JPH03101837A - Production of catalyst for decomposition of nitrogen oxide - Google Patents

Production of catalyst for decomposition of nitrogen oxide

Info

Publication number
JPH03101837A
JPH03101837A JP1202776A JP20277689A JPH03101837A JP H03101837 A JPH03101837 A JP H03101837A JP 1202776 A JP1202776 A JP 1202776A JP 20277689 A JP20277689 A JP 20277689A JP H03101837 A JPH03101837 A JP H03101837A
Authority
JP
Japan
Prior art keywords
zeolite
catalyst
copper
soln
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1202776A
Other languages
Japanese (ja)
Other versions
JP2852667B2 (en
Inventor
Masakazu Iwamoto
正和 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1202776A priority Critical patent/JP2852667B2/en
Publication of JPH03101837A publication Critical patent/JPH03101837A/en
Application granted granted Critical
Publication of JP2852667B2 publication Critical patent/JP2852667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To introduce a prescribed amt. of copper into zeolite in a short time and to obtain a catalyst having high activity by dispersing the zeolite in an aq. soln. of a copper compd. and further adding an aq. soln. of an alkaline compd. CONSTITUTION:Zeolite such as ZSM-5 or mordenite type zeolite is dispersed in an aq. soln. of a copper compd. such as copper sulfate or hydrochloride and an aq. soln. of an alkaline compd. such as the hydrochloride of an alkali metal or an alkali metallic salt of a weak acid is further added to adjust the pH to >=6.0, preferably 6.0-13.0, especially preferably 7.0-10.0. A prescribed amt. of copper can be introduced into the zeolite in a short time and a catalyst having high activity is obtd. When this catalyst is used, ammonia is not generated during pretreatment and NO is efficiently removed.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は窒素酸化物を含むガスから、それを分解によっ
て除去する触媒に関するものであり、さらに詳しくは特
に一酸化窒素を分解するゼオライト系の触媒の調整法を
提供するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a catalyst that removes nitrogen oxides from a gas by decomposition, and more particularly relates to a zeolite-based catalyst that decomposes nitrogen monoxide. A method for preparing a catalyst is provided.

[従来の技術コ 環境保全の観点から、大気l5染物質の除去は大きな社
会的な課題である。とりわけ産業活動の拡大に伴う燃焼
廃ガスの浄化は、現在の緊急課題である。固定発生源で
ある工場や、移動発生源である自動車から排出されるガ
ス中に含まれる窒素化合物は、光化学スモッグの原因と
言われ人体に有害のガスである。特に一酸化窒素(No
)は除去が難しく、検討課題となっている。
[Conventional technology] From the perspective of environmental conservation, the removal of atmospheric l5 pollutants is a major social issue. In particular, purification of combustion waste gas accompanying the expansion of industrial activities is a current urgent issue. Nitrogen compounds contained in gases emitted from fixed sources such as factories and mobile sources such as automobiles are said to be the cause of photochemical smog and are harmful to the human body. Especially nitric oxide (No.
) is difficult to remove and is an issue to be considered.

これまでにも幾つかの方法が考えられている。Several methods have been considered so far.

例えば接触還元法と呼ばれる方法は、アンモニアや水素
等の還元剤を用い触媒上で、NoをN2とH20にして
除去する方法である。しかしながら還元剤を利用するた
め、その回収や漏れの対策が必要で、規模が大きな固定
発生源については有効だが、自動車のような発生源には
適さない。一方、排気ガスが還元性ガスである、ガソリ
ンエンジンの廃ガス浄化には、これまでに多くの触媒が
開発されて、一般に使用されている。しかしながらこれ
らの触媒は、酸素共存下では用いることができない。
For example, a method called a catalytic reduction method is a method of removing No by converting it into N2 and H20 on a catalyst using a reducing agent such as ammonia or hydrogen. However, since it uses a reducing agent, measures are needed to recover it and prevent leakage, and although it is effective for large-scale stationary sources, it is not suitable for sources such as automobiles. On the other hand, many catalysts have been developed and are commonly used to purify the exhaust gas of gasoline engines whose exhaust gas is a reducing gas. However, these catalysts cannot be used in the coexistence of oxygen.

