JPH01228554A - Platinum group metal supporting mordenite and manufacture thereof - Google Patents

Platinum group metal supporting mordenite and manufacture thereof

Info

Publication number
JPH01228554A
JPH01228554A JP63052728A JP5272888A JPH01228554A JP H01228554 A JPH01228554 A JP H01228554A JP 63052728 A JP63052728 A JP 63052728A JP 5272888 A JP5272888 A JP 5272888A JP H01228554 A JPH01228554 A JP H01228554A
Authority
JP
Japan
Prior art keywords
mordenite
rare earth
platinum group
group metal
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63052728A
Other languages
Japanese (ja)
Inventor
Shunji Inoue
俊次 井上
Kazunari Igawa
井川 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP63052728A priority Critical patent/JPH01228554A/en
Publication of JPH01228554A publication Critical patent/JPH01228554A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To increase inversion rate and selectivity, particularly at the time of isomerizing the paraffin having 4-6 carbon atoms in the presence of hydrogen, by depositing platinum group metal and rare earth oxide on mordenite to form a platinum group metal-supporting mordenite. CONSTITUTION:The mordenite impregnated with metal salt of the platinum group by ion-exchange of rare earth ions is baked in an oxygen atmosphere at a temperature of not more than 1000 deg.C to convert the rare earth ions into the rare earth oxide and, alternatively, the mordenite impregnated with rare earth ions by ion-exchange is baked in an oxygen atmosphere at a temperature of not more than 1000 deg.C to convert rare earth ions into rare earth oxide and this baked product is then impregnated with the salt of the platinum group. The platinum group metal is thereafter reduced, thereby depositing the platinum group metal on the mordenite together with the rare earth oxide to form a platinum group metal-supporting mordenite.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、白金族金属担持のモルデナイトおよびその製
造法に関するものである。該モルデナイトは、脱ろう触
媒、水素化分解触媒、水素化精製触媒、CO酸化触媒、
炭化水素酸化触媒、リホーミング触媒、ナフテン異性化
触媒、パラフィン異性化触媒等広範な分野に有効に利用
できる。特にパラフィン異性化触媒として優れた性能を
有している。
The present invention relates to platinum group metal-supported mordenite and a method for producing the same. The mordenite can be used as a dewaxing catalyst, a hydrocracking catalyst, a hydrorefining catalyst, a CO oxidation catalyst,
It can be effectively used in a wide range of fields such as hydrocarbon oxidation catalysts, reforming catalysts, naphthene isomerization catalysts, and paraffin isomerization catalysts. It has particularly excellent performance as a paraffin isomerization catalyst.

【従来の技術】[Conventional technology]

モルデナイト中に存在する交換可能な陽イオンを、水素
イオンに置換したモルデナイトに、白金族金属を担持し
たpt族/H型モルデナイト(米国特許第3゜190,
939号明細書)或いは、アンモニウムイオンに置換し
たモルデナイトに、白金族金属を担持した後、温度50
0℃以上で焼成することにより殆ど全てのアンモニウム
イオンを取り除いたpt族/H型モルデナイト(米国特
許第31342.114号明細書)等がある。
PT group/H type mordenite in which platinum group metal is supported on mordenite in which the exchangeable cations present in mordenite are replaced with hydrogen ions (U.S. Pat.
No. 939 specification) Alternatively, after supporting a platinum group metal on mordenite substituted with ammonium ions, the temperature is 50°C.
There is pt group/H type mordenite (US Pat. No. 31,342.114), which has almost all ammonium ions removed by firing at 0° C. or higher.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし、いずれも反応活性の制御が行われていないもの
であり、反応条件を苛酷にしなければ高い反応性をえら
れないものである。 本発明台らは、従来得られなかった触媒特性を有する白
金族金属担持モルデナイトを得ることをLi的として鋭
意研究を重ねた結果、本発明に到達した。
However, in none of these methods is the reaction activity controlled, and high reactivity cannot be obtained unless the reaction conditions are made harsher. The inventors of the present invention have arrived at the present invention as a result of intensive research aimed at obtaining platinum group metal-supported mordenite having catalytic properties not previously available.

【課題を解決するための手段】[Means to solve the problem]

