JPH06335618A - Ammonia decomposing method - Google Patents

Ammonia decomposing method

Info

Publication number
JPH06335618A
JPH06335618A JP5127126A JP12712693A JPH06335618A JP H06335618 A JPH06335618 A JP H06335618A JP 5127126 A JP5127126 A JP 5127126A JP 12712693 A JP12712693 A JP 12712693A JP H06335618 A JPH06335618 A JP H06335618A
Authority
JP
Japan
Prior art keywords
catalyst
ammonia
crystalline silicate
decomposing
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5127126A
Other languages
Japanese (ja)
Other versions
JP3241166B2 (en
Inventor
Shigeru Nojima
野島  繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12712693A priority Critical patent/JP3241166B2/en
Publication of JPH06335618A publication Critical patent/JPH06335618A/en
Application granted granted Critical
Publication of JP3241166B2 publication Critical patent/JP3241166B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst for decomposing ammonia at high yield without secondarily producing nitrogen oxides by carrying the catalyst such as copper or cobalt on a crystalline silicate having a specific chemical composition and X-ray diffraction pattern. CONSTITUTION:The crystalline silicate having the chemical composition of (1+ or -0.6)R2O.(aM2O3.bAl2O3)-.cMeO.ySiO2 [(where, R is alkali metal ion and/or hydrogen ion, M is VIII group element, rare earth element or the like, Me is alkaline earth element, (a)>=0, (b)>=0, (c)>=0, (a+b)=1, (y/c)>12, (y)>12] and the specific X-ray diffraction pattern is used as the ammonia decomposing catalyst. And copper, cobalt, nickel and the like are added whereinto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各種排ガス等に含まれる
アンモニアを無害な窒素に分解する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of decomposing ammonia contained in various exhaust gases into harmless nitrogen.

【0002】[0002]

【従来の技術】アンモニアは肥料や硝酸の製造原料、冷
媒、排ガス中の窒素酸化物除去用還元剤等幅広い分野で
使用されている。したがって、各種化学品製造工場、冷
凍機等の廃棄物処理工場あるいは燃焼排ガス処理施設等
からは多量のアンモニアが排出される。アンモニアは特
異な刺激臭を有する気体であり大気中への放出は極力抑
える必要がある。しかし、生物の腐敗によるアンモニア
の生成や廃棄物中の冷媒からのアンモニアの放散、さら
に煙道排ガス中の窒素酸化物の還元に用いられるアンモ
ニアが未反応のまま大気放出される等、多くの場所でア
ンモニアが大気放出されているのが現状である。
Ammonia is used in a wide range of fields such as a raw material for producing fertilizer and nitric acid, a refrigerant, and a reducing agent for removing nitrogen oxides in exhaust gas. Therefore, a large amount of ammonia is emitted from various chemical product manufacturing plants, waste treatment plants such as refrigerators, and combustion exhaust gas treatment facilities. Ammonia is a gas with a unique irritating odor, and its release into the atmosphere must be suppressed as much as possible. However, in many places, such as the generation of ammonia due to the decay of living organisms, the emission of ammonia from the refrigerant in waste, and the ammonia used for the reduction of nitrogen oxides in flue gas, is released into the atmosphere without reaction. At present, ammonia is released into the atmosphere.

【0003】[0003]

【発明が解決しようとする課題】アンモニアの大気放出
を防ぐ方法の一つとしてアルミナやシリカ−アルミナ系
担体に酸化鉄や酸化ニッケルを担持させた触媒を利用し
て次の反応式によりアンモニアを無害な窒素に分解する
方法が知られている。 2NH3 + 3/2O2 → N2 + 3H2 O ところが、従来の触媒では前記反応以外に次のような副
反応によりNO,NO 2 ,N2 O等の生成が認められ、
新たに大気汚染を生じる恐れがあった。 2NH3 + 5/2O2 → 2NO + 3H2 O 2NH3 + 7/2O2 → 2NO2 + 3H2 O 2NH3 + 2O2 → N2 O + 3H2
DISCLOSURE OF THE INVENTION Ammonia emission into the atmosphere
As one of the methods to prevent the
Utilizing a catalyst in which iron oxide or nickel oxide is supported on the carrier
And decompose ammonia into harmless nitrogen by the following reaction formula
The method is known. 2 NH3+ 3 / 2O2 → N2+ 3H2O However, with conventional catalysts, in addition to the above reactions,
NO by reaction, NO 2, N2Generation of O etc. is recognized,
There was a risk of new air pollution. 2 NH3+ 5 / 2O2 → 2NO + 3H2O 2 NH3+ 7 / 2O2 → 2 NO2+ 3H2O 2 NH3+202 → N2O + 3H2O

