JPH044045A - Catalyst for processing exhaust gas - Google Patents

Catalyst for processing exhaust gas

Info

Publication number
JPH044045A
JPH044045A JP2105168A JP10516890A JPH044045A JP H044045 A JPH044045 A JP H044045A JP 2105168 A JP2105168 A JP 2105168A JP 10516890 A JP10516890 A JP 10516890A JP H044045 A JPH044045 A JP H044045A
Authority
JP
Japan
Prior art keywords
catalyst
metal
chloride
copper
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2105168A
Other languages
Japanese (ja)
Other versions
JP2778801B2 (en
Inventor
Shigeru Nojima
繁 野島
Kozo Iida
耕三 飯田
Hiroshi Fujita
浩 藤田
Yoshiaki Obayashi
良昭 尾林
Masato Suwa
諏訪 征人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2105168A priority Critical patent/JP2778801B2/en
Publication of JPH044045A publication Critical patent/JPH044045A/en
Application granted granted Critical
Publication of JP2778801B2 publication Critical patent/JP2778801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ternary catalyst having high activity even in the presence of a large amt. of oxygen by using crystalline silicate having a specified composition and crystal structure and allowing copper and other specified active metal to coexist. CONSTITUTION:The crystalline silicate used has the x-ray diffraction property as shown in Table (A) and its composition is expressed by the molar ratio of oxides in a dehydrated state as [(1.0+ or -0.8)R2O.>=aM2O3.bAl2O3].ySiO2, wherein ar is alkali metal and/or hydrogen, M is group VIII metal or rare earth metal, a+b=1, a>=0, b>=0, y>11. Then copper and specified metal such as Mg, Ba, etc., are made to coexist in this silicate. Thereby, Cu on the silicate activates CO and hydrocarbon to effect the reaction of these gases with NO to remove NOX. Moreover, coexistence of other metal improves heat resistance of Cu and selectivity of denitration reaction is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒素酸化物(以下、NOxと略称)−酸化炭素
(CO) 、炭化水素(以下、HCと略称)を含有する
排気ガスを浄化する触媒に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention purifies exhaust gas containing nitrogen oxides (hereinafter abbreviated as NOx), carbon oxides (CO), and hydrocarbons (hereinafter abbreviated as HC). related to catalysts.

〔従来の技術〕[Conventional technology]

自動車等のガソリンエンジン、トラック、バス等のディ
ーゼルエンジンなどから排出される燃焼排ガス中にはN
Ox 、 CD、 HCなど光化学スモッグの原因にな
ると言われている有害物質が含まれており、環境保全の
立場からその除去方法の開発は重大かつ緊急の社会的課
題である。
There is N in the combustion exhaust gas emitted from gasoline engines such as automobiles, diesel engines such as trucks and buses, etc.
It contains toxic substances such as Ox, CD, and HC that are said to cause photochemical smog, and from the standpoint of environmental conservation, developing methods for removing them is a serious and urgent social issue.

排ガス中のNOx除去法としては吸着法、酸化吸収法、
接触還元法などがあるが、後処理不要の接触還元法が経
済的、技術的にも有利とされている。この接触還元法は
還元ガスの所在下で触媒を通過させることによりNOx
を無害な窒素に転化する方法であり、還元剤の種類によ
り三方法に分けられる。
Methods for removing NOx from exhaust gas include adsorption method, oxidation absorption method,
Although there are catalytic reduction methods, the catalytic reduction method, which does not require post-treatment, is said to be economically and technically advantageous. This catalytic reduction method reduces NOx by passing through a catalyst in the presence of reducing gas.
This method converts nitrogen into harmless nitrogen, and can be divided into three methods depending on the type of reducing agent.