ところで、Noの接触分解、すなわちNoを直接N2と
02に分解する方法は、排気ガスを触媒層に通じるだけ
ですみ、極めて簡便なため利用範囲は広い。これについ
ても従来より触媒が見い出されている。PL ,Cu 
OSCo系触媒がNoの分解活性に効果があるが、いず
れも生成する酸素によって被毒を受けると言う課題があ
った。通常ディーゼルエンジンの廃ガスは酸素を含むた
め、これまでの触媒では対応できず、新規な触媒の開発
が望まれている。
By the way, the catalytic decomposition of No, that is, the method of directly decomposing No into N2 and O2, requires only passing the exhaust gas through the catalyst layer, and is extremely simple and has a wide range of applications. Catalysts have been discovered for this as well. PL, Cu
Although OSCo-based catalysts are effective in decomposing No, they all have the problem of being poisoned by the oxygen they produce. Diesel engine waste gas usually contains oxygen, which cannot be handled by conventional catalysts, and the development of new catalysts is desired.

[発明の解決すべき課題] 前記の課題に対して幾つかの触媒が提案されている。例
えば、特開昭80−125250号公報には、銅を含む
特異なゼオライトが、酸素を含む系でNoの分解に効果
があることが開示されている。また、銅を含むペロブス
力イトが有効であることも、“r C}IEMISTR
Y LETTER誌J 、1988年、第{797〜1
800頁”に記載されている。とりわけ銅含有ゼオライ
トは優れた性質を持つが、銅を導入する際イオン交換で
は長時間必要である。しかしながら、最近特開平1−9
8011号公報にアンモニアを用いて容易に担持する方
法が開示された。しかるにアンモニアを用いると触媒の
前処理においてアンモニアガスが発生するという課題が
あった。
[Problems to be Solved by the Invention] Several catalysts have been proposed to solve the above problems. For example, JP-A-80-125250 discloses that a special zeolite containing copper is effective in decomposing No in a system containing oxygen. Additionally, the effectiveness of copper-containing perovskites has also been shown in “rC}IEMISTR
Y LETTER Magazine J, 1988, No. {797-1
Copper-containing zeolite has particularly excellent properties, but ion exchange requires a long time to introduce copper.However, recently, JP-A-1-9
Japanese Patent No. 8011 discloses a method of easily supporting the particles using ammonia. However, when ammonia is used, there is a problem in that ammonia gas is generated during pretreatment of the catalyst.

そこで以上の課題を解決するため、ゼオライトに銅を短
時間でかつ所定量導入でき、しかも前処理においてアン
モニアの発生がなく、高活性な触媒の調整法を開発する
必要がある。
Therefore, in order to solve the above problems, it is necessary to develop a method for preparing a highly active catalyst that can introduce a predetermined amount of copper into zeolite in a short time and does not generate ammonia during pretreatment.

[課題を解決するための手段] 本発明は前記課題を解決するための窒素酸化物の分解触
媒の製造方法に関するものである。すなわち、本発明は
ゼオライトを銅化合物の水溶液に分散し、その中にアル
カリ金属の水酸化物および弱酸のアルカリ金属塩よりな
る群から選ばれた1種のアルカリ性化合物の水溶岐を添
加することで、pHを少なくとも6,0に調整すること
で該ゼオライトに銅を担持することを特徴とする窒素酸
化物の分解触媒の製造方法に関する。
[Means for Solving the Problems] The present invention relates to a method for producing a nitrogen oxide decomposition catalyst for solving the above problems. That is, the present invention disperses zeolite in an aqueous solution of a copper compound, and adds thereto an aqueous solution of one kind of alkaline compound selected from the group consisting of hydroxides of alkali metals and alkali metal salts of weak acids. , relates to a method for producing a nitrogen oxide decomposition catalyst, characterized in that copper is supported on the zeolite by adjusting the pH to at least 6.0.