即ち、本発明の要旨は、 (1)白金族金属とともに希土類酸化物が担持されてい
ることを特徴とする白金族金属担持モルデナイト。(以
下、本発明物質ともいう)(2) (a)希土類イオン
をイオン交換によって含有させた白金族金属塩含有モル
デナイトを酸素雰囲気下に1000℃以下で焼成して希
土類イオンを希土類酸化物に転化させるか、又は (b)希土類イオンをイオン交換によって含有させたモ
ルデナイトを酸素雰囲気下に1000℃以下で焼成して
希土類イオンを希土類酸化物に転化させたのち、該焼成
物に白金族金属塩を含ませ、 (c)ついで、白金族金属塩を還元することを特徴とす
る白金族金属担持モルデナイトの製造法。 (3) (a)白金族金属担持モルデナイトと希土類酸
化物とを混合し、酸素雰囲気下に200〜1000℃で
焼成するか、又は (b)モルデナイトと希土類酸化物とを混合し、酸素雰
囲気下に200〜1000℃で焼成したのち、該焼成物
に白金族金属塩を含ませ、 (c)ついで、白金族金属塩を還元することを特徴とす
る白金族金属担持モルデナイトの製造法。 (4) (a)白金族金属担持モルデナイトと希土類塩
とを混合し、酸素雰囲気下に1000℃以下で焼成して
希土類塩を希土類酸化物に転化させるか、又は (b)モルデナイトと希土類酸化物希土類塩とを混合し
、酸素雰囲気下に1000℃以下で焼成して希土類塩を
希土類酸化物に転化させたのち、該焼成物に白金族金属
塩を含ませ、 (c)ついで、白金族金属塩を還元することを特徴とす
る白金族金属担持モルデナイトの製造法。 にある。 く本発明物質〉 モルデナイトを酸化物のモル比で表すとM27゜0・A
 I 203 ・(9,5〜20.5) S i O2
である(ここでMは、アルカリ金属、アルカリ土類金属
。 H,NH4,含窒素有機化合物等であり、nは、Mの価
数である)。 本発明物質は、このモルデナイトと希土類酸化物と白金
族金属からなるものであるが、それらのたんなる混合物
ではなく、後二者が担持されたモルデナイトである。そ
して、H型の場合は、各種の反応とくにパラフィンの異
性化の触媒として優れており、またNa型の場合は、リ
ホーミング用触媒としてパラフィンの改質に用いると、
分解活性が適度に抑えられ、高液収率がえられる。 前記希土類としては、スカンジウム、イ・ソトリウム、
ランタン1 セリウム、プラセオジム、ネオジム、プロ
メチウム、サマリウム、ユウロピウム。 ガドリニウム、テルビウム、ジスプロシウム、ホルミウ
ム、エルビウム、ツリウム、イ・ンテルビウム、ルテチ
ウム等を用いることができる。特に、セリウムを使用し
た場合に、パラフィン異性化用触媒としての活性が大き
い。また担持させる希土類酸化物は、1種でもよいし2
種以上を用いることもできる。 本発明物質をパラフィンの異性化等に触媒として用いる
場合は、希土類酸化物の担持量は、モルデナイト (前
シ己M 2/n O−A l 203  ・ (9,5
〜20.5) S i 02 ) 1モルに対して、希
土類イオンno、o+:+42〜1.27グラム原子、
とくに0.021〜0.85グラム原子の割合とするの
が望ましい。希土類酸化物が0.0042グラム原子未
満の場合は触媒活性が低く、1.27グラム原子より多
い場合は担持量に比べて効果が小さい。 また白金族金属としては、白金、ロジウム、パラジウム
、ルテニウム、オスミウムおよびイリジウムのいずれを
も用いることができる。触媒成分として特に好ましいの
は、白金である。 白金族金属の担持量には特に制限はないが、この本発明
物質をパラフィンの異性化等に触媒として用いる場合は
、モルデナイトに対して、0.1〜3、Ovt%、好ま
しくは0.3〜1.5νt%とすればよい。 白金族金属が0.1wL%未満の場合は、触媒活性が小
さすぎ、また3、OvL%をこえる場合は担持量に比べ
て効果が小さいからである。 く製造法〉 本発明物質の製造法は、モルデナイトを出発物質とする
場合、該モルデナイトは天然のもの1合成のもののいず
れでもよく、前記(2) 、 (3)および(4)の記
載から明らかなように、基本的には、次の4工程からな
る。 イ 白金族金属塩の添加 口 白金族金属塩の還元 ハ 希土類物質の添加 二 焼成 当然口の処理はイの処理よりも後、かつ二の処理はハの
処理のよりも後でなければならない。また、二の処理は
通常酸化雰囲気で行なわれるので、口の処理は二の処理
よりも後にすべきである。イの処理は、ハおよび二の前
後、ノ1と二の間のいずれであってもよい。 (白金族金属の担持) 上記イおよび口の処理からなる白金族金属の担持は、従
来周知の方法によればよい。 すなわち、まず、モルデナイトまたは希土類イオンなI
ifモルデナイトに、1種以上の白金族金属塩水溶液を
含浸処理、抽出処理、イオン交換処理等によってモルデ
ナイトに含ませる。その中でイオン交換処理か、モルデ
ナイトに前記金属を含有させるのに特に好ましい。イオ
ン交換の方法としては、前記金属が陽イオンとして存在
する化合物、例えばアンモニア、アルキルアミン、ヒド
ロキシルアミン、ヒドラジン等の金属錯体によるイオン
交換処理が好ましい。このようにして白金族塩をD ’
f−7させたものを乾燥させたのち、還元剤、例えばア
ンモニア、水素等、好ましくは水素存在下で加熱処理し
て、白金族金属を金属型に還元する。 (希土類酸化物の担持) モルデナイトまたは白金族含有モルデナイトに希土類酸
化物を担持させるのは、前記/Xおよび二の処理による
。本発明は、次の二つの方法を提供する。 l、イオン交換焼成法 まず、被処理物(モルデナイトまたは白金族金属塩含有
モルデナイト)を、希土類が水溶液中で陽イオンとして
存在する化合物、たとえば硝酸塩。 塩化物、酢酸塩、シュウ酸塩、炭酸塩等の水溶液と接触
させて、上記被処理物中の交換可能な陽イオンの一部又
は全部を希土類イオンに交換させる。 パラフィンの異性化等の触媒をうろことを1」的とする
場合は、前記のとおり、この交換量をモルデナイト(前
シ己M2/、0−Al□03 ・ (9,5〜20.5
) S i 02 ) 1モルに対して、希土類元素換
算0.0042〜1.27グラム原子、とくに0.02
1〜0.85グラム原子の割合となるようにすればよい
。前記のとおり、このイオン交換処理後、次の焼成前に
白金族金属を含ませる処理を行なうことができる。 イオン交換処理したものは、乾燥して、次に希土類イオ
ンを酸化物に転化させ、それをモルデナイトに担持させ
るために酸素雰囲気中1000℃以下で焼成する。この
酸素雰囲気は、酸素含有量の高いものである必要はなく
、空気で十分である。この焼成は、当然希土類イオンが
酸化物に転化するのに十分高い温度で行なわなければな
らず、その焼成温度は400〜1000℃の範囲から選
ばれる(この温度範囲であれば、同時にモルデナイトへ
の担持も果たされる)。焼成温度の上限を1000℃と
するのは、これをこえるとモルデナイトの結晶構造が破
壊されてしまうことによる。本発明の製造法ではどの方
法においても焼成温度の上限を1000℃としているの
は、同じ理由による。 この焼成処理によって、希土類イオンのあった箇所がH
型となる。これは、希土類イオンに配位していたOH基
が分解して水素イオンを生成させることによるものと推
定される。 希土類イオンがその酸化物に転化したことは、X線回折
法によって確認される。すなわち、モルデナイト特有の
2θ−6,5”および13.9°のピークが希土類イオ
ンの交換により消失するが、希土類イオンが酸化物に転
化するとこの二つのピークが再現する。もっとも、上記
の転化によって色が表化するものは、その色の変化によ
って簡便に確認することができる。たとえば、酸化セリ
ウムは淡黄色、酸化ネオジムは青色、酸化ユウロピウム
は淡紅色である。 白金族金属塩を含有したモルデナイトを焼成する場合、
そのまま焼成することもできるが、天然の粘土(例えば
カオリン、ハロイサイト、モンモリロナイト等)および
/あるいは無機酸化物(例えばシリカ;シリカ−アルミ
ナ、シリカ−ジルコニア、シリカ−マグネシア、燐酸ア
ルミニウム等の二元ゲル;シリカ−マグネシア−アルミ
ナ等の三元ゲル;アルミナ、チタニア、ジルコニア等)
等を用いて造粒したものを焼成することもできる。 1i、混合焼成法 まず、モルデナイト又は白金族金属塩含有モルデナイト
と希土類酸化物及び/又は希土類塩とを混合する。この
混合法としては、均一に混合される限り、乾式混合法、
湿式混合法のどちらでもよい。希土類塩は、硝酸塩、ハ
ロゲン化物、酢酸塩。 シュウ酸塩、炭酸塩、オキソハロゲン化物、チオ硫酸塩
、セレン酸塩、水酸化物、クロム酸塩、リン酸塩、硼酸
塩、珪酸塩、シアン化物、ぎ酸塩。 エチル硫酸塩、ジメチルリン酸塩、マロン酸塩。 グリコール酸塩、セバシン酸塩、カコジル酸塩等の1種
でもよいし2種以上を用いることもできる。 この混合後、次の焼成前に白金族金属塩を含ませる処理
をすることもできる。 次に酸素雰囲気中1000℃以下で焼成する。この雰囲
気は、1.のイオン交換焼成法におけるのと同じく、酸
素含有量の高いものである必要はなく、空気で十分であ
る。希土類酸化物を使用する場合、焼成温度は、200
〜1000℃である。200℃未満では、希土類酸化物
がモルデナイトとたんに混合した状態にとどまり、担持
された状態にならないからか、活性の高い触媒とするこ
とができない。この状態の変化は、X線回折チャートの
20=6.5°および13.9’等のピークの強度の変
化により、確認することができる。希土類塩を使用する
場合は、当然希土類塩が酸化物に転化するのに十分高い
温度でなければならず、その焼成温度は200〜100
0℃の範囲から選ばれる(上の説明から明らかなように
、この温度範囲であれば、希土類酸化物はモルデナイト
に担持されたものとなる)。 白金族金属塩を含有した混合物を焼成する場合は、i、
のイオン交換焼成法の場合と同じく、そのまま焼成する
こともでき、また結合剤を用いて造粒したものを焼成す
ることもできる。
That is, the gist of the present invention is as follows: (1) A platinum group metal supported mordenite, characterized in that a rare earth oxide is supported together with a platinum group metal. (Hereinafter, also referred to as the substance of the present invention) (2) (a) Mordenite containing a platinum group metal salt containing rare earth ions by ion exchange is calcined at 1000°C or less in an oxygen atmosphere to convert the rare earth ions into rare earth oxides. (b) Mordenite containing rare earth ions by ion exchange is fired at 1000°C or less in an oxygen atmosphere to convert the rare earth ions into rare earth oxides, and then a platinum group metal salt is added to the fired product. and (c) then reducing a platinum group metal salt. (3) (a) Mix mordenite supported on a platinum group metal and a rare earth oxide and sinter at 200 to 1000°C in an oxygen atmosphere, or (b) Mix mordenite and a rare earth oxide and heat the mixture in an oxygen atmosphere. A method for producing platinum group metal-supported mordenite, which comprises: firing at 200 to 1000°C, impregnating the fired product with a platinum group metal salt, and (c) then reducing the platinum group metal salt. (4) (a) Mix platinum group metal-supported mordenite and rare earth salt and sinter at 1000°C or less in an oxygen atmosphere to convert the rare earth salt to rare earth oxide, or (b) Mordenite and rare earth oxide (c) After converting the rare earth salt into rare earth oxide by baking at 1000° C. or lower in an oxygen atmosphere, the baked product is impregnated with a platinum group metal salt. A method for producing platinum group metal-supported mordenite characterized by reducing salt. It is in. The substance of the present invention> When mordenite is expressed as a molar ratio of oxides, it is M27゜0・A
I 203 ・(9,5-20.5) S i O2
(Here, M is an alkali metal, an alkaline earth metal, H, NH4, a nitrogen-containing organic compound, etc., and n is the valence of M). The material of the present invention is composed of this mordenite, a rare earth oxide, and a platinum group metal, but it is not a simple mixture of these, but a mordenite in which the latter two are supported. In the case of H type, it is excellent as a catalyst for various reactions, especially paraffin isomerization, and in the case of Na type, it is used as a reforming catalyst for paraffin reforming.
Decomposition activity is moderately suppressed and high liquid yield is obtained. The rare earths include scandium, i-sotrium,
Lanthanum 1 Cerium, praseodymium, neodymium, promethium, samarium, europium. Gadolinium, terbium, dysprosium, holmium, erbium, thulium, terbium, lutetium, etc. can be used. In particular, when cerium is used, its activity as a catalyst for paraffin isomerization is high. The number of rare earth oxides to be supported may be one or two.
More than one species can also be used. When the substance of the present invention is used as a catalyst for isomerization of paraffin, etc., the amount of supported rare earth oxide is as follows: mordenite
~20.5) S i 02 ) Rare earth ions no, o+: +42 to 1.27 gram atoms per mole,