すなわち、水素、−酸化炭素、炭化水素等の還元性のガ
スを加えて触媒と接触させるいわゆる非選択還元法と、
アンモニア等の還元ガスを加えて触媒と接触させるいわ
ゆる選択還元法である。前者はガス中に共存する酸素と
還元剤の反応後NOx除去反応が進行するた約多量の還
元剤を必要とする難点があるが、自動車などの内燃機関
から生じる排ガスのように一酸化炭素、炭化水素などの
還元剤を酸素の等モル以上に既に含有している場合は非
選択還元法で排ガス中のNOXを浄化する方が有利であ
り、自動車排ガス中のNOx浄化用触媒は非選択還元反
応用のものが実用化されている。
That is, a so-called non-selective reduction method in which a reducing gas such as hydrogen, carbon oxide, or hydrocarbon is added and brought into contact with a catalyst;
This is a so-called selective reduction method in which a reducing gas such as ammonia is added and brought into contact with a catalyst. The former has the disadvantage that it requires a large amount of reducing agent because the NOx removal reaction proceeds after the reaction between the oxygen coexisting in the gas and the reducing agent. When a reducing agent such as a hydrocarbon is already contained in an amount equal to or more than the same mole of oxygen, it is more advantageous to purify NOx in exhaust gas by a non-selective reduction method, and the catalyst for purifying NOx in automobile exhaust gas is a non-selective reduction method. Products for reaction have been put into practical use.

自動車排ガスは触媒を用いない場合、第1図のようなガ
ス組成を示すが、Pt、Rh(活性金属体) /Al2
O3(担体)/コージライト(ハニカム基材)のような
三元触媒を用いた場合、第2図のようなガス組成になり
、理論空燃比近傍でNOx 、 CD、 HCの3成分
が浄化されている。理論空燃比でのエンジン燃焼排ガス
はほぼ次のような組成のものである。
Automobile exhaust gas has a gas composition as shown in Figure 1 when no catalyst is used, but it contains Pt, Rh (active metal bodies) /Al2
When a three-way catalyst such as O3 (carrier)/cordierite (honeycomb base material) is used, the gas composition will be as shown in Figure 2, and the three components NOx, CD, and HC will be purified near the stoichiometric air-fuel ratio. ing. Engine combustion exhaust gas at the stoichiometric air-fuel ratio has approximately the following composition.

CO:0.3〜1.0%、NO:0.05〜0.15%
、H2O:約13%、H,:0.1〜0.3%、H[:
:0.03〜0.08%、S02:約0.002%、0
□:0.2〜0.5%、CO3:約12% 〔発明が解決しようとする課題〕 自動車エンジンの排ガスを浄化するた約に実用化されて
いる前記のような三元触媒を用いた場合、酸化反応によ
り酸素が消費され、酸素濃度がかなり低くなった状態で
NOの還元反応が進行する。従って、現状の三元触媒は
理論空燃比(14,6)近傍でのみ有効であり、燃焼消
費率が低くできる空燃比の高い領域ではNOxを減少さ
せるのが困難であった。
CO: 0.3-1.0%, NO: 0.05-0.15%
, H2O: about 13%, H,: 0.1-0.3%, H[:
:0.03~0.08%, S02: Approx. 0.002%, 0
□: 0.2 to 0.5%, CO3: approximately 12% [Problem to be solved by the invention] Using the above-mentioned three-way catalyst, which has been put into practical use for purifying the exhaust gas of automobile engines. In this case, oxygen is consumed by the oxidation reaction, and the NO reduction reaction proceeds in a state where the oxygen concentration is considerably low. Therefore, the current three-way catalyst is effective only near the stoichiometric air-fuel ratio (14,6), and it is difficult to reduce NOx in the high air-fuel ratio range where the combustion consumption rate can be low.

一方、燃費改善のたt、空燃比の高いリーン領域でもN
Oxを還元除去できる必要性があり、幅広い02濃度で
脱硝が可能な触媒の出現が待ち望まれていた。
On the other hand, in order to improve fuel efficiency, N
There is a need to be able to reduce and remove Ox, and the emergence of a catalyst that can perform denitrification over a wide range of 02 concentrations has been awaited.

近年、シリカゲルやゼオライトにCuをイオン交換して
得られる触媒がNOの直接分解に有効であることが報告
された(特開昭60−125250号公報等)  しか
し、この触媒をそのまま自動車エンジンの排ガス浄化用
触媒に用いると[:0. HCの燃焼が顕著であり、N
Oxの還元除去があまり進まず、さらに耐熱性に乏しい
という問題があった。
In recent years, it has been reported that a catalyst obtained by ion-exchanging Cu with silica gel or zeolite is effective for the direct decomposition of NO (e.g., Japanese Patent Laid-Open No. 125250/1983). When used as a purification catalyst, [:0. The combustion of HC is remarkable, and the combustion of N
There were problems in that the reduction and removal of Ox did not proceed very well and furthermore, the heat resistance was poor.

