JPH0889758A - Decomposing method of ammonia - Google Patents

Decomposing method of ammonia

Info

Publication number
JPH0889758A
JPH0889758A JP6229219A JP22921994A JPH0889758A JP H0889758 A JPH0889758 A JP H0889758A JP 6229219 A JP6229219 A JP 6229219A JP 22921994 A JP22921994 A JP 22921994A JP H0889758 A JPH0889758 A JP H0889758A
Authority
JP
Japan
Prior art keywords
ammonia
catalyst
decomposing
tio
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6229219A
Other languages
Japanese (ja)
Other versions
JP3229136B2 (en
Inventor
Kozo Iida
耕三 飯田
Shigeru Nojima
野島  繁
Rie Tokuyama
理恵 徳山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22921994A priority Critical patent/JP3229136B2/en
Publication of JPH0889758A publication Critical patent/JPH0889758A/en
Application granted granted Critical
Publication of JP3229136B2 publication Critical patent/JP3229136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To provide a method for decomposing ammonia included in various kinds of exhaust gas into harmless nitrogen. CONSTITUTION: In a method for decomposing and removing ammonia from a gas containing ammonia, the gas is brought into contact with a catalyst for decomposition of ammonia. The catalyst is obtd. by depositing platinum as active metal on a carrier. The carrier consists of crystalline silicate having chemical compsn. of (1±0.8)R2 O.[aM2 O3 .bAl2 O3 -].cMeO.ySiO2 in a dehydrated state and a specified X-ray diffraction pattern or a carrier comprising specified single oxide, multiple oxide, solid super strong acid or various kinds of zeolite. In the formula, R is an alkali metal ion and/or hydrogen ion, M is at least one element selected from group VIII elements, rare earth elements, titanium, vanadium, chromium, niobium, antimony and gallium, Me is an alkaline earth element, a>=0, b>=0, c>=0, a+b=1, y/c>12, and y>12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各種排ガス等に含まれる
アンモニアを無害な窒素に分解する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of decomposing ammonia contained in various exhaust gases into harmless nitrogen.

【0002】[0002]

【従来の技術】アンモニアは肥料や硝酸の製造原料、冷
媒、排ガス中の窒素酸化物除去用還元剤等幅広い分野で
使用されている。したがって、各種化学品製造工場、冷
凍機等の廃棄物処理工場あるいは燃焼排ガス処理施設等
からは多量のアンモニアが排出される。アンモニアは特
異な刺激臭を有する気体であり大気中への放出は極力抑
える必要がある。しかし、生物の腐敗によるアンモニア
の生成や廃棄物中の冷媒からのアンモニアの放散、さら
に煙道排ガス中の窒素酸化物の還元に用いられるアンモ
ニアが未反応のまま大気放出される等、多くの場所でア
ンモニアが大気放出されているのが現状である。
Ammonia is used in a wide range of fields such as a raw material for producing fertilizer and nitric acid, a refrigerant, and a reducing agent for removing nitrogen oxides in exhaust gas. Therefore, a large amount of ammonia is emitted from various chemical product manufacturing plants, waste treatment plants such as refrigerators, and combustion exhaust gas treatment facilities. Ammonia is a gas with a unique irritating odor, and its release into the atmosphere must be suppressed as much as possible. However, in many places, such as the generation of ammonia due to the decay of living organisms, the emission of ammonia from the refrigerant in waste, and the ammonia used for the reduction of nitrogen oxides in flue gas, is released into the atmosphere without reaction. At present, ammonia is released into the atmosphere.

【0003】[0003]

【発明が解決しようとする課題】アンモニアの大気放出
を防ぐ方法の一つとしてアルミナやシリカ−アルミナ系
担体に酸化鉄や酸化ニッケルを担持させた触媒を利用し
て次の反応式によりアンモニアを無害な窒素に分解する
方法が知られている。
As one of the methods for preventing the release of ammonia into the atmosphere, a catalyst in which iron oxide or nickel oxide is supported on an alumina or silica-alumina type carrier is used to make ammonia harmless according to the following reaction formula. A method of decomposing it into pure nitrogen is known.

【化1】 2NH3 + 3/2O2 → N2 + 3H2 O ところが、従来の触媒では前記反応以外に次のような副
反応によりNO,NO 2 ,N2 O等の生成が認められ、
新たに大気汚染を生じる恐れがあった。
Embedded image 2NH3+ 3 / 2O2 → N2+ 3H2O However, with conventional catalysts, in addition to the above reactions,
NO by reaction, NO 2, N2Generation of O etc. is recognized,
There was a risk of new air pollution.