【0004】本発明の目的は前記従来技術の問題点を解
決し、大気汚染のもととなる窒素酸化物を副生する恐れ
がなく、高い収率でアンモニアを分解除去することので
きるアンモニア分解方法を提供することにある。
The object of the present invention is to solve the above-mentioned problems of the prior art, and to decompose and remove ammonia with a high yield without fear of producing nitrogen oxides as a source of air pollution as a by-product. To provide a method.

【0005】[0005]

【課題を解決するための手段】本発明はアンモニアを含
有するガスをアンモニア分解触媒と接触させてアンモニ
アを分解除去する方法において、アンモニア分解触媒と
して、脱水された状態で (1±0.6 )R2 O・〔aM2 3 ・bAl2 3 〕・
cMeO・ySiO2 (式中、Rはアルカリ金属イオン及び/又は水素イオ
ン、MはVIII族元素、希土類元素、チタン、バナジウ
ム、クロム、ニオブ、アンチモン、ガリウムからなる群
から選ばれた1種以上の元素、Meはアルカリ土類元
素、a≧0、b≧0、c≧0、a+b=1、y/c>1
2、y>12)の化学組成を有し、かつ下記表1で示さ
れるX線回折パターンを有する結晶性シリケートに、
銅、コバルト、ニッケル、鉄、亜鉛、マンガン、クロ
ム、アルカリ土類元素、希土類元素の中から少なくとも
1種を含有させた触媒を使用することを特徴とするアン
モニア分解方法である。
The present invention relates to a method for decomposing and removing ammonia by bringing a gas containing ammonia into contact with an ammonia decomposing catalyst, wherein (1 ± 0.6) R 2 in the dehydrated state is used as the ammonia decomposing catalyst. O ・ [aM 2 O 3・ bAl 2 O 3 ] ・
cMeO.ySiO 2 (wherein R is an alkali metal ion and / or a hydrogen ion, M is a group VIII element, a rare earth element, titanium, vanadium, chromium, niobium, antimony, or gallium selected from the group consisting of Element, Me is an alkaline earth element, a ≧ 0, b ≧ 0, c ≧ 0, a + b = 1, y / c> 1
2, a crystalline silicate having a chemical composition of y> 12) and an X-ray diffraction pattern shown in Table 1 below,
A method for decomposing ammonia, which comprises using a catalyst containing at least one selected from the group consisting of copper, cobalt, nickel, iron, zinc, manganese, chromium, alkaline earth elements and rare earth elements.

【0006】本発明の方法で使用する触媒は、本質的に
は本発明者らが前に窒素酸化物(NOx)、一酸化炭素
(CO)、炭化水素(HC)等を含有する内燃機関の排
ガスを浄化する触媒として開発したものと同一である
(特開平4−4045号公報、特願平3−319195
号)。前記触媒を構成する結晶性シリケートは表1に示
すようなX線回折パターンを示す結晶構造を有するのが
特徴である。
The catalyst used in the method of the present invention is essentially the catalyst of an internal combustion engine which we have previously contained nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC) and the like. It is the same as that developed as a catalyst for purifying exhaust gas (Japanese Patent Application Laid-Open No. 4-4045, Japanese Patent Application No. 3-319195).
issue). The crystalline silicate constituting the catalyst is characterized by having a crystal structure showing an X-ray diffraction pattern as shown in Table 1.