本発明で言うゼオライトとは、結晶性アルミノ珪酸塩で
あり、組成は次の式で表される。
The zeolite referred to in the present invention is a crystalline aluminosilicate, and the composition is represented by the following formula.

xM27n O−AJ 2 03   yst 02 
  ZH20(nは陽イオンMの原子価、Xは0.8〜
20の範囲の数、yは2.0以上の数、2は0以上の数
である。) ゼオライトの基本構造はSI  Al、Oが規則正しく
三次元的に結合したもので、構造単位の違いにより、種
々の結晶構造を採る。ゼオライトには多くの種類が知ら
れているが、X線回折によって特徴づけられ、その結晶
構造により名称が異なる。例えば天然品として、モルデ
ナイト、エリオナイト、シャバサイトがあり、合成品と
してはA型、X型、Y型、Z S M − 5等が知ら
れている。
xM27n O-AJ 2 03 yst 02
ZH20 (n is the valence of the cation M, X is 0.8~
A number in the range of 20, y is a number greater than or equal to 2.0, and 2 is a number greater than or equal to 0. ) The basic structure of zeolite is a regular three-dimensional combination of SI Al and O, and it takes on various crystal structures depending on the structural units. Many types of zeolite are known, but they are characterized by X-ray diffraction and have different names depending on their crystal structure. For example, natural products include mordenite, erionite, and chabasite, and synthetic products include A type, X type, Y type, and Z SM-5.

本発明で使用するゼオライト類は特に限定しない。天然
品、合成品どちらでも構わないが、前者では不純物を含
み精製に手間がかかることから、合成品が好ましく用い
られる。
Zeolites used in the present invention are not particularly limited. Either a natural product or a synthetic product may be used, but the former contains impurities and takes time to purify, so a synthetic product is preferably used.

ゼオライトの合成は、適当なシリカ源、アルミナ源、ア
ルカリ源を混合し、100〜250℃程度の水熱条件下
で結晶化させることで容易に得られる。
Zeolite can be easily synthesized by mixing appropriate silica sources, alumina sources, and alkali sources and crystallizing the mixture under hydrothermal conditions at about 100 to 250°C.

また前記の混合物にテンプレートと呼ばれる有機物を添
加して、水熱合成によって得られるものもある。ゼオラ
イトは一般に市販されており、それらを用いてもよい。
There are also products obtained by hydrothermal synthesis by adding an organic substance called a template to the above-mentioned mixture. Zeolites are generally commercially available and may be used.

本発明で好ましく用いられるゼオライトは、Y型、モル
デナイト型、Z S M−5等であり、さらに好ましく
はZSM−5である。
Zeolites preferably used in the present invention are Y-type, mordenite-type, ZSM-5, etc., and ZSM-5 is more preferable.

本発明で言う銅化合物の水溶液とは、銅化合物を溶かし
込んだ溶液のことで、化合物はどの様な形でも構わない
。例えば、硫酸塩、塩酸塩、硝酸塩、有機酸塩、金属の
複合塩などがある。金属種としてはカチオンを生成する
ものが好ましい。
The aqueous solution of a copper compound referred to in the present invention refers to a solution in which a copper compound is dissolved, and the compound may be in any form. Examples include sulfates, hydrochlorides, nitrates, organic acid salts, and metal complex salts. As the metal species, those that generate cations are preferred.

本発明で言うアルカリ性化合物の水溶戚とはアルカリ金
属の水酸化物および弱酸のアルカリ金属塩よりなる群か
ら選ばれたl種の化合物の水溶液のことである。この中
でも本発明ではアルカリ金属の水酸化物から選ばれた1
種の化合物の水溶波が好ましく用いられる。前記のアル
カリ金属としてはナトリウム、カリウム等が挙げられる
。この中でもナトリウムまたはカリウムが好ましく用い
られる。前記の弱酸としては炭酸、酢酸、有機酸等が挙
げられる。本発明においては、アルカリ性化合物の水溶
液の添加量は所定のpHになるように添加すればよい。
The water-soluble alkaline compound referred to in the present invention refers to an aqueous solution of one type of compound selected from the group consisting of alkali metal hydroxides and alkali metal salts of weak acids. Among these, in the present invention, 1 selected from alkali metal hydroxides
An aqueous solution of the seed compound is preferably used. Examples of the alkali metals include sodium, potassium, and the like. Among these, sodium or potassium is preferably used. Examples of the weak acids include carbonic acid, acetic acid, and organic acids. In the present invention, the aqueous solution of the alkaline compound may be added in an amount such that a predetermined pH is achieved.