In particular, a proportion of 0.021 to 0.85 gram atoms is desirable. When the amount of rare earth oxide is less than 0.0042 gram atom, the catalyst activity is low, and when it is more than 1.27 gram atom, the effect is small compared to the supported amount. Further, as the platinum group metal, any of platinum, rhodium, palladium, ruthenium, osmium, and iridium can be used. Particularly preferred as a catalyst component is platinum. There is no particular limit to the amount of platinum group metal supported, but when the substance of the present invention is used as a catalyst for isomerization of paraffin, it is 0.1 to 3 Ovt%, preferably 0.3 Ovt%, based on mordenite. It may be set to 1.5 νt%. This is because if the content of the platinum group metal is less than 0.1 wL%, the catalytic activity is too low, and if it exceeds 3.0vL%, the effect is small compared to the supported amount. Production method> In the production method of the substance of the present invention, when mordenite is used as a starting material, the mordenite may be either natural or synthetic, and it is clear from the descriptions in (2), (3), and (4) above. Basically, it consists of the following four steps. (a) Addition port for platinum group metal salts (c) Reduction of platinum group metal salts (c) Addition of rare earth substances (2) Naturally, the treatment at the firing port must be performed after the treatment in (a), and the treatment in (2) must be performed after the treatment in (c). Furthermore, since the second treatment is usually carried out in an oxidizing atmosphere, the mouth treatment should be performed after the second treatment. The processing in step (a) may be performed before or after steps (c) and (2), or between (1) and (2). (Supporting Platinum Group Metal) Supporting of platinum group metal, which consists of the above-mentioned treatments (a) and (a), may be carried out by a conventionally well-known method. That is, first, mordenite or rare earth ion I
If mordenite is impregnated with an aqueous solution of one or more platinum group metal salts by impregnation treatment, extraction treatment, ion exchange treatment, or the like. Among them, ion exchange treatment or mordenite containing the metal is particularly preferred. As the ion exchange method, ion exchange treatment using a compound in which the metal is present as a cation, such as a metal complex such as ammonia, alkylamine, hydroxylamine, hydrazine, etc., is preferable. In this way, the platinum group salt D'
After drying the f-7 product, it is heat-treated in the presence of a reducing agent such as ammonia, hydrogen, etc., preferably hydrogen, to reduce the platinum group metal to its metallic form. (Supporting Rare Earth Oxide) A rare earth oxide is supported on mordenite or platinum group-containing mordenite by the treatments /X and 2 above. The present invention provides the following two methods. l. Ion exchange calcination method First, the material to be treated (mordenite or platinum group metal salt-containing mordenite) is heated to a compound in which a rare earth element exists as a cation in an aqueous solution, such as a nitrate. By contacting with an aqueous solution of chloride, acetate, oxalate, carbonate, etc., part or all of the exchangeable cations in the object to be treated are exchanged into rare earth ions. When scales are used as a catalyst for paraffin isomerization, etc., as described above, the amount of exchange is changed to mordenite (former scale M2/, 0-Al□03 ・ (9,5 to 20.5
) S i 02 ) 0.0042 to 1.27 g atoms in terms of rare earth element per 1 mole, especially 0.02
The proportion may be 1 to 0.85 gram atoms. As described above, after this ion exchange treatment, a treatment for impregnating a platinum group metal can be performed before the next firing. The ion-exchanged product is dried and then fired at 1000° C. or lower in an oxygen atmosphere to convert the rare earth ions into oxides and support them on mordenite. This oxygen atmosphere does not need to be high in oxygen content; air is sufficient. Naturally, this calcination must be carried out at a temperature high enough to convert the rare earth ions into oxides, and the calcination temperature is selected from the range of 400 to 1000°C (within this temperature range, it is necessary to simultaneously convert the rare earth ions into mordenite). responsibilities are also fulfilled). The reason why the upper limit of the firing temperature is set to 1000° C. is that if this temperature is exceeded, the crystal structure of mordenite will be destroyed. The reason why the upper limit of the firing temperature is set at 1000° C. in all the manufacturing methods of the present invention is for the same reason. Through this firing process, the areas where rare earth ions were present become H
Becomes a mold. This is presumed to be due to decomposition of the OH groups coordinated to the rare earth ions to generate hydrogen ions. Conversion of rare earth ions to their oxides is confirmed by X-ray diffraction. That is, the 2θ-6,5" and 13.9° peaks characteristic of mordenite disappear when rare earth ions are exchanged, but when rare earth ions are converted to oxides, these two peaks reappear. However, due to the above conversion, Items whose colors are expressed can be easily confirmed by the change in color.For example, cerium oxide is pale yellow, neodymium oxide is blue, and europium oxide is pale pink.Mordenite containing platinum group metal salts When firing,
Although it can be fired as is, natural clays (e.g. kaolin, halloysite, montmorillonite, etc.) and/or inorganic oxides (e.g. silica; binary gels such as silica-alumina, silica-zirconia, silica-magnesia, aluminum phosphate); Ternary gel such as silica-magnesia-alumina; alumina, titania, zirconia, etc.)
It is also possible to granulate the granules using, for example, sintering. 1i. Mixing firing method First, mordenite or platinum group metal salt-containing mordenite and a rare earth oxide and/or rare earth salt are mixed. This mixing method includes dry mixing method, as long as it is mixed uniformly.
Either wet mixing method may be used. Rare earth salts are nitrates, halides, and acetates. Oxalates, carbonates, oxohalides, thiosulfates, selenate, hydroxides, chromates, phosphates, borates, silicates, cyanides, formates. Ethyl sulfate, dimethyl phosphate, malonate. One kind of glycolate, sebacate, cacodylate, etc. may be used, or two or more kinds thereof can be used. After this mixing, a treatment for impregnating a platinum group metal salt can be performed before the next firing. Next, it is fired at 1000° C. or lower in an oxygen atmosphere. This atmosphere is 1. As in the ion exchange calcination method, it is not necessary to use a material with a high oxygen content, and air is sufficient. When using rare earth oxides, the firing temperature is 200
~1000°C. If the temperature is lower than 200°C, the rare earth oxide remains simply mixed with mordenite and is not supported, so that a highly active catalyst cannot be obtained. This change in state can be confirmed by a change in the intensity of peaks such as 20=6.5° and 13.9' in the X-ray diffraction chart. When using rare earth salts, the temperature must naturally be high enough to convert the rare earth salts into oxides, and the firing temperature is between 200 and 100 ℃.
It is selected from a range of 0° C. (as is clear from the above explanation, in this temperature range, the rare earth oxide is supported on mordenite). When firing a mixture containing a platinum group metal salt, i,
As in the case of the ion exchange calcination method, the granules can be fired as they are, or they can be granulated using a binder and then fired.