【0007】[0007]

【表1】 [Table 1]

【0008】前記触媒は必要によりアルミナゾル、シリ
カゾルなどのバインダー成分やコージェライト、アルミ
ナ、シリカ−アルミナ等の担体を使用し、ウォッシュコ
ート法又はソリッド法によりハニカム化して使用するの
が好ましい。アンモニアを含有するガスを、100〜6
00℃の温度で前記触媒に接触させることにより、ガス
中のアンモニアは窒素に分解される。この分解反応は選
択的に進行し、NO、NO2 、N2 O等の有害ガスが副
生することはない。
It is preferable to use a binder component such as alumina sol or silica sol or a carrier such as cordierite, alumina or silica-alumina as the catalyst, if necessary, after forming a honeycomb by a wash coat method or a solid method. A gas containing ammonia is added to 100 to 6
By contacting the catalyst at a temperature of 00 ° C., ammonia in the gas is decomposed into nitrogen. This decomposition reaction proceeds selectively, and no harmful gas such as NO, NO 2 , N 2 O is produced as a by-product.

【0009】本発明の方法で使用する触媒の結晶性シリ
ケートは該シリケートを構成する元素を含む化合物を原
料として、水熱合成法により合成することができる。ま
た、この結晶性シリケートとして予め合成した結晶性シ
リケートを母結晶とし、母結晶の表面にその母結晶と同
一の結晶構造を有するSiとOよりなる結晶性シリケー
トを成長させた層状複合結晶性シリケートを使用しても
よい。この層状複合結晶性シリケートは外表面に成長し
たSiとOよりなる結晶性シリケート(シリカライトと
呼ぶ)の疎水性作用により、H2 Oだけが該結晶性シリ
ケート内部まで浸透しにくくなる。そのためH2 Oの作
用による結晶性シリケート格子中の金属(アルミニウム
等)の脱離が抑制されて、触媒の劣化が抑制される。前
記結晶性シリケートに含有させる銅、コバルト、ニッケ
ル等の金属はイオン交換法によりこれらの金属イオンを
含有させるか、または塩化物、硝酸塩、硫酸塩等の金属
塩水溶液を含浸させる含浸法により含有させることがで
きる。
The crystalline silicate of the catalyst used in the method of the present invention can be synthesized by a hydrothermal synthesis method using a compound containing an element constituting the silicate as a raw material. In addition, a layered composite crystalline silicate in which a crystalline silicate synthesized in advance as this crystalline silicate is used as a mother crystal, and a crystalline silicate composed of Si and O having the same crystal structure as the mother crystal is grown on the surface of the mother crystal. May be used. In this layered composite crystalline silicate, the hydrophobic action of the crystalline silicate consisting of Si and O (called silicalite) grown on the outer surface makes it difficult for only H 2 O to penetrate into the crystalline silicate. Therefore, desorption of metal (aluminum or the like) in the crystalline silicate lattice due to the action of H 2 O is suppressed, and deterioration of the catalyst is suppressed. Metals such as copper, cobalt and nickel contained in the crystalline silicate are contained by ion exchange method with these metal ions, or by impregnation method with which an aqueous solution of metal salt such as chloride, nitrate or sulfate is impregnated. be able to.

【0010】[0010]

【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。 (触媒の調製1)水ガラス1号(SiO2 :30%)5
616gを水5429gに溶解し、この溶液を溶液Aと
した。一方、水4175gに硫酸アルミニウム718.
9g、塩化第二鉄110g、酢酸カルシウム47.2
g、塩化ナトリウム262g及び濃塩酸2020gを混
合して溶解し、この溶液を溶液Bとした。溶液Aと溶液
Bを一定割合で供給し、沈殿を生成させ、十分攪拌して
pH=8.0のスラリ−を得た。このスラリ−を20リ
ットルのオートクレーブに仕込み、さらにテトラプロピ
ルアンモニウムブロマイドを500g添加し、160℃
にて72時間水熱合成を行い、合成後水洗して乾燥さ
せ、さらに500℃、3時間焼成させ結晶性シリケート
1を得た。この結晶性シリケート1は酸化物のモル比で
(結晶水を省く)下記の組成式で表され、結晶構造はX
線回折で前記表1にて表示されるものであった。 0.5NaO2 ・0.5H2 O・〔0.8Al2 3
0.2Fe2 3 ・0.25CaO〕・25SiO2
EXAMPLES The method of the present invention will be described in more detail with reference to the following examples. (Preparation of catalyst 1) Water glass No. 1 (SiO 2 : 30%) 5
616 g was dissolved in 5429 g of water, and this solution was designated as solution A. On the other hand, aluminum 718.
9 g, ferric chloride 110 g, calcium acetate 47.2
g, 262 g of sodium chloride and 2020 g of concentrated hydrochloric acid were mixed and dissolved, and this solution was designated as solution B. Solution A and solution B were supplied at a constant ratio to form a precipitate, which was sufficiently stirred to obtain a slurry having a pH of 8.0. This slurry was charged into a 20 liter autoclave, and 500 g of tetrapropylammonium bromide was further added to the autoclave at 160 ° C.
After 72 hours of hydrothermal synthesis, the synthesis was followed by washing with water, drying and further firing at 500 ° C. for 3 hours to obtain crystalline silicate 1. This crystalline silicate 1 is represented by the following composition formula in terms of a molar ratio of oxides (excluding water of crystallization), and has a crystal structure of X.
It was as shown in Table 1 above by line diffraction. 0.5NaO 2 · 0.5H 2 O · [0.8Al 2 O 3 ·
0.2Fe 2 O 3 · 0.25CaO] · 25SiO 2