〔課題を解決するた約の手段〕[A means of promise to solve problems]

本発明は従来技術が有する上記の問題点を解決すること
を目的としたものであり、特定の組成、結晶構造を有す
る結晶性シリケートを用いて銅とさらに特定の活性金属
を共合させた触媒が理論空燃比近傍及び理論空燃比より
高い領域、すなわち酸素が多量に存在する状態において
もNOX 、 Co、 H[:を減少させることを見出
し、本発明を完成するに至った。
The present invention aims to solve the above-mentioned problems of the prior art, and provides a catalyst in which copper and a specific active metal are combined using crystalline silicate having a specific composition and crystal structure. The inventors have discovered that NOX, Co, and H[: can be reduced even in the vicinity of the stoichiometric air-fuel ratio and in the region higher than the stoichiometric air-fuel ratio, that is, in a state where a large amount of oxygen exists, and have completed the present invention.

すなわち、本発明は、 (1)下記A表で示されるX線回折特性を有し、脱水さ
れた状態において酸化物のモル比で表わして、 (1,0±0.8)R2[+−[aM、03−b^12
L]  ・ysto。
That is, the present invention (1) has the X-ray diffraction characteristics shown in Table A below, and in the dehydrated state, expressed as the molar ratio of the oxide, (1,0±0.8)R2[+- [aM, 03-b^12
L]・ysto.

(但し、上記式中、Rはアルカリ金属イオン及び/又は
水素、Mは■族金属、希土類金属、チタン、バナジウム
、クロム、ニオブ、アンチモン、ガリウムからなる群か
ら選ばれた1種以上の元素イオン、a+b=1.a≧0
゜b≧0.y>11) の化学式を有する結晶性シリケートに、銅とさらに特定
の金属を共存させてなる排ガス処理触媒。
(However, in the above formula, R is an alkali metal ion and/or hydrogen, M is an ion of one or more elements selected from the group consisting of group II metals, rare earth metals, titanium, vanadium, chromium, niobium, antimony, and gallium. , a+b=1.a≧0
゜b≧0. An exhaust gas treatment catalyst made by coexisting copper and a specific metal in a crystalline silicate having a chemical formula of y>11).

A表 〔照射は銅のKcX線〕 〔Ioは最も強いピーク強度でI/1.は相対強度〕 (2)  上記性の活性金属がマグネシウム、カルシウ
ム、バリウム、ストロンチウム、リチウム、ナトリウム
、カリウム、ホウ素、アルミニウム、リン、スズ、アン
チモン、シリコン、チタニウム、亜鉛、バナジウム、ニ
オブ、鉄、コバルト、ニッケル、マンガン、ランタン、
セリウム、プラセオジウム、ネオジウム、サマリウム、
タングステンの中から少なくとも1種以上が含まれる上
記(1)記載の排気ガス処理触媒。
Table A [Irradiation is copper Kc X-ray] [Io is the strongest peak intensity, I/1. is the relative strength] (2) The active metals listed above are magnesium, calcium, barium, strontium, lithium, sodium, potassium, boron, aluminum, phosphorus, tin, antimony, silicon, titanium, zinc, vanadium, niobium, iron, and cobalt. , nickel, manganese, lanthanum,
Cerium, praseodymium, neodymium, samarium,
The exhaust gas treatment catalyst according to (1) above, which contains at least one type of tungsten.

である。It is.

〔作用] 本発明で使用する触媒の作用については、イオン交換し
た銅イオンの酸化還元サイクル(Cu”−”Cu” )
が容易で、酸素を比較的低温で放出しやすく、結晶性シ
リカケート上の銅がCDやHCを活性化し、活性化した
これらのガスがNoと反応し、NOxを除去する作用が
ある。さらに銅き他の金属とを共存させることにより活
性金属(銅)の耐熱性を向上し、脱硝反応の選択性を向
上することを可能にした。
[Action] Regarding the action of the catalyst used in the present invention, the redox cycle of ion-exchanged copper ions (Cu"-"Cu")
The copper on the crystalline silicate activates CD and HC, and these activated gases react with No to remove NOx. Furthermore, by coexisting copper with other metals, the heat resistance of the active metal (copper) was improved, making it possible to improve the selectivity of the denitrification reaction.