【発明の効果】 本発明の希土類酸化物を担持した白金族金属担持モルデ
ナイトは、脱ろう触媒、水素化分解触媒。 水素化精製触媒、CO酸化触媒、炭化水素酸化触媒、リ
ホーミング触媒、ナフテン異性化触媒、バラフイン異性
化触媒等として有用である。特にこれを使用して、炭素
数4〜6個などのパラフィンを水素の存在下で異性化す
ると、比較的温和に条件で高い転化率及び/又は選択率
を達成することができる。 したがって、本発明による希土類酸化物及び白金族金属
を担持したモルデナイトは、触媒として石油精製をはじ
めとする石油産業や化学工業に広くH効に利用できる。 また、本発明のいずれの製造法によっても、上記の白金
族担持モルデナイトを容易に工業的にを利に製造するこ
とができる。
[Effects of the Invention] The platinum group metal-supported mordenite supporting the rare earth oxide of the present invention can be used as a dewaxing catalyst and a hydrogenolysis catalyst. It is useful as a hydrorefining catalyst, a CO oxidation catalyst, a hydrocarbon oxidation catalyst, a reforming catalyst, a naphthene isomerization catalyst, a paraffin isomerization catalyst, and the like. In particular, when this is used to isomerize paraffins having 4 to 6 carbon atoms in the presence of hydrogen, high conversion and/or selectivity can be achieved under relatively mild conditions. Therefore, the mordenite supporting rare earth oxides and platinum group metals according to the present invention can be widely used as a catalyst in the petroleum industry including petroleum refining, and the chemical industry with H effect. Moreover, the above-mentioned platinum group-supported mordenite can be easily and industrially produced by any of the production methods of the present invention.

