃塩酸1700gを添加
し、溶解させて溶液Bを得る。
(Example 2) Water glass No. 1 (manufactured by Tokuyama Soda, Si
5616 g of water (containing 37% of O 2 ) was dissolved in 5429 g of water,
Obtain solution A. On the other hand, sodium chloride 2
62 g, aluminum sulfate 749 g, ferric chloride 22 g
And 15 g of cobalt chloride and 1700 g of concentrated hydrochloric acid were added and dissolved to obtain a solution B.

【0022】次に溶液Aと溶液Bを例1と同様に均等に
他の容器に加えて中和し、均一pH(pH=8.5)に
おいて混合攪拌することによりゲルを生成させた。この
ゲルをステンレス製オートクレーブにセットして100
℃に24時間、170℃に48時間自己発生圧力下に保
持して結晶性シリケートを合成した。
Next, the solution A and the solution B were uniformly added to another container and neutralized in the same manner as in Example 1, and mixed and stirred at a uniform pH (pH = 8.5) to form a gel. This gel was set in a stainless steel autoclave and 100
The crystalline silicate was synthesized by maintaining the pressure at 24 ° C. for 24 hours and at 170 ° C. for 48 hours under self-generated pressure.

【0023】この結晶性シリケート2を粉末X線回折の
結果、前記表Aに示す結晶パターンを有することが判明
した。
As a result of powder X-ray diffraction, the crystalline silicate 2 was found to have the crystal pattern shown in Table A above.

【0024】(例3)例1において塩化第2鉄、塩化コ
バルトの代わりに硝酸ランタンを42g添加し、他は方
法は例1と同様の方法にて合成し、結晶性シリケート3
を得た。
Example 3 In Example 1, 42 g of lanthanum nitrate was added in place of ferric chloride and cobalt chloride, and the other processes were the same as in Example 1, except that crystalline silicate 3 was used.
I got

【0025】又、同様に硝酸セリウム28g、四塩化チ
タン26g、三塩化バナジウム16gと塩化第2鉄18
g、塩化ニオブ6gと塩化ビスマス26g、硝酸クロム
38gを塩化第2鉄と塩化コバルトの代わりに各々添加
し、例1と同様な方法において、結晶性シリケート4、
5、6、7、8を得た。
Similarly, 28 g of cerium nitrate, 26 g of titanium tetrachloride, 16 g of vanadium trichloride and 18 g of ferric chloride
g, niobium chloride 6 g, bismuth chloride 26 g, and chromium nitrate 38 g were added instead of ferric chloride and cobalt chloride, respectively.
5, 6, 7, and 8 were obtained.

【0026】これらの結晶性シリケートはいずれも粉末
X線回折の結果、前記表Aに示す回折パターンを有して
いた。
All of these crystalline silicates had the diffraction patterns shown in Table A above as a result of powder X-ray diffraction.

【0027】(例4) 例2において、塩化第2鉄と塩化コバルトの代わりに塩
化ルテニウム6g、塩化ニッケル26gを添加し、例1
と同様な方法において結晶性シリケート9、10を
た。
Example 4 In Example 2, 6 g of ruthenium chloride and 26 g of nickel chloride were added in place of ferric chloride and cobalt chloride.
Crystalline silicates 9 and 10 were obtained in the same manner as described above.

【0028】これらの結晶性シリケートの粉末X線回折
の結果、前記表Aに示す回折パターンを有していた。
As a result of powder X-ray diffraction of these crystalline silicates, they had the diffraction patterns shown in Table A above.

【0029】(比較例) 例1及び2において塩化第2鉄と塩化コバルト添加し
ない組成しおいて、有機物を添加しない条件で例1及び
2の方法にて、結晶性シリケート11、12を得た。
(Comparative Example) Crystalline silicates 11 and 12 were obtained in the same manner as in Examples 1 and 2 except that ferric chloride and cobalt chloride were not added and the organic substances were not added. Was.

【0030】これらの結晶性シリケートの粉末X線回折
の結果、結晶性シリケート11はほとんど非晶質、結晶
性シリケート12はほとんどモルデナイト型結晶構造を
形成することが判明した。
As a result of powder X-ray diffraction of these crystalline silicates, it was found that the crystalline silicate 11 formed almost amorphous and the crystalline silicate 12 formed almost mordenite type crystal structure.