すなわち、上記金属はCuイオンのNO吸着能や酸化還
元サイクル能を維持したまま、Cuの高温でのシンタリ
ングを抑制する作用を有するものであり、マグネシウム
(Mg) 、カルシウム(Ca)バリウム(Ba)  
ストロンチウム(Sr)   リチウム(Li)  ナ
トリウム(Na)  カリウム(K)、ホウ素(B)、
アルミニウム(AI)  リン(P)、スズ(3口) 
アンチモン(Sb)  シリコン(Si)チタニウム(
Ti) 、亜鉛(Zn) 、バナジウム(v)、ニオブ
(Nb) 、鉄(pe)  :lバルト(CO)ニッケ
ル(Ni) 、マンガン(Mn)  ランタン(La)
 、セリウム(Ce)  プラセオジウム(Pr)ネオ
ジウム(Nd) 、サマリウム(Sn+)  タングス
テン(11)の中から少なくとも1種以上を含有するも
のである。
In other words, the above metals have the effect of suppressing the sintering of Cu at high temperatures while maintaining the NO adsorption capacity and redox cycle capacity of Cu ions, and include magnesium (Mg), calcium (Ca), barium (Ba), etc. )
Strontium (Sr) Lithium (Li) Sodium (Na) Potassium (K), Boron (B),
Aluminum (AI), phosphorus (P), tin (3 ports)
Antimony (Sb) Silicon (Si) Titanium (
Ti), zinc (Zn), vanadium (v), niobium (Nb), iron (pe): lbalt (CO), nickel (Ni), manganese (Mn), lanthanum (La)
, cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sn+), and tungsten (11).

これらの金属はイオン交換法で特定の結晶構造、特定の
組成を有する結晶性シリケート上に担持させ、銅と共存
させることができる。さらに硝酸塩、塩化物、硫酸塩の
各種塩を含浸法により上記担体上に担持することもでき
る。
These metals can be supported on a crystalline silicate having a specific crystal structure and a specific composition by an ion exchange method, and can be made to coexist with copper. Furthermore, various salts such as nitrates, chlorides, and sulfates can also be supported on the above-mentioned carrier by an impregnation method.

本発明で使用する特定の結晶性シリケートよりなる担体
上に担持される銅と他の金属の好ましい含有量は担体1
00重量部に対してCuは0.2〜30重量部好ましく
は0.4〜2O重量部、一方、他の金属として、Mg、
 Ca、 Ba、 Sr、 Li。
The preferred content of copper and other metals supported on the specific crystalline silicate carrier used in the present invention is carrier 1
0.00 parts by weight, Cu is 0.2 to 30 parts by weight, preferably 0.4 to 20 parts by weight, while other metals include Mg,
Ca, Ba, Sr, Li.

Na、 K 、 B 、 AI、 P 、 Si、 S
nは0.2〜8重量部、Sb、 Ti、 Zn、 V 
、 Nb、 Fe、 Co、 Ni、 Mn、 La、
 Ce。
Na, K, B, AI, P, Si, S
n is 0.2 to 8 parts by weight, Sb, Ti, Zn, V
, Nb, Fe, Co, Ni, Mn, La,
Ce.

Pr、 Nd、 Sm、―は0.1〜6重量部である。Pr, Nd, Sm, - are 0.1 to 6 parts by weight.

なお本発明で使用する上記結晶性シリケートは、シリカ
の給源、■族元素、希土類元素、チタン、バナジウム、
クロム、ニオブ、アンチモン、ガリウムの酸化物の給源
、アルミナの給源、アルカリの給源、水及び有機窒素含
有化合物を含有する反応混合物をつくり、この混合物を
結晶性シリケートが生成するのに至る時間及び温度で加
熱することにより合成される。
The crystalline silicate used in the present invention includes a source of silica, a group III element, a rare earth element, titanium, vanadium,
forming a reaction mixture containing a source of oxides of chromium, niobium, antimony, and gallium, a source of alumina, a source of alkali, water, and an organic nitrogen-containing compound; It is synthesized by heating.