【実施例】【Example】

本発明をさらに具体的に説明するために、以下に実施例
を示すが、本発明は以下の実施例によって限定されるも
のではない。 実施例1 合成Na型モルデナイト30g (S i 02 /A
l2O3モル比−14,9)を、濃度2.0モル/1の
塩化アンモニウム水溶液300 mlに分散した後、6
0℃にて3時間撹拌してアンモニウムイオン交換を行な
った。この操作を2度繰り返した。その後内容物を吸引
濾過により分離し、塩化物イオンが検出されなくなるま
で洗浄を繰り返した。得られたNH4型モルデナイトの
残存N a mを原子吸光法により/1lll定したと
ころ 0.1νL%未満であった。このNH4型モルデ
ナイトのX線回折チャートを図1に示す。このNH4型
モルデナイトを、l農度0.1モル/Iの硝酸第一セリ
ウム水溶液10100Oに分散した後、80℃にて5時
間撹拌してセリウムイオン交換を行なった。イオン交換
量は、イオン交換前後の硝酸第一セリウム水溶液をED
TA滴定し算出した。CeO2換算で8.0νL 96
であった。 得られたCeNH4型モルデナイトのX線回折チャート
を図2に示す。このCeNH4型モルデナイトを50(
1℃にて2時間空気中で焼成することにより、セリウム
イオンを酸化物にした。該焼成物は、生成したCeO2
よって淡黄色に貨色していた。そのX線回折チャートを
図3に示す。jすられたCeO2担持H担持小型モルデ
ナイト5wt%(CeO2担持H担持小型モルデナイト
て)の白金(白金試薬:Pt (NH3)4 Cl2)
をイオン交換法によりイオン交換した。イオン交換後、
塩化物イオンが検出されなくなるまで洗浄を繰り返した
後、 110℃にて一昼夜熱風乾燥器で乾燥した。 得られたCeO2担持Pt−H型モルデナイトを加圧成
形した後、粉砕し、ふるい分けして16〜32メツシユ
の部分を採取し、509℃にて2時間空気中で焼成した
。つづいて、石英反応管に充填し、300℃で3時間水
素還元を行なった。 実施例2 合成Na!4!!モルデナイト30g (S i 02
 / Al2O3モル比−14,9)を、濃度2.0モ
ル/lの塩化アンモニウム水溶液300 mlに分散し
た後、60°Cにて3時間撹拌してアンモニウムイオン
交換を行なった。この操作を2度繰り返した。その後内
容物を吸引濾過により分離し、塩化物イオンが検出され
なくなるまで洗浄を繰り返した。得られたNH4型モル
デナイトの残存N a mを原子吸光法により測定した
ところ0. lvt%未満であった。このNH4型モル
デナイトを、濃度0.1モル/lの硝酸ランタン水溶液
1000 mlに分散した後、80℃にて5時間撹拌し
てランタンイオン交換を行なった。 イオン交換量は、イオン交換前後の硝酸ランタン水溶液
をEDTA滴定し算出した。La2O3換算で9,0ν
L%であった。得られたLaNH4型モルデナイトを(
i50℃にて2時間空気中で焼成することにより、ラン
タンイオンを酸化物にした。illられたLa2O3担
持H型モルデナイトに0.5νL%(La203担持H
型モルデナイトに対して)の白金(白金試薬:Pt (
NH3)4 Cl2)をイオン交換法によりイオン交換
した。イオン交換後、塩化物イオンが検出されなくなる
まで洗浄を繰り返した後、110℃にて一昼夜熱風乾燥
器で乾燥した。得られたLa20.担持Pt−H型モル
デナイトを加圧成形した後、粉砕し、ふるい分けしてI
C〜32Clシュの部分を採取し、500℃にて2時間
空気中で焼成した。つづいて、石英反応管に充填し、3
00℃で3時間水素還元を行なった。 実施例3 合成Na型モルデナイト30g (S i 02 /A
l2O3モル比−14,9)を、濃度2.0モル/lの
塩化アンモニウム水溶液300 mlに分散した後、6
0℃にて3時間撹拌してアンモニウムイオン交換を行な
った。この操作を2度繰り返した。その後内容物を吸引
濾過により分離し、塩化物イオンが検出されなくなるま
で洗浄を繰り返した。得られたNH4型モルデナイトの
残存Na量を原子吸光法により測定したところO,1w
t%未満であった。このNH4型モルデナイトを、濃度
0.1モル/1の硝酸第一セリウム水溶液1000 m
lに分散した後、80℃にて5時間撹拌してセリウムイ
オン交換を行なった。イオン交換量は、イオン交換前後
の硝酸第一セリウム水溶液をEDTA滴定し算出した。 CeO2換算で7.9wt%であった。得られたCeN
H4型モルデナイトに0.5wt%(Ce N H4型
モルデナイトに対して)の白金(白金試薬:Pt(NH
l)4C12)をイオン交換法によりイオン交換した。 イオン交換後、塩化物イオンが検出されなくなるまで洗
浄を繰り返した後、 110℃にて一昼夜熱風乾燥器で
乾燥した。得られたpt・CeNH4型モルデナイトを
加圧成形した後、粉砕し、ふるい分けして16〜32メ
シユの部分を採取し、500℃にて2時間空気中で焼成
した。えられた焼成物を石英反応管に充填し、300℃
で3時間水素還元を行なった。 比較例1 合成Na型モルデナイト30g (S i 02 /A
l2O、モル比−14,9)を、濃度2.0モル/lの
塩化アンモニウム水溶液300 mlに分散した後、6
0℃にて3時間撹拌してアンモニウムイオン交換ヲ行な
った。この操作を2度繰り返した。その後内容物を吸引
濾過により分離し、塩化物イオンが検出されなくなるま
で洗浄を繰り返した。得られたNH4型モルデナイトの
残存N a Qを原子吸光法により測定したところ 0
.1wt%未満であった。得られたNH4型モルデナイ
トに0.5vt96 (N H4型モルデナイトに対し
て)の白金(白金試薬二Pt (NH3) 4C12)
をイオン交換法によりイオン交換した。イオン交換後、
塩化物イオンが検出されなくなるまで洗浄を繰り返した
後、110℃にて一昼夜熱風乾燥器で乾燥した。得られ
たpt・H型モルデナイトを加圧成形した後、粉砕し、
ふるい分けして16〜32メツシユの部分を採取し、5
00℃にて2時間空気中で焼成した。つづいて、石英反
応管に充填し、300℃で3時間水素還元を行なった。 実施例4 水熱合成により合成が終了したSiO2/Al2O3モ
ル比−14,9のNa型モルデナイト結晶および結晶化
母液とから成る結晶化スラリー(固形分濃度 12.9
w t%) looogを、磁製ブフナー濾斗にて吸引
濾過した。濾過終了後、温水 400m1で洗浄した。 この様にして形成したケーク層に吸引しながら湿度 3
5℃の0.8N塩酸2300 mlをおよそ10分間で
通液した。塩酸通液汲水で充分に洗浄し乾燥した。得ら
れた結晶の組成を化学分析にて測定したところ、S i
o2/A 1203モル比は、25.3であり、Na2
Q含量は検出限界以下の0.05w t%以下であった
。得られたH型脱アルミニウムモルデナイトを700℃
にて1時間空気中にて焼成した。このH型脱アルミニウ
ムモルデナイトに0.5vL%(H型脱アルミニウムモ
ルデナイトに対して)の白金(白金試薬:Pt(NH3
)4C1□)をイオン交換法によりイオン交換した。 イオン交換後、塩化物イオンが検出されなくなるまで洗
浄を繰り返した後、110℃にて一昼夜熱風乾燥器で乾
燥した。得られたPt−H型脱アルミニウムモルデナイ
トlogとCeO21gを充分混合し、加圧成形後、粉
砕し、ふるい分けして16〜32メツシユの部分を採取
し、500℃にて2時間空気中で焼成した。この焼成前
後のもののX線回折チャートをそれぞれ図4および5に
示す。つづいて、石英反応管に充填し、300℃で3時
間水素還元を行なった。 実施例5 水熱合成により合成が終了したS i O2/ Al2
O3モル比−14,9のNa型モルデナイト結晶および
結晶化母液とから成る結晶化スラリ=(固形分I農度は
12.9νt%) 1000gを、磁製ブフナー濾斗に
て吸引濾過した。濾過終了後、温水400 mlで洗浄
した。この様にして形成したケーク層に吸引しながら温
度が35℃の0.8N塩酸2300 mlをおよそ10
分間で通液した。塩酸を通液浸水で充分に洗浄し乾燥し
た。得られた結晶の組成を化学分析にて相定したところ
、SiO□/ A 1203モル比は、25.3であり
、N a 20 含MLは検出限界以下の0.05νt
%以下であった。得られたH型膜アルミニウムモルデナ
イトを700℃にて1時間空気中にて焼成した。このH
型膜アルミニウムモルデナイトに0.5wt0δ(H型
膜アルミニウムモルデナイトに対して)の白金(白金試
薬: P t  (NH3) 4 Cl2)をイオン交
換法によりイオン交換した。イオン交換後、塩化物イオ
ンが検出されなくなるまで洗浄を縁り返した後、110
℃にて一昼夜熱風乾燥器で乾燥した。得られたPt−H
型膜アルミニウムモルデナイトlogと硝酸ランタン六
水和物1.5gを充分混合し、加圧成形後、粉砕し、ふ
るい分けして16〜32メツンユの部分を採取し、70
0℃にて3時間空気中で焼成した。つづいて、石英反応
管に充填し、300℃で3時間水素還元を行なった。 比較例2 CeO2を混合しないで焼成、還元した以外は、実施例
3と同様の方法でpt含有H型脱アルミニウムモルデナ
イトを調製した。 使用例 実施例1.2.3及び4ならびに比較例1及び2て調製
した製品を触媒として、 反応温度        230℃ 反応圧         大気圧 水素/n−へキサンvol比 2.5 重量空間速度      th−’ の条件でn−へキサンの異性化反応を行ない、触媒の性
能の評価をした。n−ヘキサン通油5時間後の11−ヘ
キサン転化率およびその骨格異性体の選択率を下表に示
す。 注)n−Cb:n−ヘキサン +C,:n−へキサンの・1゛1格異性体
EXAMPLES In order to explain the present invention more specifically, Examples are shown below, but the present invention is not limited to the following Examples. Example 1 30 g of synthetic Na-type mordenite (S i 02 /A
After dispersing 12O3 molar ratio -14.9) in 300 ml of ammonium chloride aqueous solution with a concentration of 2.0 mol/1,