【0011】この結晶性シリケート1を0.04Mの酢
酸銅水溶液(30℃)に浸漬し、24時間攪拌し、水洗
後乾燥し、さらにくり返し、このCuイオン交換を2回
(合計3回)実施し、水洗、乾燥を行い粉末触媒1を得
た。この触媒の組成は1.2CuO・〔0.8Al2
3 ・0.2Fe2 3 ・0.25CaO〕・25SiO
2 であった。次に、100部の前記粉末触媒1に対し
て、バインダ−としてアルミナゾル3部、シリカゾル5
5部(SiO2 :20%)及び水200部を加え、充分
攪拌を行いウォッシュコート用スラリ−とした。次にコ
ージェライト用モノリス基材(400セルの格子目)を
上記スラリ−に浸漬し、取り出した後余分なスラリ−を
吹きはらい200℃で乾燥させた。コート量は基材1リ
ットルあたり200gを担持させた。このコート物をハ
ニカム触媒1とする。
This crystalline silicate 1 was dipped in a 0.04 M copper acetate aqueous solution (30 ° C.), stirred for 24 hours, washed with water, dried, and repeated, and this Cu ion exchange was carried out twice (total three times). Then, it was washed with water and dried to obtain a powder catalyst 1. The composition of this catalyst is 1.2CuO. [0.8Al 2 O
3・ 0.2Fe 2 O 3・ 0.25CaO] ・ 25SiO
Was 2 . Next, with respect to 100 parts of the powder catalyst 1, 3 parts of alumina sol and 5 parts of silica sol were used as a binder.
5 parts: the (SiO 2 20%) and 200 parts of water was added, the washcoat slurry perform sufficient stirring - was. Next, the monolith substrate for cordierite (lattice of 400 cells) was dipped in the above slurry, taken out, and then excess slurry was blown and dried at 200 ° C. The coating amount was 200 g per liter of the substrate. This coated material is used as a honeycomb catalyst 1.

【0012】(触媒の調製2)触媒の調製1の結晶性シ
リケート1の合成法において塩化第二鉄の代わりに塩化
コバルト、塩化ルテニウム、塩化ロジウム、塩化ランタ
ン、塩化セリウム、塩化チタン、塩化バナジウム、塩化
クロム、塩化アンチモン、塩化ガリウム及び塩化ニオブ
を各々酸化物換算でFe2 3 と同じモル数だけ添加し
た以外は結晶性シリケート1と同様の操作を繰り返して
結晶性シリケート2〜12を調製した。これらの結晶性
シリケートの結晶構造はX線回折で前記表1に表示され
るものであり、その組成は酸化物のモル比(脱水された
形態)で表わして0.5NaO2・0.5H2 O・
(0.2M2 3 ・0.8Al2 3 ・0.25Ca
O)・25SiO2 であった。ここでMはCo,Ru,
Rh,La,Ce,Ti,V,Cr,Sb,Ga,Nb
である。また、塩化第二鉄または酢酸カルシウムの代わ
りに何も添加せず結晶性シリケート1と同様の方法によ
り、結晶性シリケート13、14を得た。
(Catalyst Preparation 2) Cobalt chloride, ruthenium chloride, rhodium chloride, lanthanum chloride, cerium chloride, titanium chloride, vanadium chloride instead of ferric chloride in the method for synthesizing crystalline silicate 1 of catalyst preparation 1 Crystalline silicates 2 to 12 were prepared by repeating the same operation as in crystalline silicate 1 except that chromium chloride, antimony chloride, gallium chloride and niobium chloride were added in the same mole number as Fe 2 O 3 in terms of oxide. . The crystal structure of these crystalline silicates is shown in Table 1 by X-ray diffraction, and its composition is expressed by the molar ratio of oxides (dehydrated form) of 0.5NaO 2 .0.5H 2. O
(0.2M 2 O 3 · 0.8Al 2 O 3 · 0.25Ca
O) .25SiO 2 . Where M is Co, Ru,
Rh, La, Ce, Ti, V, Cr, Sb, Ga, Nb
Is. Further, crystalline silicates 13 and 14 were obtained in the same manner as in crystalline silicate 1 without adding anything in place of ferric chloride or calcium acetate.