【化2】 2NH3 + 5/2O2 → 2NO + 3H2 O 2NH3 + 7/2O2 → 2NO2 + 3H2 O 2NH3 + 2O2 → N2 O + 3H2 Embedded image 2NH 3 + 5 / 2O 2 → 2NO + 3H 2 O 2NH 3 + 7 / 2O 2 → 2NO 2 + 3H 2 O 2NH 3 + 2O 2 → N 2 O + 3H 2 O

【0004】本発明の目的は前記従来技術の問題点を解
決し、大気汚染のもととなる窒素酸化物を副生する恐れ
がなく、高い収率でアンモニアを分解除去することので
きるアンモニア分解方法を提供することにある。
The object of the present invention is to solve the above-mentioned problems of the prior art, and to decompose and remove ammonia with a high yield without fear of producing nitrogen oxides as a source of air pollution as a by-product. To provide a method.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

(1)本発明はアンモニアを含有するガスをアンモニア
分解触媒と接触させてアンモニアを分解除去する方法に
おいて、アンモニア分解触媒として、脱水された状態
で、(1±0.8)R2 O・〔aM2 3 ・bAl2
3 〕・cMeO・ySiO2 (式中、Rはアルカリ金属
イオン及び/又は水素イオン、MはVIII族元素、希土類
元素、チタン、バナジウム、クロム、ニオブ、アンチモ
ン、ガリウムからなる群から選ばれた1種以上の元素、
Meはアルカリ土類元素、a≧0、b≧0、c≧0、a
+b=1、y/c>12、y>12)の化学組成を有
し、かつ下記表Aで示されるX線回折パターンを有する
結晶性シリケートよりなる担体に活性金属として白金を
担持した触媒を使用することを特徴とするアンモニア分
解方法(第1発明)。
(1) The present invention relates to a method of decomposing and removing ammonia by bringing a gas containing ammonia into contact with an ammonia decomposing catalyst, wherein (1 ± 0.8) R 2 O. [ aM 2 O 3 · bAl 2 O
3 ] .cMeO.ySiO 2 (In the formula, R is an alkali metal ion and / or hydrogen ion, M is a group selected from the group consisting of Group VIII elements, rare earth elements, titanium, vanadium, chromium, niobium, antimony, and gallium. More than one element,
Me is an alkaline earth element, a ≧ 0, b ≧ 0, c ≧ 0, a
+ B = 1, y / c> 12, y> 12), and a catalyst having platinum as an active metal supported on a carrier made of a crystalline silicate having an X-ray diffraction pattern shown in Table A below. A method for decomposing ammonia, which is used (first invention).

【0006】(2)前記白金触媒の担体がγ−Al2
3 、θ−Al2 3 、ZrO2 、TiO2 、TiO2
ZrO2 、SiO2 ・Al2 3 、Al2 3 ・TiO
2 、SO4 /ZrO2 、SO4 /ZrO2 ・TiO2
Y型ゼオライト、X型ゼオライト、A型ゼオライト、モ
ルデナイト及びシリカライトよりなる群から選ばれた少
なくとも1種以上の多孔質物質であることを特徴とする
上記(1)記載のアンモニア分解方法(第2発明)。
(2) The platinum catalyst carrier is γ-Al 2 O.
3 , θ-Al 2 O 3 , ZrO 2 , TiO 2 , TiO 2 ·
ZrO 2 , SiO 2 · Al 2 O 3 , Al 2 O 3 · TiO
2 , SO 4 / ZrO 2 , SO 4 / ZrO 2 · TiO 2 ,
The method for decomposing ammonia according to (1) above, which is a porous substance of at least one selected from the group consisting of Y-type zeolite, X-type zeolite, A-type zeolite, mordenite and silicalite. invention).