【0031】以上、例1〜4及び比較例をまとめて下記
表Bに示す。
The above Examples 1 to 4 and Comparative Examples are summarized below.
It is shown in Table B.

【表3】 [Table 3]

【0032】[0032]

【発明の効果】実施例にて示すように、特定の金属酸化
物に基づく水溶性原料塩を結晶性シリケートの原料中
添加することにより、従来有機物を添加せず、合成する
ことが不可能であった結晶性シリケートを容易に合成す
ることが可能となった。なお添加した金属イオンは結晶
性シリケート中で触媒活性種として有効に作用し銅を担
持した結晶性シリケート1〜10は窒素酸化物の直接分
解反応(2NO→N2 +O2 )や排気ガスの浄化反応
(9NO+C3 6 → 9/2N2 ・3CO2+3H2 O)
等に高活性を有することが判明した。
As shown in Examples according to the present invention, by <br/> adding a water-soluble material salts based on specific metal oxide raw material of the crystalline silicate, without the addition of conventional organic and synthetic It has become possible to easily synthesize crystalline silicate, which has been impossible. The added metal ions effectively act as catalytically active species in the crystalline silicate, and the crystalline silicates 1 to 10 carrying copper directly decompose nitrogen oxides (2NO → N 2 + O 2 ) and purify exhaust gas. reaction (9NO + C 3 H 6 → 9 / 2N 2 · 3CO 2 + 3H 2 O)
And the like.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01B 33/20 - 39/54 ──────────────────────────────────────────────────の Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C01B 33/20-39/54

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 脱水された形態において、酸化物のモル
比で表わして、(0.1〜2.0)R2/n O・〔aM2
3 ・bAl2 3 〕・ySiO2(上記式中、R:1
種又はそれ以上の1価又は2価イオン、n:Rの原子
価、M:Fe+Co、Fe+V、Ni、Ru、La、C
e、Ti、V、Cr、Nb、Biからなる群より選ばれ
た1種以上の元素イオン、a+b=1、a>0、b>
0、y≧12)の化学組成を有し、かつ表Aに示す粉末
X線回折における格子面間隔(α値)を有する結晶性シ
リケートを製造するに当って、シリカ源、アルミナ源、
1価又は2価金属塩及びM2 3 (M:上記定義と同
じ)に基づく水溶性原料塩よりなる水性原料混合物のス
ラリーを調製し、その際、H2 O/R2/n O比が5〜2
0でかつR2/n O/(Al2 3 +M2 3 )比が5〜
20の場合にはpHを7〜9.5の範囲に、H2 O/R
2/n O比が20〜300でかつR2/n O/(Al2 3
+M2 3 )比が1〜8の場合にはpHを11〜14の
範囲に調製し、水熱合成条件下に保持することを特徴と
する結晶性シリケートの製造方法。 【表1】
1. A dehydrated form, expressed in terms of mole ratios of oxides, (0.1~2.0) R 2 / n O · [aM 2
O 3 .bAl 2 O 3 ] .ySiO 2 (in the above formula, R: 1
Species or higher monovalent or divalent ions, n: valence of R, M: Fe + Co, Fe + V, Ni, Ru, La, C
e, at least one element ion selected from the group consisting of Ti, V, Cr, Nb , and Bi, a + b = 1, a> 0, b>
0, y ≧ 12) and a crystalline silicate having a lattice spacing (α value) in powder X-ray diffraction shown in Table A, a silica source, an alumina source,
A slurry of an aqueous raw material mixture consisting of a monovalent or divalent metal salt and a water-soluble raw material salt based on M 2 O 3 (M: as defined above) is prepared, wherein the H 2 O / R 2 / n O ratio is Is 5 to 2
0 a and R 2 / n O / (Al 2 O 3 + M 2 O 3) ratio of 5
In the case of 20, the pH is set in the range of 7 to 9.5, and H 2 O / R
The 2 / n O ratio is 20-300 and R 2 / n O / (Al 2 O 3
+ M 2 O 3) ratio is adjusted to 11 to 14 range of pH in the case of 1-8, method for producing a crystalline silicate which is characterized in that retaining the hydrothermal synthesis conditions. [Table 1]
JP11836091A 1991-05-23 1991-05-23 Method for producing crystalline silicate Expired - Fee Related JP3192677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11836091A JP3192677B2 (en) 1991-05-23 1991-05-23 Method for producing crystalline silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11836091A JP3192677B2 (en) 1991-05-23 1991-05-23 Method for producing crystalline silicate