【0013】これらの結晶性シリケート2〜14を実施
例1と同様にCuイオン交換し、粉末触媒2〜14を得
た。さらにこの粉末触媒を実施例1と同様にモノリス基
材にコートし、ハニカム触媒2〜14を得た。
These crystalline silicates 2 to 14 were subjected to Cu ion exchange in the same manner as in Example 1 to obtain powder catalysts 2 to 14. Further, this powder catalyst was coated on a monolith substrate in the same manner as in Example 1 to obtain honeycomb catalysts 2-14.

【0014】(触媒の調製3)触媒の調製1の結晶性シ
リケート1の合成法において酢酸カルシウムの代わりに
酢酸マグネシウム、酢酸ストロンチウム、酢酸バリウム
を各々酸化物換算でCaOと同じモル数だけ添加した以
外は結晶性シリケート1と同様の操作を繰り返して結晶
性シリケート15〜17を調製した。これらの結晶性シ
リケートの結晶構造はX線回折で前記表1に表示される
ものであり、その組成は酸化物のモル比(脱水された形
態)で表わして0.5Na2 O・0.5H2 O・(0.
2Fe23 ・0.8Al2 3 ・0.25MeO)・
25SiO2 である。ここでMeはMg,Sr,Baで
ある。これらの結晶性シリケート15〜17を触媒の調
製1と同様にCuイオン交換し粉末触媒15〜17を
得、さらにこの粉末触媒を触媒の調製1と同様にモノリ
ス基材にコートしてハニカム触媒15〜17を得た。
(Catalyst Preparation 3) Except that magnesium acetate, strontium acetate, and barium acetate were added instead of calcium acetate in the same amount as CaO in terms of oxide in the method for synthesizing crystalline silicate 1 in Catalyst Preparation 1. The same operation as in crystalline silicate 1 was repeated to prepare crystalline silicates 15 to 17. The crystal structure of these crystalline silicates is shown in Table 1 by X-ray diffraction, and its composition is expressed by the molar ratio of oxides (dehydrated form) of 0.5Na 2 O · 0.5H. 2 O ・ (0.
2Fe 2 O 3 · 0.8Al 2 O 3 · 0.25MeO) ·
25 SiO 2 . Here, Me is Mg, Sr, or Ba. These crystalline silicates 15 to 17 were subjected to Cu ion exchange in the same manner as in Catalyst Preparation 1 to obtain powder catalysts 15 to 17, and the powder catalyst was coated on a monolith substrate in the same manner as in Catalyst Preparation 1 to prepare a honeycomb catalyst 15. ~ 17 were obtained.