【0007】本発明の方法で使用する触媒は、本質的に
は本発明者らが前に窒素酸化物(NOx)、一酸化炭素
(CO)、炭化水素(HC)等を含有する内燃機関の排
ガスを浄化する触媒として開発したものと同一である
(特願平6−7667、特願平5−228382)。前
記第1発明触媒を構成する結晶性シリケートは表Aに示
すようなX線回折パターンを示す結晶構造を有するのが
特徴である。
The catalyst used in the method of the present invention is essentially the catalyst of an internal combustion engine which the inventors have previously contained nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC) and the like. It is the same as that developed as a catalyst for purifying exhaust gas (Japanese Patent Application Nos. 6-7667 and 5-228382). The crystalline silicate constituting the first invention catalyst is characterized by having a crystal structure showing an X-ray diffraction pattern as shown in Table A.

【0008】[0008]

【表1】 VS:非常に強い M:中級 S:強い W:弱い (X線源 CuKα)[Table 1] VS: Very strong M: Intermediate S: Strong W: Weak (X-ray source CuKα)

【0009】[0009]

【作用】本発明において使用される触媒は必要によりア
ルミナゾル、シリカゾルなどのバインダ成分やコージェ
ライト等の基材を使用し、ウォッシュコート法又はソリ
ッド法によりハニカム化して使用するのが好ましい。ア
ンモニアを含有するガスを、100〜600℃の温度で
前記触媒に接触させることにより、ガス中のアンモニア
は窒素に分解される。この分解反応は選択的に進行し、
NO、NO2 、N2 O等の有害ガスが副生することはな
い。さらに、本発明で使用される触媒はSO2 が共存す
る排ガスにおいても、アンモニア分解活性が低下するこ
となく安定なアンモニア分解性能を保つ。また、SO2
をSO3 へ酸化させる能力は低いため酸性硫酸アンモニ
ウム生成の不具合点も見られない。
The catalyst used in the present invention preferably uses a binder component such as alumina sol or silica sol, or a base material such as cordierite, if necessary, and is made into a honeycomb by a wash coat method or a solid method. By bringing a gas containing ammonia into contact with the catalyst at a temperature of 100 to 600 ° C., the ammonia in the gas is decomposed into nitrogen. This decomposition reaction selectively proceeds,
No harmful gas such as NO, NO 2 and N 2 O is produced as a by-product. Furthermore, the catalyst used in the present invention maintains a stable ammonia decomposing performance without lowering the ammonia decomposing activity even in the exhaust gas in which SO 2 coexists. Also, SO 2
Since the ability to oxidize carbon dioxide to SO 3 is low, there are no problems with the formation of ammonium acid sulfate.

【0010】前記結晶性シリケート(第1発明)及び各
種担体(第2発明)に担持する白金の金属はイオン交換
法に白金イオンを含有させるか、または白金の塩化物等
の塩水溶液を含浸させる含浸法により含有させることが
できる。担持する白金は0.0005wt%以上で十分
に活性が発現し、好ましくは0.001wt%以上で高
い活性を有する。
The platinum metal supported on the crystalline silicate (first invention) and various carriers (second invention) is allowed to contain platinum ions in an ion exchange method or impregnated with an aqueous salt solution such as platinum chloride. It can be contained by the impregnation method. Platinum to be supported exhibits sufficient activity at 0.0005 wt% or more, and preferably has high activity at 0.001 wt% or more.

【0011】[0011]

【実施例】以下、本発明において使用される触媒の調製
を具体的に説明し、それら触媒を使用した実施例を示
す。
EXAMPLES The preparation of the catalysts used in the present invention will be specifically described below, and examples using the catalysts will be shown.

【0012】(触媒の調製1)水ガラス1号(Si
2 :30%):5616gを水:5429gに溶解
し、この溶液を溶液Aとした。一方、水:4175gに
硫酸アルミニウム:718.9g、塩化第二鉄:110
g、酢酸カルシウム:47.2g、塩化ナトリウム:2
62g及び濃塩酸:2020gを混合して溶解し、この
溶液を溶液Bとした。溶液Aと溶液Bを一定割合で供給
し、沈殿を生成させ、十分攪拌してpH=8.0のスラ
リを得た。このスラリを20リットルのオートクレーブ
に仕込み、さらにテトラプロピルアンモニウムブロマイ
ドを500g添加し、160℃にて72時間水熱合成を
行い、合成後水洗して乾燥させ、さらに500℃、3時
間焼成させ結晶性シリケート1を得た。この結晶性シリ
ケート1は酸化物のモル比で(結晶水を省く)下記の組
成式で表され、結晶構造はX線回折で前記表Aにて表示
されるものであった。
(Catalyst Preparation 1) Water Glass No. 1 (Si
O 2 : 30%): 5616 g was dissolved in water: 5429 g, and this solution was designated as solution A. On the other hand, water: 4175 g, aluminum sulfate: 718.9 g, ferric chloride: 110
g, calcium acetate: 47.2 g, sodium chloride: 2
62 g and concentrated hydrochloric acid: 2020 g were mixed and dissolved, and this solution was designated as solution B. Solution A and solution B were supplied at a constant ratio to form a precipitate, which was sufficiently stirred to obtain a slurry having a pH of 8.0. This slurry was charged into a 20-liter autoclave, 500 g of tetrapropylammonium bromide was further added, and hydrothermal synthesis was carried out at 160 ° C for 72 hours, followed by washing with water, drying and firing at 500 ° C for 3 hours to crystallize. Obtained silicate 1. This crystalline silicate 1 was represented by the following composition formula in terms of the molar ratio of oxides (excluding the water of crystallization), and the crystal structure was represented by the above-mentioned Table A by X-ray diffraction.