調製した銅化合物溶液中にゼオライトを充分分散し、こ
の中に本発明で用いるアルカリ性化合物の水溶波を添加
してpHを調節する。この時前記のアルカリ性化合物の
水溶肢の濃度が高いと pHの変化が急になり好ましく
ない。本発明ではpHの範囲は少なくとも 6.0であ
ることが必要で、pH  6.0〜13.0が好ましく
、特に好ましくはpHを7.0〜10.0に調整するこ
とである。pHが6.0未満だと銅担持量が低く本発明
の効果が得られない。
Zeolite is sufficiently dispersed in the prepared copper compound solution, and an aqueous solution of the alkaline compound used in the present invention is added thereto to adjust the pH. At this time, if the concentration of the aqueous solution of the alkaline compound is high, the pH will change abruptly, which is undesirable. In the present invention, the pH range is required to be at least 6.0, preferably from 6.0 to 13.0, and particularly preferably from 7.0 to 10.0. If the pH is less than 6.0, the amount of copper supported is low and the effects of the present invention cannot be obtained.

pHを調節後にゼオライトを回収するが、その方法はな
んでもよく、通常行なわれる濾過や遠心分離が好ましい
After adjusting the pH, the zeolite can be recovered by any method, but commonly used filtration and centrifugation are preferred.

本発明において、ゼオライトの銅の含有量は少なくとも
0. 5vt%であり、好ましくはl..Owt%てあ
る。
In the present invention, the copper content of the zeolite is at least 0. 5vt%, preferably l. .. Owt%.

本発明により得られる触媒の使用温度は、500〜85
0℃の範囲、好ましくは550〜800℃である。
The operating temperature of the catalyst obtained by the present invention is 500 to 85
The temperature is in the range of 0°C, preferably 550-800°C.

また本触媒と処理ガスとの接触時間は限定されるもので
はない。
Further, the contact time between the present catalyst and the processing gas is not limited.

本発明により得られる触媒の工業的な使用方法は、触媒
を適当な形にして反応装置に充填することが挙げられる
。例えば、シリカ、アルミナ等の無機酸化物や粘土をバ
インダーとして、球状、柱状、ハニカム状にすることが
考えられる。またゼオライトを銅導入前に成型しておき
、その後銅を導入する方法もある。いずれにしても特に
限定されるものではない。
An example of an industrial method for using the catalyst obtained according to the present invention is to form the catalyst into an appropriate form and fill it into a reactor. For example, it is possible to use an inorganic oxide such as silica or alumina or clay as a binder to form a spherical, columnar, or honeycomb shape. Another method is to mold zeolite before introducing copper and then introduce copper. In any case, it is not particularly limited.

[発明の効果コ 以上に示した本発明の製造方広によって、ゼオライトに
金属を短時間で、かつ所定量導入できしかも前処理にお
いてアンモニアの発生がなく、かつ得られた触媒の活性
は高く、一酸化窒素の濃度が低いガスからも、効率よく
一酸化窒素を除去できる。
[Effects of the Invention] By the wide production method of the present invention shown above, it is possible to introduce a predetermined amount of metal into zeolite in a short time, and there is no generation of ammonia in the pretreatment, and the activity of the obtained catalyst is high. Nitric oxide can be efficiently removed even from gases with low concentrations of nitrogen monoxide.

[実施例コ 次に、実施例等によって本発明を更に詳しく述べる。[Example code] Next, the present invention will be described in more detail with reference to Examples.