【0015】(触媒の調製4)触媒の調製1で得られた
結晶性シリケート1を微粉砕し、この結晶性シリケート
1を母結晶として1000gを水2160gに添加し、
さらにコロイダルシリカ(SiO2 :20%)4590
gを添加し、十分攪拌を行い、この溶液を溶液aとし
た。一方、水2008gに水酸化ナトリウム105.8
gを溶解させ溶液bを得た。溶液aを攪拌しながら溶液
bを徐々に滴下し、沈殿を生成させてスラリ−を得た。
このスラリ−をオートクレーブに入れ、テトラプロピル
アンモニウムブロマイド568gを水2106gに溶解
させた溶液を添加し、160℃、72時間加熱して水熱
合成を行い(200rpmにて攪拌)、反応後、液を分
離し洗浄して乾燥後、500℃、3時間焼成を行い、シ
リカライトを表層にコートした層状複合結晶性シリケー
ト1を得た。この層状複合結晶性シリケート1を触媒の
調製1と同様にしてCuイオン交換し、粉末触媒18を
得、さらに、この粉末触媒を触媒の調製1と同様にモノ
リス基材にコートしてハニカム触媒18を得た。以上の
ようにして調製したハニカム触媒1〜18を表2、表3
にまとめて示す。
(Catalyst Preparation 4) The crystalline silicate 1 obtained in Catalyst Preparation 1 was finely pulverized, and 1000 g of this crystalline silicate 1 as a mother crystal was added to 2160 g of water,
Further colloidal silica (SiO 2 : 20%) 4590
g was added and sufficiently stirred, and this solution was designated as solution a. Meanwhile, 105.8 sodium hydroxide was added to 2008 g of water.
g was dissolved to obtain a solution b. The solution b was gradually dropped while stirring the solution a to form a precipitate to obtain a slurry.
This slurry was placed in an autoclave, a solution of 568 g of tetrapropylammonium bromide dissolved in 2106 g of water was added, and the mixture was heated at 160 ° C. for 72 hours to perform hydrothermal synthesis (stirring at 200 rpm). After the reaction, the liquid was removed. After separation, washing and drying, firing was carried out at 500 ° C. for 3 hours to obtain a layered composite crystalline silicate 1 in which silicalite was coated on the surface. This layered composite crystalline silicate 1 was subjected to Cu ion exchange in the same manner as in Catalyst Preparation 1 to obtain a powder catalyst 18, and this powder catalyst was coated on a monolith substrate in the same manner as in Catalyst Preparation 1 to form a honeycomb catalyst 18. Got The honeycomb catalysts 1 to 18 prepared as described above are shown in Table 2 and Table 3.
Are shown together.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】(触媒の調製5)触媒の調製1で得た結晶
性シリケート1をそれぞれ0.04Mの濃度に調製した
塩化コバルト水溶液、塩化ニッケル水溶液、塩化第二鉄
水溶液、塩化亜鉛水溶液、塩化マンガン水溶液、硝酸ク
ロム水溶液、塩化カルシウム水溶液、塩化バリウム水溶
液、塩化マグネシウム水溶液、塩化ランタン水溶液、塩
化セリウム水溶液に各々70℃にて浸漬し、触媒の調製
1と同様に金属イオン交換を行い、粉末触媒19〜29
を得た。さらに、この粉末触媒を触媒の調製1と同様に
モノリス基材にコートしてハニカム触媒19〜29を得
た。以上のようにして調製したハニカム触媒19〜29
を表4にまとめて示した。
(Catalyst Preparation 5) The crystalline silicate 1 obtained in Catalyst Preparation 1 was prepared to a concentration of 0.04 M, respectively; an aqueous solution of cobalt chloride, an aqueous solution of nickel chloride, an aqueous solution of ferric chloride, an aqueous solution of zinc chloride, and manganese chloride. The catalyst was immersed in an aqueous solution, an aqueous solution of chromium nitrate, an aqueous solution of calcium chloride, an aqueous solution of barium chloride, an aqueous solution of magnesium chloride, an aqueous solution of lanthanum chloride and an aqueous solution of cerium chloride at 70 ° C., and metal ion exchange was performed in the same manner as in Preparation 1 of the catalyst. ~ 29
Got Further, this powder catalyst was coated on a monolith substrate in the same manner as in Catalyst Preparation 1 to obtain honeycomb catalysts 19 to 29. Honeycomb catalysts 19 to 29 prepared as described above
Are summarized in Table 4.