【化3】0.5Na2 O・0.5H2 O・〔0.8Al
2 3 ・0.2Fe2 3 ・0.25CaO〕・25S
iO2
[Chemical formula 3] 0.5Na 2 O ・ 0.5H 2 O ・ [0.8Al
2 O 3 · 0.2Fe 2 O 3 · 0.25CaO] · 25S
iO 2

【0013】上記結晶性シリケート1を4NのNH4
l水溶液40℃に3時間攪拌してNH4 イオン交換を実
施した。イオン交換後洗浄して100℃、24時間乾燥
させた後、400℃、3時間焼成してH型の結晶性シリ
ケート1を得た。
The above crystalline silicate 1 was treated with 4N NH 4 C.
1 aqueous solution was stirred at 40 ° C. for 3 hours to carry out NH 4 ion exchange. It was washed after ion exchange, dried at 100 ° C. for 24 hours, and then calcined at 400 ° C. for 3 hours to obtain H-type crystalline silicate 1.

【0014】〇 触媒化 次に、上記のH型の結晶性シリケート:200gに対し
て、塩化白金酸H2 〔PtCl6 〕・6H2 O:0.1
1gの割合で含浸法により担持、焼成し粉末触媒を得
た。粉末触媒100部に対して、バインダとしてアルミ
ナゾル3部、シリカゾル55部(SiO2 :20%)及
び水200部を加え、充分攪拌を行いウォッシュコート
用スラリとした。次にコージェライト用モノリス基材
(30セル/inch 2 、格子間隔4.6mm、壁厚
0.6mm)を上記スラリに浸漬し、取り出した後、余
分なスラリを吹きはらい200℃で乾燥させた。コート
量は基材1リットルあたり150gとし、このコート物
を触媒1とした。
Catalysis Next, to 200 g of the above H-type crystalline silicate:
Chloroplatinic acid H2[PtCl6] ・ 6H2O: 0.1
A powder catalyst was obtained by supporting and firing at a rate of 1 g by the impregnation method.
It was Aluminum as binder for 100 parts of powder catalyst
Nasol 3 parts, silica sol 55 parts (SiO2: 20%)
Add 200 parts of water and stir well to wash coat
For slurry. Next, the monolith base material for cordierite
(30 cells / inch 2, Lattice spacing 4.6 mm, wall thickness
(0.6 mm) is immersed in the above slurry and taken out.
A minute slurry was blown off and dried at 200 ° C. coat
The amount of this coated material is 150 g per liter of the base material.
Was used as catalyst 1.

【0015】(触媒2〜5の調製)次に、上記H型の結
晶性シリケート:200gに対して、塩化白金酸H
2 〔PtCl6 〕・6H2 O:0.006g、0.02
8g、0.55g、2.75g(上記結晶性シリケート
単位量当り、Ptとして0.001wt%、0.005
wt%、0.1wt%、0.5wt%に相当)の割合で
含浸法により担持し、以下触媒1と同様の操作を行いコ
ート触媒2〜5を得た。
(Preparation of catalysts 2 to 5) Next, to 200 g of the above H-type crystalline silicate, chloroplatinic acid H was added.
2 [PtCl 6 ] .6H 2 O: 0.006 g, 0.02
8 g, 0.55 g, 2.75 g (0.001 wt% as Pt, 0.005 per unit amount of the above crystalline silicate)
wt%, 0.1 wt%, and 0.5 wt%) were supported by the impregnation method, and the same operation as that for the catalyst 1 was performed to obtain coated catalysts 2 to 5.