実施例1〜5 Sf02/Aノ203が約5DCr)ZSM−5ゼオラ
イト 3.0gを、0.44gの硝酸銅を含む500r
dの溶液に分散し、1.5moJ / Jの水酸化ナト
リウムを少量ずつ滴下して第1表に示される所定のpH
に調節した。その後、ゼオライトを濾過しイオン交換水
で充分洗浄した。得られたゼオライトを減圧乾燥後、さ
らに 100℃で3時間乾燥した。このようにして触媒
A−Eを得た。
Examples 1-5 3.0 g of ZSM-5 zeolite (Sf02/A-203 is about 5DCr) was added to 500r containing 0.44 g of copper nitrate.
d solution, and add 1.5 moJ/J of sodium hydroxide dropwise little by little to the predetermined pH shown in Table 1.
It was adjusted to Thereafter, the zeolite was filtered and thoroughly washed with ion-exchanged water. The obtained zeolite was dried under reduced pressure and further dried at 100°C for 3 hours. Catalysts A-E were thus obtained.

比較例1 pHを4.0に調節する他は、実施例と同様な操作を行
なった。このようにして触媒Fを得た。
Comparative Example 1 The same operation as in Example was performed except that the pH was adjusted to 4.0. Catalyst F was thus obtained.

比較例2 実施例と同様のゼオライトを用い、0.44gの硝酸銅
を含む500dの溶液に分散し、20時間撹拌した。そ
の後、ゼオライトを濾過しイオン交換水で充分洗浄した
。得られたゼオライトを減圧乾燥後、さらに l00℃
で3時間乾燥した。このようにして触媒Gを得た。
Comparative Example 2 Using the same zeolite as in Example, it was dispersed in 500 d of solution containing 0.44 g of copper nitrate, and stirred for 20 hours. Thereafter, the zeolite was filtered and thoroughly washed with ion-exchanged water. After drying the obtained zeolite under reduced pressure, it is further heated to 100°C.
It was dried for 3 hours. Catalyst G was thus obtained.

評価例 前記実施例および比較例で得られた触媒A−Gを500
℃で焼成し、それを原子吸光法で銅の担持量を求めた。
Evaluation Example Catalysts A-G obtained in the above Examples and Comparative Examples were
The amount of copper supported was determined by atomic absorption spectrometry.

また触媒を打錠成型の後、砕いて粒径を揃えたもので反
応評価を行なった。すなわち、触媒t,Ogを流通式の
反応器に入れて、Heガスを流しながら徐々に昇温しで
500℃にした。そこで一酸化窒素5000 ppnを
含むHeガスを501nl/mjrlの割合で流し、生
成物をガスクロマトグラフィーで分析した。なお分析値
は、反応後2.0時間を経過したものである。
In addition, after the catalyst was compressed into tablets, it was crushed to make the particle size uniform, and the reaction was evaluated. That is, the catalysts t and Og were placed in a flow reactor, and the temperature was gradually raised to 500° C. while flowing He gas. Therefore, He gas containing 5000 ppn of nitrogen monoxide was flowed at a rate of 501 nl/mjrl, and the product was analyzed by gas chromatography. The analytical values were obtained 2.0 hours after the reaction.

これらの結果を第1表にまとめて示した。These results are summarized in Table 1.

第1表 第1表に示されるように、本発明の製造方法によって、
銅の担持量が多く、また活性の高い触媒が得られること
が分かる。
Table 1 As shown in Table 1, by the manufacturing method of the present invention,
It can be seen that a catalyst with a large amount of supported copper and high activity can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1、ゼオライトを銅化合物の水溶液に分散し、その中に
アルカリ金属の水酸化物および弱酸のアルカリ金属塩よ
りなる群から選ばれた1種のアルカリ性化合物の水溶液
を添加することで、pHを少なくとも6.0に調整する
ことで該ゼオライトに銅を担持することを特徴とする窒
素酸化物の分解触媒の製造方法。
1. By dispersing zeolite in an aqueous solution of a copper compound and adding thereto an aqueous solution of one kind of alkaline compound selected from the group consisting of alkali metal hydroxides and alkali metal salts of weak acids, the pH can be adjusted to at least 6.0, thereby supporting copper on the zeolite.
JP1202776A 1989-08-07 1989-08-07 Method for producing nitrogen oxide decomposition catalyst Expired - Lifetime JP2852667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1202776A JP2852667B2 (en) 1989-08-07 1989-08-07 Method for producing nitrogen oxide decomposition catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202776A JP2852667B2 (en) 1989-08-07 1989-08-07 Method for producing nitrogen oxide decomposition catalyst