Ammonium ion exchange was performed by stirring at 0° C. for 3 hours. This operation was repeated twice. The contents were then separated by suction filtration and washed repeatedly until no chloride ions were detected. The residual N am of the obtained NH4 type mordenite was determined by atomic absorption spectrometry and was found to be less than 0.1 νL%. An X-ray diffraction chart of this NH4 type mordenite is shown in FIG. This NH4 type mordenite was dispersed in 10,100 O of an aqueous solution of cerous nitrate with a concentration of 0.1 mol/I, and then stirred at 80° C. for 5 hours to perform cerium ion exchange. The amount of ion exchange is determined by ED of the cerous nitrate aqueous solution before and after ion exchange.
Calculated by TA titration. 8.0νL in terms of CeO2 96
Met. An X-ray diffraction chart of the obtained CeNH4 type mordenite is shown in FIG. 50 (
The cerium ion was converted into an oxide by firing in air at 1° C. for 2 hours. The fired product contains the generated CeO2
Therefore, the color was pale yellow. The X-ray diffraction chart is shown in FIG. j Platinum (platinum reagent: Pt (NH3) 4 Cl2) of 5 wt % of polished CeO2-supported H-supported small mordenite (CeO2-supported H-supported small mordenite)
was ion-exchanged using the ion-exchange method. After ion exchange,
After repeated washing until no chloride ions were detected, it was dried in a hot air dryer at 110°C overnight. The obtained CeO2-supported Pt-H type mordenite was pressure-molded, then crushed, sieved to collect 16 to 32 mesh pieces, and calcined in air at 509°C for 2 hours. Subsequently, the mixture was filled into a quartz reaction tube and subjected to hydrogen reduction at 300° C. for 3 hours. Example 2 Synthetic Na! 4! ! Mordenite 30g (S i 02
/Al2O3 molar ratio -14.9) was dispersed in 300 ml of ammonium chloride aqueous solution having a concentration of 2.0 mol/l, and then stirred at 60°C for 3 hours to perform ammonium ion exchange. This operation was repeated twice. The contents were then separated by suction filtration and washed repeatedly until no chloride ions were detected. The residual Na m of the obtained NH4 type mordenite was measured by atomic absorption spectrometry and was found to be 0. lvt%. This NH4 type mordenite was dispersed in 1000 ml of an aqueous lanthanum nitrate solution having a concentration of 0.1 mol/l, and then stirred at 80° C. for 5 hours to perform lanthanum ion exchange. The amount of ion exchange was calculated by titrating the lanthanum nitrate aqueous solution before and after ion exchange with EDTA. 9.0ν in terms of La2O3
It was L%. The obtained LaNH4 type mordenite (
Lanthanum ions were converted into oxides by firing in air at 50° C. for 2 hours. 0.5νL% (La203-supported H-type mordenite)
platinum (platinum reagent: Pt (for type mordenite))
NH3)4Cl2) was ion-exchanged by an ion exchange method. After ion exchange, washing was repeated until chloride ions were no longer detected, and then dried in a hot air dryer at 110° C. all day and night. The obtained La20. After pressure forming the supported Pt-H type mordenite, it is crushed and sieved to form I
A portion of C~32Cl powder was collected and calcined in air at 500°C for 2 hours. Next, fill the quartz reaction tube,
Hydrogen reduction was performed at 00°C for 3 hours. Example 3 30 g of synthetic Na-type mordenite (S i 02 /A
After dispersing 12O3 molar ratio -14.9) in 300 ml of ammonium chloride aqueous solution with a concentration of 2.0 mol/l, 6
Ammonium ion exchange was performed by stirring at 0° C. for 3 hours. This operation was repeated twice. The contents were then separated by suction filtration and washed repeatedly until no chloride ions were detected. The amount of residual Na in the obtained NH4 type mordenite was measured by atomic absorption spectrometry and was found to be O.1w.
It was less than t%. This NH4 type mordenite was dissolved in 1000 m of an aqueous cerous nitrate solution with a concentration of 0.1 mol/1.
After dispersing the mixture in 1 liter of water, the mixture was stirred at 80° C. for 5 hours to perform cerium ion exchange. The amount of ion exchange was calculated by titrating the cerous nitrate aqueous solution before and after ion exchange with EDTA. It was 7.9 wt% in terms of CeO2. Obtained CeN
Platinum (platinum reagent: Pt(NH
l) 4C12) was ion-exchanged by an ion-exchange method. After ion exchange, washing was repeated until chloride ions were no longer detected, and then dried in a hot air dryer at 110°C overnight. The obtained pt·CeNH4 type mordenite was pressure-molded, then crushed, sieved to collect 16 to 32 mesh pieces, and calcined in air at 500°C for 2 hours. The obtained fired product was filled into a quartz reaction tube and heated to 300°C.
Hydrogen reduction was carried out for 3 hours. Comparative Example 1 30g of synthetic Na-type mordenite (S i 02 /A
After dispersing 12O, molar ratio -14.9) in 300 ml of ammonium chloride aqueous solution with a concentration of 2.0 mol/l, 6