【0016】上記ハニカム触媒1の調製での結晶性シリ
ケート1の合成法において、塩化第二鉄の代わりに塩化
コバルト、塩化ルテニウム、塩化ロジウム、塩化ランタ
ン、塩化セリウム、塩化チタン、塩化バナジウム、塩化
クロム、塩化アンチモン、塩化ガリウム及び塩化ニオブ
を各々酸化物換算でFe2 3 と同じモル数だけ添加し
た以外は結晶性シリケート1と同様の操作を繰り返して
結晶性シリケート2〜12を調製した。これらの結晶性
シリケートの結晶構造はX線回折で前記表Aに表示され
るものであり、その組成は酸化物のモル比(脱水された
形態)で表わして0.5Na2 O・0.5H2 O・
(0.2M2 3 ・0.8Al2 3 ・0.25Ca
O)・25SiO2 である。ここでMはCo,Ru,R
h,La,Ce,Ti,V,Cr,Sb,Ga,Nbで
ある。
In the method for synthesizing the crystalline silicate 1 in the preparation of the above-mentioned honeycomb catalyst 1, cobalt chloride, ruthenium chloride, rhodium chloride, lanthanum chloride, cerium chloride, titanium chloride, vanadium chloride, chromium chloride is used instead of ferric chloride. , Crystalline silicates 2 to 12 were prepared by repeating the same operation as in crystalline silicate 1 except that antimony chloride, gallium chloride and niobium chloride were added in the same mole number as Fe 2 O 3 in terms of oxide. The crystal structure of these crystalline silicates is shown in Table A above by X-ray diffraction, and its composition is expressed by the molar ratio of oxides (dehydrated form) of 0.5Na 2 O · 0.5H. 2 O
(0.2M 2 O 3 · 0.8Al 2 O 3 · 0.25Ca
O) .25SiO 2 . Where M is Co, Ru, R
h, La, Ce, Ti, V, Cr, Sb, Ga, Nb.

【0017】さらに、結晶性シリケート1の合成法にお
いて、酢酸カルシウムの代わりに酢酸マグネシウム、酢
酸ストロンチウム、酢酸バリウムを各々酸化物換算でC
aOと同じモル数だけ添加した以外は結晶性シリケート
1と同様の操作を繰り返して結晶性シリケート13〜1
5を調製した。これらの結晶性シリケートの結晶構造は
X線回折で前記表Aに表示されるものであり、その組成
は酸化物のモル比(脱水された形態)で表わして0.5
Na2 O・0.5H2 O・(0.2Fe2 3・0.8
Al2 3 ・0.25MeO)・25SiO2 である。
ここでMeはMg,Sr,Baである。
Further, in the method for synthesizing the crystalline silicate 1, magnesium acetate, strontium acetate, and barium acetate are used instead of calcium acetate, respectively, in terms of oxides to convert them into C.
The same operations as in the crystalline silicate 1 were repeated except that the same number of moles as that of aO was added to the crystalline silicates 13 to 1.
5 was prepared. The crystal structure of these crystalline silicates is shown in Table A above by X-ray diffraction, and its composition is 0.5 in terms of the oxide molar ratio (dehydrated form).
Na 2 O ・ 0.5H 2 O ・ (0.2Fe 2 O 3・ 0.8
Is an Al 2 O 3 · 0.25MeO) · 25SiO 2.
Here, Me is Mg, Sr, or Ba.

【0018】(触媒6〜19の調製)上記結晶性シリケ
ート2〜15を用いてハニカム触媒1と同様の方法でH
型の結晶性シリケート2〜15を得、このシリケートに
触媒1と同様の割合で白金を担持した。さらに触媒1と
同様の方法でハニカム基材にコートし触媒6〜19を得
た。触媒1〜19をまとめて表Bに示す。
(Preparation of Catalysts 6 to 19) Using the above crystalline silicates 2 to 15 in the same manner as in the case of the honeycomb catalyst 1,
Mold type crystalline silicates 2 to 15 were obtained, and platinum was supported on the silicate in the same ratio as the catalyst 1. Further, a honeycomb substrate was coated in the same manner as in Catalyst 1 to obtain Catalysts 6 to 19. Catalysts 1-19 are collectively shown in Table B.