Publications (2)

Publication Number Publication Date
JPH04349115A JPH04349115A (en) 1992-12-03
JP3192677B2 true JP3192677B2 (en) 2001-07-30

Family

ID=14734783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11836091A Expired - Fee Related JP3192677B2 (en) 1991-05-23 1991-05-23 Method for producing crystalline silicate

Country Status (1)

Country Link
JP (1) JP3192677B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11272738B2 (en) 2009-11-27 2022-03-15 Philip Morris Usa Inc. Electrically heated smoking system with internal or external heater
US11318264B2 (en) 2017-01-13 2022-05-03 Nicoventures Trading Limited Aerosol generating device and article
US11589617B2 (en) 2017-01-05 2023-02-28 Nicoventures Trading Limited Aerosol generating device and article
US11623053B2 (en) 2017-12-06 2023-04-11 Nicoventures Trading Limited Component for an aerosol-generating apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618512A (en) * 1995-11-30 1997-04-08 Arco Chemical Technology, L.P. Niobium-containing zeolites
JP4538624B2 (en) * 2003-10-09 2010-09-08 独立行政法人産業技術総合研究所 Method for producing mordenite-type metallosilicate
JP5852912B2 (en) * 2012-03-27 2016-02-03 武次 廣田 Method for producing zeolite

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11272738B2 (en) 2009-11-27 2022-03-15 Philip Morris Usa Inc. Electrically heated smoking system with internal or external heater
US11406132B2 (en) 2009-11-27 2022-08-09 Philip Morris Usa Inc. Electrically heated smoking system with internal or external heater
US11717030B2 (en) 2009-11-27 2023-08-08 Philip Morris Usa Inc. Electrically heated smoking system with internal or external heater
US11766070B2 (en) 2009-11-27 2023-09-26 Philip Morris Usa Inc. Electrically heated smoking system with internal or external heater
US11937640B2 (en) 2009-11-27 2024-03-26 Philip Morris Usa Inc. Electrically heated smoking system with internal or external heater
US11589617B2 (en) 2017-01-05 2023-02-28 Nicoventures Trading Limited Aerosol generating device and article
US11318264B2 (en) 2017-01-13 2022-05-03 Nicoventures Trading Limited Aerosol generating device and article
US11623053B2 (en) 2017-12-06 2023-04-11 Nicoventures Trading Limited Component for an aerosol-generating apparatus

Also Published As

Publication number Publication date
JPH04349115A (en) 1992-12-03

Similar Documents

Publication Publication Date Title
AU2008207503B2 (en) Small crystallite zeolite CHA
EP0121730B1 (en) Crystalline aluminosilicate and process for the production thereof
US4091079A (en) Zeolite VK-2
JP3192677B2 (en) Method for producing crystalline silicate
JPH07277726A (en) Crystalline microporous solid composed of aluminophosphate substituted with metal and optionally silicon and belonging to fau structure type and its synthesis and application
US20040121900A1 (en) Process for the preparation of doped pentasil-type zeolites using a doped reactant
US5254515A (en) Catalyst for decomposing nitrogen oxides and a method of purifying a waste gas containing nitrogen oxides
EP0146525B1 (en) Process for preparing crystalline silicas
CA2496898C (en) Process for the preparation of doped pentasil-type zeolites using a doped reactant
US20080274875A1 (en) Process for preparation of a MEL-structural-type zeolite
JP3371527B2 (en) Method for producing zeolite beta
JPH0528279B2 (en)
JP2659840B2 (en) Purification method of exhaust gas containing nitrogen oxides
JPH05139722A (en) Method for production of crystal zeolite
JP2734480B2 (en) Nitrogen oxide decomposition catalyst
JPH0339970B2 (en)
JP3015524B2 (en) Exhaust gas treatment catalyst
JPS5874520A (en) Manufacture of crystalline metal salts of silicic acid and use
JP2695668B2 (en) Purification method of exhaust gas containing nitrogen oxides
JPH075296B2 (en) Crystalline metallosilicate
JPH0435747A (en) Catalyst for decomposition of nitrogen oxide
JPS624327B2 (en)
JPH0551532B2 (en)
JPH05168941A (en) Exhaust gas treating catalyst
JPS60130533A (en) Preparation of para-xylene

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010417

LAPS Cancellation because of no payment of annual fees