Ammonium ion exchange was performed by stirring at 0°C for 3 hours. This operation was repeated twice. The contents were then separated by suction filtration and washed repeatedly until no chloride ions were detected. The residual NaQ of the obtained NH4 type mordenite was measured by atomic absorption spectrometry and was found to be 0.
.. It was less than 1 wt%. 0.5vt96 (relative to NH4 type mordenite) of platinum (platinum reagent 2Pt (NH3) 4C12) was added to the obtained NH4 type mordenite.
was ion-exchanged using the ion-exchange method. After ion exchange,
After repeated washing until no chloride ions were detected, it was dried in a hot air dryer at 110° C. all day and night. After pressure-molding the obtained pt/H type mordenite, it is crushed,
Sieve and collect 16 to 32 mesh pieces,
It was baked in air at 00°C for 2 hours. Subsequently, the mixture was filled into a quartz reaction tube and subjected to hydrogen reduction at 300° C. for 3 hours. Example 4 Crystallization slurry (solid content concentration: 12.9
wt%) looog was suction filtered using a porcelain Buchner funnel. After the filtration was completed, it was washed with 400 ml of warm water. Humidity is added to the cake layer formed in this way while being sucked into the cake layer.
2300 ml of 0.8N hydrochloric acid at 5°C was poured into the solution for about 10 minutes. It was thoroughly washed with water and washed with hydrochloric acid and dried. When the composition of the obtained crystal was measured by chemical analysis, it was found that Si
o2/A 1203 molar ratio is 25.3 and Na2
The Q content was less than 0.05 wt%, which is below the detection limit. The obtained H-type dealuminated mordenite was heated at 700°C.
It was baked in air for 1 hour. Platinum (platinum reagent: Pt(NH3)
)4C1□) was ion-exchanged by an ion exchange method. After ion exchange, washing was repeated until chloride ions were no longer detected, and then dried in a hot air dryer at 110° C. all day and night. The obtained Pt-H type dealuminated mordenite log and 21 g of CeO were thoroughly mixed, pressure-molded, crushed, sieved to collect 16 to 32 mesh pieces, and calcined in air at 500°C for 2 hours. . X-ray diffraction charts of the material before and after firing are shown in FIGS. 4 and 5, respectively. Subsequently, the mixture was filled into a quartz reaction tube and subjected to hydrogen reduction at 300° C. for 3 hours. Example 5 S i O2/Al2 synthesized by hydrothermal synthesis
1000 g of a crystallization slurry consisting of Na-type mordenite crystals with an O3 molar ratio of -14.9 and a crystallization mother liquor (solid content I degree: 12.9 vt%) was suction-filtered using a porcelain Buchner funnel. After the filtration was completed, it was washed with 400 ml of warm water. Approximately 10 ml of 0.8N hydrochloric acid at a temperature of 35°C was poured into the cake layer thus formed while suctioning.
The liquid was passed for a minute. It was thoroughly washed with hydrochloric acid and immersed in water, and then dried. When the composition of the obtained crystal was determined by chemical analysis, the SiO□/A 1203 molar ratio was 25.3, and the Na 20 -containing ML was 0.05νt below the detection limit.
% or less. The obtained H-type membrane aluminum mordenite was fired in air at 700° C. for 1 hour. This H
0.5wt0δ (relative to the H-type membrane aluminum mordenite) of platinum (platinum reagent: P t (NH3) 4 Cl2) was ion-exchanged to the type membrane aluminum mordenite by an ion exchange method. After ion exchange, washing was repeated until no chloride ions were detected, and then 110
It was dried in a hot air dryer at ℃ overnight. The obtained Pt-H
The mold membrane aluminum mordenite log and 1.5 g of lanthanum nitrate hexahydrate were thoroughly mixed, pressure molded, crushed, and sieved to collect a portion of 16 to 32 mm.
It was baked in air at 0° C. for 3 hours. Subsequently, the mixture was filled into a quartz reaction tube and subjected to hydrogen reduction at 300° C. for 3 hours. Comparative Example 2 A pt-containing H-type dealuminated mordenite was prepared in the same manner as in Example 3, except that it was fired and reduced without mixing CeO2. Usage Examples Using the products prepared in Examples 1.2.3 and 4 and Comparative Examples 1 and 2 as catalysts, reaction temperature 230°C reaction pressure atmospheric pressure hydrogen/n-hexane vol ratio 2.5 weight hourly space velocity th-' The isomerization reaction of n-hexane was carried out under the following conditions, and the performance of the catalyst was evaluated. The conversion rate of 11-hexane and the selectivity of its skeletal isomer after 5 hours of passing n-hexane through the oil are shown in the table below. Note) n-Cb: n-hexane + C,: ・1゛1 isomer of n-hexane