【0019】[0019]

【表2】 [Table 2]

【0020】(触媒20〜33の調製)また、前記ハニ
カム触媒1の結晶性シリケートの代わりに、単独酸化物
であるγ−Al2 3 、θ−Al2 3 、ZrO2 、T
iO2 、及び複合酸化物であるTiO2 ・ZrO2 、S
iO2 ・Al2 3 、Al2 3 ・TiO2 、及び固体
超強酸であるSO4 /ZrO2 、SO4 /ZrO2 ・T
iO2 (これらの固体超強酸はZr(OH)4 、Zr
(OH)4 ・Ti(OH)4 を1NのH2 SO4 に約1
時間室温で浸漬し、ろ過、乾燥、焼成することによて得
られる)及びY型ゼオライト、X型ゼオライト、A型ゼ
オライト、モルデナイト、シリカライト(ペンタシル型
構造を有したゼオライトの1種で、Si、Oのみで構成
されているもの)を用いて触媒1と同様の方法にてPt
を担持して、ハニカム触媒20〜33を得た。ハニカム
触媒20〜33をまとめて表Cに示す。
(Preparation of Catalysts 20 to 33) Instead of the crystalline silicate of the honeycomb catalyst 1, single oxides γ-Al 2 O 3 , θ-Al 2 O 3 , ZrO 2 , and T are used.
iO 2 , and TiO 2 · ZrO 2 which is a complex oxide, S
iO 2 · Al 2 O 3 , Al 2 O 3 · TiO 2 , and SO 4 / ZrO 2 , SO 4 / ZrO 2 · T that are solid superacids
io 2 (these solid superacids are Zr (OH) 4 , Zr
About 1 (OH) 4 · Ti (OH) 4 in 1N H 2 SO 4
It is obtained by immersing at room temperature for a period of time, filtering, drying, and calcining) and Y-type zeolite, X-type zeolite, A-type zeolite, mordenite, silicalite (a kind of zeolite having a pentasil-type structure, Si , O only) in the same manner as for catalyst 1
Was carried to obtain honeycomb catalysts 20 to 33. The honeycomb catalysts 20 to 33 are collectively shown in Table C.

【0021】[0021]

【表3】 [Table 3]

【0022】(実施例1)ハニカム触媒1〜33を用い
てアンモニア分解試験を実施した。反応管にハニカム触
媒1〜33を入れ、下記表Dの組成のアンモニア含有ガ
スをSV=16300h-1、流量5.54Nm3 /m2
・hの条件で流し、反応温度300℃及び400℃でア
ンモニア分解性能を調べた。
Example 1 An ammonia decomposition test was carried out using honeycomb catalysts 1 to 33. Honeycomb catalysts 1 to 33 were placed in a reaction tube, and an ammonia-containing gas having the composition shown in Table D below was added to SV = 16300 h −1 at a flow rate of 5.54 Nm 3 / m 2.
-Ammonia decomposition performance was examined at a reaction temperature of 300 ° C and 400 ° C under the condition of h.

【0023】[0023]

【表4】 [Table 4]

【0024】性能評価は反応初期状態におけるアンモニ
ア分解率及びNOx(NO、NO2、N2 O)生成率及
びSO2 酸化率を測定することによって行なった。な
お、アンモニア分解率及びNOx生成率は次の式により
求めた。
The performance was evaluated by measuring the ammonia decomposition rate, the NOx (NO, NO 2 , N 2 O) production rate, and the SO 2 oxidation rate in the initial state of the reaction. The ammonia decomposition rate and the NOx production rate were calculated by the following equations.

【0025】〇 アンモニア分解率(%)=〔(入口N
3 −出口NH3 )/入口NH3 〕×100
Ammonia decomposition rate (%) = [(inlet N
H 3 −Outlet NH 3 ) / Inlet NH 3 ] × 100

【0026】〇 NOx生成率(%)=〔(出口(N2
O×2+NO+NO2 ))/入口NH3 〕×100
NOx production rate (%) = [(outlet (N 2
O × 2 + NO + NO 2 )) / Inlet NH 3 ] × 100

【0027】〇 SO2 酸化率(%)=〔出口SO3
入口SO2 〕×100 これらの測定結果を表Eにまとめて示す。
SO 2 oxidation rate (%) = [outlet SO 3 /
Inlet SO 2 ] × 100 These measurement results are summarized in Table E.