Publications (2)

Publication Number Publication Date
JPH03101837A true JPH03101837A (en) 1991-04-26
JP2852667B2 JP2852667B2 (en) 1999-02-03

Family

ID=16462996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202776A Expired - Lifetime JP2852667B2 (en) 1989-08-07 1989-08-07 Method for producing nitrogen oxide decomposition catalyst

Country Status (1)

Country Link
JP (1) JP2852667B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879645A (en) * 1994-11-03 1999-03-09 Korea Research Institute Of Chemical Technology Method for removing nitrogen oxides in exhaust gas by selective catalytic reduction and catalyst for reduction of nitrogen oxides
US6685897B1 (en) * 2000-01-06 2004-02-03 The Regents Of The University Of California Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures
JP2013095653A (en) * 2011-11-04 2013-05-20 Tosoh Corp Zeolite having copper and alkali metal
CN112210036A (en) * 2020-09-15 2021-01-12 国投盛世承德科技股份有限公司 Super-strong zeolite water-absorbing material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879645A (en) * 1994-11-03 1999-03-09 Korea Research Institute Of Chemical Technology Method for removing nitrogen oxides in exhaust gas by selective catalytic reduction and catalyst for reduction of nitrogen oxides
US6685897B1 (en) * 2000-01-06 2004-02-03 The Regents Of The University Of California Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures
JP2013095653A (en) * 2011-11-04 2013-05-20 Tosoh Corp Zeolite having copper and alkali metal
CN112210036A (en) * 2020-09-15 2021-01-12 国投盛世承德科技股份有限公司 Super-strong zeolite water-absorbing material and preparation method thereof

Also Published As

Publication number Publication date
JP2852667B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
KR101852143B1 (en) Novel metal - containing zeolite beta for nox reduction
US7238641B2 (en) Catalyst based on ferrierite/iron for catalytic reduction of nitrous oxide
EP2521615A1 (en) Copper containing levyne molecular sieve for selective reduction of nox
EP0311066B1 (en) Process for the production of copper-containing zeolite and the method of application thereof
JPH0417097B2 (en)
EP0462598B1 (en) Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
JP2656061B2 (en) Purification method of oxidizing gas emission containing nitrogen oxides
US5078981A (en) Method for catalytically decomposing nitrogen oxides
JPH03101837A (en) Production of catalyst for decomposition of nitrogen oxide
JP2928852B2 (en) Catalyst for catalytic cracking of nitrogen oxides and catalytic cracking method
US5219545A (en) Catalyst and method for catalytically decomposing nitrogen oxides
JP2892396B2 (en) Nitrogen oxide decomposition catalyst
JP2734476B2 (en) Catalyst for direct catalytic cracking of nitrogen oxides
JP2555637B2 (en) Method for producing copper-containing zeolite
JP2892410B2 (en) Method for producing nitrogen oxide decomposition catalyst
JP3242126B2 (en) Nitrogen oxide removal method
JPH044045A (en) Catalyst for processing exhaust gas
JP2892395B2 (en) Nitrogen oxide decomposition catalyst
EP0445816A1 (en) Use of a zeolitic catalyst for decomposing nitrogen oxides in the absence of reducing agent
JPH0194946A (en) Highly active decomposition catalyst for nitrogen oxide and contact decomposition method of nitrogen oxide
JPH06277522A (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using same
JPH06335618A (en) Ammonia decomposing method
JPH02251248A (en) Catalyst for decomposing nitrogen oxide
JPH0386213A (en) Method for catalytically decomposing nitrogen oxide
JPH05269386A (en) Catalyst for reduction removing nitrogen oxide and method for reduction removing