【0019】[0019]

【表4】 [Table 4]

【0020】(実施例1)ハニカム触媒1〜29を用い
てアンモニア分解試験を実施した。反応管に15×15
×60mmの大きさで144セルからなるハニカム触媒
1〜29を入れ、次の組成のアンモニア含有ガスをSV
=16300h-1、流量5.54Nm3 /m2 の条件で
流し、反応温度250℃及び300℃でアンモニア分解
性能を調べた。 (ガス組成) NH3 20ppm CO2 7% H2 O 6% O2 14.7% N2 残 性能評価は反応初期状態におけるアンモニア分解率及び
NOx(NO、NO2、N2 O)生成率を測定すること
によって行なった。なお、アンモニア分解率及びNOx
生成率は次の式により求めた。 アンモニア分解率(%)=〔(入口NH3 −出口N
3 )/入口NH3 〕×100 NOx生成率(%)=〔(出口(N2 O×2+NO+N
2 ))/入口NH3 〕×100 これらの測定結果を表5に示す。
Example 1 An ammonia decomposition test was conducted using honeycomb catalysts 1-29. 15 × 15 in the reaction tube
The honeycomb catalysts 1 to 29 each having a size of 60 mm and consisting of 144 cells were put, and an ammonia-containing gas having the following composition was added to the SV.
= 16300 h −1 and a flow rate of 5.54 Nm 3 / m 2 , the ammonia decomposition performance was examined at reaction temperatures of 250 ° C. and 300 ° C. (Gas composition) NH 3 20 ppm CO 2 7% H 2 O 6% O 2 14.7% N 2 residual performance evaluation is based on ammonia decomposition rate and NOx (NO, NO 2 , N 2 O) production rate in the initial reaction state. It was done by measuring. The ammonia decomposition rate and NOx
The production rate was calculated by the following formula. Ammonia decomposition rate (%) = [(inlet NH 3 -outlet N
H 3 ) / inlet NH 3 ] × 100 NOx production rate (%) = [(outlet (N 2 O × 2 + NO + N
O 2 )) / inlet NH 3 ] × 100 These measurement results are shown in Table 5.

【0021】[0021]

【表5】 [Table 5]

【0022】(実施例2)ハニカム触媒1〜29を使用
し実施例1と同一の条件にて長時間通ガスすることによ
り耐久性評価試験を実施した。その結果、前記ガス条件
にて1000時間供給後においても表5と同様のアンモ
ニア分解率及びNOx生成率を維持しており、耐久性に
優れた触媒であることが確認された。
(Example 2) A durability evaluation test was carried out by using honeycomb catalysts 1 to 29 and passing gas under the same conditions as in Example 1 for a long time. As a result, it was confirmed that the catalyst maintained the same ammonia decomposition rate and NOx generation rate as in Table 5 even after 1000 hours of supply under the above gas conditions, and was a catalyst with excellent durability.

【0023】[0023]

【発明の効果】本発明のアンモニア分解方法によれば、
NOx等の副生成物を生ずることなく、アンモニアを無
害な窒素に分解することができる。このような分解処理
方法は従来無かったものであり、その産業上の利用価値
は極めて大きいものがある。
According to the ammonia decomposition method of the present invention,
Ammonia can be decomposed into harmless nitrogen without producing by-products such as NOx. Such a decomposition treatment method has never existed before, and its industrial utility value is extremely high.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アンモニアを含有するガスをアンモニア
分解触媒と接触させてアンモニアを分解除去する方法に
おいて、アンモニア分解触媒として、脱水された状態で (1±0.6 )R2 O・〔aM2 3 ・bAl2 3 〕・
cMeO・ySiO2 (式中、Rはアルカリ金属イオン及び/又は水素イオ
ン、MはVIII族元素、希土類元素、チタン、バナジウ
ム、クロム、ニオブ、アンチモン、ガリウムからなる群
から選ばれた1種以上の元素、Meはアルカリ土類元
素、a≧0、b≧0、c≧0、a+b=1、y/c>1
2、y>12)の化学組成を有し、かつ発明の詳細な説
明の項に記載の表1で示されるX線回折パターンを有す
る結晶性シリケートに銅、コバルト、ニッケル、鉄、亜
鉛、マンガン、クロム、アルカリ土類元素、希土類元素
の中から少なくとも1種を含有させた触媒を使用するこ
とを特徴とするアンモニア分解方法。
1. A method for decomposing and removing ammonia by contacting a gas containing ammonia with an ammonia decomposing catalyst, wherein (1 ± 0.6) R 2 O. [aM 2 O 3 is used as an ammonia decomposing catalyst in a dehydrated state.・ BAl 2 O 3 ] ・
cMeO.ySiO 2 (wherein R is an alkali metal ion and / or a hydrogen ion, M is a group VIII element, a rare earth element, titanium, vanadium, chromium, niobium, antimony, or gallium selected from the group consisting of Element, Me is an alkaline earth element, a ≧ 0, b ≧ 0, c ≧ 0, a + b = 1, y / c> 1
2, y> 12), and copper, cobalt, nickel, iron, zinc, manganese in the crystalline silicate having the X-ray diffraction pattern shown in Table 1 in the detailed description of the invention. A method for decomposing ammonia, which comprises using a catalyst containing at least one of chromium, chromium, alkaline earth elements and rare earth elements.
JP12712693A 1993-05-28 1993-05-28 Ammonia decomposition method Expired - Lifetime JP3241166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12712693A JP3241166B2 (en) 1993-05-28 1993-05-28 Ammonia decomposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12712693A JP3241166B2 (en) 1993-05-28 1993-05-28 Ammonia decomposition method