【0028】[0028]

【表5】 [Table 5]

【0029】(実験例2)ハニカム触媒1〜33を使用
し、実施例1と同一組成のアンモニア含有ガスをSV=
16300h-1、流量5.54Nm3 /m2 ・hの条件
で流し、400℃にて1000時間処理した後、反応温
度300℃及び400℃でアンモニア分解性能を調べ
た。これらの測定結果を表Fにまとめて示す。
(Experimental Example 2) Using honeycomb catalysts 1 to 33, an ammonia-containing gas having the same composition as in Example 1 was added to SV =
After flowing under conditions of 16300 h −1 and a flow rate of 5.54 Nm 3 / m 2 · h and treating at 400 ° C. for 1000 hours, ammonia decomposition performance was examined at reaction temperatures of 300 ° C. and 400 ° C. The results of these measurements are summarized in Table F.

【0030】[0030]

【表6】 [Table 6]

【0031】この結果では、表Eと同様のアンモニア分
解率、NOx生成率及びSO2 酸化率を維持しており、
触媒1〜33は耐久性に優れた触媒であることが確認さ
れた。
In this result, the same ammonia decomposition rate, NOx generation rate and SO 2 oxidation rate as in Table E were maintained,
It was confirmed that the catalysts 1 to 33 have excellent durability.

【0032】[0032]

【発明の効果】本発明のアンモニア分解方法によれば、
SO2 の酸化やNOx等の副生成物を生ずることなく、
アンモニアを無害な窒素に分解することができる。この
ような分解処理方法は従来なかったものであり、その産
業上の利用価値は極めて大きいものがある。
According to the ammonia decomposition method of the present invention,
Without producing SO 2 oxidation or by-products such as NOx,
Ammonia can be decomposed into harmless nitrogen. Such a decomposition treatment method has never been used before, and its industrial utility value is extremely high.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 29/87 ZAB A 29/88 ZAB A 29/89 ZAB A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location B01J 29/87 ZAB A 29/88 ZAB A 29/89 ZAB A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アンモニアを含有するガスをアンモニア
分解触媒と接触させてアンモニアを分解除去する方法に
おいて、アンモニア分解触媒として、脱水された状態
で、(1±0.8)R2 O・〔aM2 3 ・bAl2
3 〕・cMeO・ySiO2 (式中、Rはアルカリ金属
イオン及び/又は水素イオン、MはVIII族元素、希土類
元素、チタン、バナジウム、クロム、ニオブ、アンチモ
ン、ガリウムからなる群から選ばれた1種以上の元素、
Meはアルカリ土類元素、a≧0、b≧0、c≧0、a
+b=1、y/c>12、y>12)の化学組成を有
し、かつ発明の詳細な説明の項に記載の表Aで示される
X線回折パターンを有する結晶性シリケートよりなる担
体に活性金属として白金を担持した触媒を使用すること
を特徴とするアンモニア分解方法。
1. A method of decomposing and removing ammonia by bringing a gas containing ammonia into contact with an ammonia decomposing catalyst, wherein (1 ± 0.8) R 2 O. [aM is used as the ammonia decomposing catalyst in a dehydrated state. 2 O 3 · bAl 2 O
3 ] .cMeO.ySiO 2 (In the formula, R is an alkali metal ion and / or hydrogen ion, M is a group selected from the group consisting of Group VIII elements, rare earth elements, titanium, vanadium, chromium, niobium, antimony, and gallium. More than one element,
Me is an alkaline earth element, a ≧ 0, b ≧ 0, c ≧ 0, a
+ B = 1, y / c> 12, y> 12), and a crystalline silicate carrier having an X-ray diffraction pattern shown in Table A in the detailed description of the invention. A method for decomposing ammonia, which comprises using a catalyst carrying platinum as an active metal.
【請求項2】 前記白金触媒の担体がγ−Al2 3
θ−Al2 3 、ZrO2 、TiO2 、TiO2 ・Zr
2 、SiO2 ・Al2 3 、Al2 3 ・TiO2
SO4 /ZrO2 、SO4 /ZrO2 ・TiO2 、Y型
ゼオライト、X型ゼオライト、A型ゼオライト、モルデ
ナイト及びシリカライトよりなる群から選ばれた少なく
とも1種以上の多孔質物質であることを特徴とする請求
項1記載のアンモニア分解方法。
2. The platinum catalyst carrier is γ-Al 2 O 3 ,
θ-Al 2 O 3 , ZrO 2 , TiO 2 , TiO 2 · Zr
O 2 , SiO 2 · Al 2 O 3 , Al 2 O 3 · TiO 2 ,
SO 4 / ZrO 2 , SO 4 / ZrO 2 · TiO 2 , Y-type zeolite, X-type zeolite, A-type zeolite, mordenite and at least one kind of porous material selected from silicalite The method for decomposing ammonia according to claim 1, which is characterized in that.
JP22921994A 1994-09-26 1994-09-26 Ammonia decomposition method Expired - Lifetime JP3229136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22921994A JP3229136B2 (en) 1994-09-26 1994-09-26 Ammonia decomposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22921994A JP3229136B2 (en) 1994-09-26 1994-09-26 Ammonia decomposition method