【図面の簡単な説明】[Brief explanation of the drawing]

図1.2および3は、それぞれ実施例1におけるNH4
型モルデナイト、CeNH4型モルデナイトおよびその
焼成物のX線回折チャートである。 図4および5は、それぞれ実施例4におけるPt・H型
膜アルミニウムモルデナイトとCeO2との混合物の焼
成前および後のもののX線回折チャー 1−である。 特、;′[出願人 東ソー株式会社
Figures 1.2 and 3 show NH4 in Example 1, respectively.
1 is an X-ray diffraction chart of type mordenite, CeNH4 type mordenite, and a fired product thereof. 4 and 5 are X-ray diffraction charts 1- of the mixture of Pt/H type film aluminum mordenite and CeO2 before and after firing in Example 4, respectively. Special;;′ [Applicant: Tosoh Corporation

Claims (4)

【特許請求の範囲】[Claims] (1)白金族金属とともに希土類酸化物が担持されてい
ることを特徴とする白金族金属担持モルデナイト。
(1) A platinum group metal-supported mordenite characterized by supporting a rare earth oxide together with a platinum group metal.
(2)(a)希土類イオンをイオン交換によって含有さ
せた白金族金属塩含有モルデナイトを酸素雰囲気下に1
000℃以下で焼成して希土類イオンを希土類酸化物に
転化させるか、又は (b)希土類イオンをイオン交換によって含有させたモ
ルデナイトを酸素雰囲気下に1000℃以下で焼成して
希土類イオンを希土類酸化物に転化させたのち、該焼成
物に白金族金属塩を含ませ、 (c)ついで、白金族金属塩を還元する ことを特徴とする白金族金属担持モルデナイトの製造法
(2) (a) Platinum group metal salt-containing mordenite containing rare earth ions by ion exchange is placed in an oxygen atmosphere for 1 hour.
(b) Mordenite containing rare earth ions by ion exchange is fired at 1000°C or less in an oxygen atmosphere to convert rare earth ions into rare earth oxides. A method for producing platinum group metal-supported mordenite, which comprises converting the fired product into a platinum group metal salt, and (c) then reducing the platinum group metal salt.
(3)(a)白金族金属塩含有モルデナイトと希土類酸
化物とを混合し、酸素雰囲気下に200〜1000℃で
焼成するか、又は (b)モルデナイトと希土類酸化物とを混合し、酸素雰
囲気下に200〜1000℃で焼成したのち、該焼成物
に白金族金属塩を含ませ、 (c)ついで、白金族金属塩を還元する ことを特徴とする白金族金属担持モルデナイトの製造法
(3) (a) Mix mordenite containing a platinum group metal salt and a rare earth oxide and sinter at 200 to 1000°C in an oxygen atmosphere, or (b) Mix mordenite and a rare earth oxide and heat the mixture in an oxygen atmosphere. 1. A method for producing platinum group metal-supported mordenite, which comprises: firing at 200 to 1000°C, impregnating the fired product with a platinum group metal salt, and (c) then reducing the platinum group metal salt.
(4)(a)白金族金属担持モルデナイトと希土類塩と
を混合し、酸素雰囲気下に1000℃以下で焼成して希
土類塩を希土類酸化物に転化させるか、又は (b)モルデナイトと希土類酸化物希土類塩とを混合し
、酸素雰囲気下に1000℃以下で焼成して希土類塩を
希土類酸化物に転化させたのち、該焼成物に白金族金属
塩を含ませ、 (c)ついで、白金族金属塩を還元する ことを特徴とする白金族金属担持モルデナイトの製造法
(4) (a) Mix mordenite supported on platinum group metal and rare earth salt, and convert the rare earth salt into rare earth oxide by baking at 1000°C or less in an oxygen atmosphere, or (b) Mordenite and rare earth oxide. (c) After converting the rare earth salt into rare earth oxide by baking at 1000° C. or lower in an oxygen atmosphere, the baked product is impregnated with a platinum group metal salt. A method for producing platinum group metal-supported mordenite characterized by reducing salt.
JP63052728A 1988-03-08 1988-03-08 Platinum group metal supporting mordenite and manufacture thereof Pending JPH01228554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63052728A JPH01228554A (en) 1988-03-08 1988-03-08 Platinum group metal supporting mordenite and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63052728A JPH01228554A (en) 1988-03-08 1988-03-08 Platinum group metal supporting mordenite and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01228554A true JPH01228554A (en) 1989-09-12

Family

ID=12922986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63052728A Pending JPH01228554A (en) 1988-03-08 1988-03-08 Platinum group metal supporting mordenite and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01228554A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004267945A (en) * 2003-03-10 2004-09-30 Gifu Univ CATALYST COMPOSITION FOR ISOMERIZING n-PARAFFIN AND METHOD OF ISOMERIZING n-PARAFFIN
JP2006523136A (en) * 2003-03-21 2006-10-12 シェブロン ユー.エス.エー. インコーポレイテッド Metal-added microporous material for hydrocarbon isomerization process
JP2008512227A (en) * 2004-09-08 2008-04-24 エクソンモービル リサーチ アンド エンジニアリング カンパニー Improved molecular sieve-containing hydrodewaxing catalyst
CN103100413A (en) * 2011-10-17 2013-05-15 中国石油化工股份有限公司 Isomerization catalyst and its application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004267945A (en) * 2003-03-10 2004-09-30 Gifu Univ CATALYST COMPOSITION FOR ISOMERIZING n-PARAFFIN AND METHOD OF ISOMERIZING n-PARAFFIN
JP2006523136A (en) * 2003-03-21 2006-10-12 シェブロン ユー.エス.エー. インコーポレイテッド Metal-added microporous material for hydrocarbon isomerization process
JP4912872B2 (en) * 2003-03-21 2012-04-11 シェブロン ユー.エス.エー. インコーポレイテッド Metal-added microporous material for hydrocarbon isomerization process
JP2008512227A (en) * 2004-09-08 2008-04-24 エクソンモービル リサーチ アンド エンジニアリング カンパニー Improved molecular sieve-containing hydrodewaxing catalyst
CN103100413A (en) * 2011-10-17 2013-05-15 中国石油化工股份有限公司 Isomerization catalyst and its application

Similar Documents

Publication Publication Date Title
US4151123A (en) Catalytic perovskites on perovskite supports and process for preparing them
EP0002899B1 (en) Method for preparing aluminosilicates and their use as catalyst supports and catalysts
KR100693956B1 (en) Composition based on zirconium oxide and oxides of cerium, lanthanum and of another rare earth, a method for preparing same and use thereof as catalyst
JPH029829A (en) Reductive alkylation method
JPH024455A (en) Method for improving ion-exchanging ability of titanium silicate
EP0057796B1 (en) Catalyst, catalyst support and oxychlorination process
JP2558568B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2648452B2 (en) Method for producing metal silicate catalyst
US3761396A (en) Hydrocarbon conversion processes using supersiliceous zeolites as catalysts
EP0023089A1 (en) Method of preparing zeolite ZSM-48, the zeolite so prepared and its use as catalyst for organic compound conversion
JPH01228554A (en) Platinum group metal supporting mordenite and manufacture thereof
JPH026323A (en) Noble metal-containing titanium silicate and aromatic hydrocarbon
JPH07213911A (en) Catalyst for catalytic reduction of nitrogen oxide
US3373110A (en) Process for the preparation of platinum metal containing aluminosilicates
JPS5815023A (en) Crystalline aluminosilicate composition
JPH0528279B2 (en)
JPH0768180A (en) Catalyst for catalytic reduction of nox
JPH01228923A (en) Method for isomerizing paraffin
JPH0889758A (en) Decomposing method of ammonia
JP2734480B2 (en) Nitrogen oxide decomposition catalyst
JP2555644B2 (en) Mordenite supporting white metal group and its manufacturing method
JPH06320008A (en) Catalyst for catalytic reduction of nox
JPS58120513A (en) Modified crystalline aluminosilicate zeolite and isomerizing method for xylenes
EP0871588A1 (en) Stabilized delta-alumina compositions, and catalyst supports and systems made therefrom
JPH03143547A (en) Catalyst for decomposition of nitrogen oxide