Publications (2)

Publication Number Publication Date
JPH06335618A true JPH06335618A (en) 1994-12-06
JP3241166B2 JP3241166B2 (en) 2001-12-25

Family

ID=14952258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12712693A Expired - Lifetime JP3241166B2 (en) 1993-05-28 1993-05-28 Ammonia decomposition method

Country Status (1)

Country Link
JP (1) JP3241166B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241675A (en) * 2009-03-17 2010-10-28 Nippon Shokubai Co Ltd Method of manufacturing hydrogen
JP2012161713A (en) * 2011-02-03 2012-08-30 Agc Seimi Chemical Co Ltd Ammonia decomposition catalyst and decomposition method of ammonia
US8962518B2 (en) 2009-03-17 2015-02-24 Nippon Shokubai Co., Ltd. Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241675A (en) * 2009-03-17 2010-10-28 Nippon Shokubai Co Ltd Method of manufacturing hydrogen
US8962518B2 (en) 2009-03-17 2015-02-24 Nippon Shokubai Co., Ltd. Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst
US10857523B2 (en) 2009-03-17 2020-12-08 Nippon Shokubai Co., Ltd. Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst
JP2012161713A (en) * 2011-02-03 2012-08-30 Agc Seimi Chemical Co Ltd Ammonia decomposition catalyst and decomposition method of ammonia

Also Published As

Publication number Publication date
JP3241166B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
US5338715A (en) Catalyst for exhaust gas purification
CA2151229C (en) Ammonia decomposition catalysts
JP2023501862A (en) Denitration catalyst and denitration method using the catalyst
US5695728A (en) Method for removal of nitrogen oxides
JP3132959B2 (en) Ammonia decomposition catalyst
US5254515A (en) Catalyst for decomposing nitrogen oxides and a method of purifying a waste gas containing nitrogen oxides
JP3132960B2 (en) Ammonia decomposition catalyst
JP3229136B2 (en) Ammonia decomposition method
JP3241166B2 (en) Ammonia decomposition method
JP3332652B2 (en) Ammonia decomposition removal method
JP3229117B2 (en) Ammonia decomposition method
JP2778801B2 (en) Exhaust gas treatment catalyst
JP3510908B2 (en) Exhaust gas purification catalyst
JP3453172B2 (en) DeNOx method
JPH07112121A (en) Method for removing nox
JP2659840B2 (en) Purification method of exhaust gas containing nitrogen oxides
JPH07275658A (en) Ammonia adsorbing and decomposing method
JPH08266870A (en) Denitrifying method
JP3015568B2 (en) Exhaust gas treatment catalyst
JP3015524B2 (en) Exhaust gas treatment catalyst
JP3482661B2 (en) Nitrogen oxide removal method
JP3300721B2 (en) Exhaust gas purification catalyst
JPH03101837A (en) Production of catalyst for decomposition of nitrogen oxide
JP2695668B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP2999039B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 12

EXPY Cancellation because of completion of term