Publications (2)

Publication Number Publication Date
JPH0889758A true JPH0889758A (en) 1996-04-09
JP3229136B2 JP3229136B2 (en) 2001-11-12

Family

ID=16888699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22921994A Expired - Lifetime JP3229136B2 (en) 1994-09-26 1994-09-26 Ammonia decomposition method

Country Status (1)

Country Link
JP (1) JP3229136B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289211A (en) * 2005-04-07 2006-10-26 Ne Chemcat Corp Ammonia oxidation catalyst
JP2010269239A (en) * 2009-05-21 2010-12-02 Hitachi Zosen Corp Catalyst for oxidation/decomposition of ammonia
JP2010284640A (en) * 2009-05-12 2010-12-24 Central Res Inst Of Electric Power Ind Catalyst for decomposing ammonia
WO2012029122A1 (en) * 2010-08-31 2012-03-08 日立造船株式会社 Ammonia oxidation/decomposition catalyst
WO2017188138A1 (en) * 2016-04-27 2017-11-02 太陽化学株式会社 Voc degradation agent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289211A (en) * 2005-04-07 2006-10-26 Ne Chemcat Corp Ammonia oxidation catalyst
JP2010284640A (en) * 2009-05-12 2010-12-24 Central Res Inst Of Electric Power Ind Catalyst for decomposing ammonia
JP2010269239A (en) * 2009-05-21 2010-12-02 Hitachi Zosen Corp Catalyst for oxidation/decomposition of ammonia
WO2012029122A1 (en) * 2010-08-31 2012-03-08 日立造船株式会社 Ammonia oxidation/decomposition catalyst
US9580309B2 (en) 2010-08-31 2017-02-28 Hitachi Zosen Corporation Ammonia oxidation/decomposition catalyst
WO2017188138A1 (en) * 2016-04-27 2017-11-02 太陽化学株式会社 Voc degradation agent
JPWO2017188138A1 (en) * 2016-04-27 2019-04-04 太陽化学株式会社 VOC degradation agent

Also Published As

Publication number Publication date
JP3229136B2 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
EP0686423B1 (en) Use of ammonia decomposition catalysts
JP4992214B2 (en) Nitrogen oxide purification catalyst comprising β-type zeolite and nitrogen oxide purification method using the same
CA2056952C (en) Catalyst for purifying exhaust gas
JP3132959B2 (en) Ammonia decomposition catalyst
JP3132960B2 (en) Ammonia decomposition catalyst
JP3229136B2 (en) Ammonia decomposition method
JP3332652B2 (en) Ammonia decomposition removal method
JP3229117B2 (en) Ammonia decomposition method
JP3241166B2 (en) Ammonia decomposition method
JP3970093B2 (en) Ammonia decomposition removal method
JP2659840B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP3453172B2 (en) DeNOx method
JPH08266870A (en) Denitrifying method
JPH044045A (en) Catalyst for processing exhaust gas
JP3388941B2 (en) Exhaust gas purification method
JPH08131832A (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JPH08309188A (en) Ammonia decomposition catalyst and ammonia decomposition method
JPH05317725A (en) Exhaust gas treating catalyst and method for treating exhaust gas
JP3482661B2 (en) Nitrogen oxide removal method
JPH0838856A (en) Denitration of exhaust gas
JP3322520B2 (en) Exhaust gas denitration catalyst
JP3015568B2 (en) Exhaust gas treatment catalyst
JP2695668B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP3276193B2 (en) Exhaust treatment catalyst
JPH07275658A (en) Ammonia adsorbing and decomposing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 12

EXPY Cancellation because of completion of term