さらに本発明で使用する結晶性シリケートは、5102
/ Al2O3比が12以上の高シリカゼオライトまた
は、従来のゼオライトの構造中のA1の一部が■族元素
、希土類元素、チタン、バナジウム、クロム、ニオブ、
アンチモン、力゛クロムに置きかわったものであり、さ
らに5102/ (M−03+A12O3)比が12以
上であることを特徴としており、下記のモル組成の反応
混合物から製造される。
Furthermore, the crystalline silicate used in the present invention is 5102
/ High silica zeolite with an Al2O3 ratio of 12 or more or a part of A1 in the structure of conventional zeolite is a group element, a rare earth element, titanium, vanadium, chromium, niobium,
It replaces antimony and chromium, and is characterized by a 5102/(M-03+A12O3) ratio of 12 or more, and is produced from a reaction mixture having the following molar composition.

5102/ (M2O3+^12O−)   12〜3
000(好ましくは2O〜2O0) DH”’ /Si0.       0〜1.0(好ま
しくは、0.2〜0.8) H2O/5in22〜1000 (好ましくは、10〜2O0) 有機窒素含有化合物/ (LOs +A12O3)(好
ましくは、5〜50) 本発明で使用される触媒の工業的使用に際しては、適当
な形に成形して使用することが望ましい。例えば、シリ
カ、アルミナ等の無機酸化物または粘土をバインダーと
し、場合により有機物等の成型助剤を使用して球状、柱
状、ハニカム状に成形する。銅と他の金属を担持する前
の結晶性シリケートをあらかじめ成形し、その成形体を
銅イオンで交換したものでも本発明で使用する触媒とみ
なすことができる。成形体の大きさは特に制限されない
5102/ (M2O3+^12O-) 12~3
000 (preferably 2O to 2O0) DH”' /Si0.0 to 1.0 (preferably 0.2 to 0.8) H2O/5in22 to 1000 (preferably 10 to 2O0) Organic nitrogen-containing compound/( LOs +A12O3) (preferably 5 to 50) For industrial use of the catalyst used in the present invention, it is desirable to use it after forming it into an appropriate shape.For example, inorganic oxides such as silica, alumina, or clay is used as a binder, and if necessary, a forming aid such as an organic substance is used to form it into a spherical, columnar, or honeycomb shape.The crystalline silicate before supporting copper and other metals is formed in advance, and the formed body is injected with copper ions. The catalyst replaced with the above can also be considered as the catalyst used in the present invention.The size of the molded body is not particularly limited.

〔実施例1〕 結晶性シリケートを次のようにして合成した。[Example 1] Crystalline silicate was synthesized as follows.

水ガラス、硫酸第二鉄、硫酸アルミニウム、水を Na2O’ (0,lFe2Oa ” 0.9A12O
3) ” 30S102・1600)+2Oのモル比に
なるように調合し、これに硫酸を適当量添加し、上記混
合物のpHが9前後になるようにした後、有機窒素含有
化合物としてプロピルアミン、臭化プロピルをpe2O
a + ^12O.の合計のモル数の2O倍加え、よく
混合し、500COのステンレス製オートクレーブには
り込んだ。
Water glass, ferric sulfate, aluminum sulfate, water to Na2O' (0,lFe2Oa ” 0.9A12O
3) "30S102・1600)+2O molar ratio, add an appropriate amount of sulfuric acid to adjust the pH of the mixture to around 9, and add propylamine and odor as organic nitrogen-containing compounds. pe2O
a + ^12O. 20 times the total number of moles was added, mixed well, and placed in a 500 CO stainless steel autoclave.

上記混合物を約50 Orpmにて攪拌しながら160
℃で3日間反応させた。冷却後、固形分をろ過し、洗浄
水のpHが約8になるまで充分水洗し、110℃で12
時間乾燥し、550℃で3時間焼成した。
The above mixture was heated to 160 ml while stirring at about 50 Orpm.
The reaction was carried out at ℃ for 3 days. After cooling, the solid content was filtered, thoroughly washed with water until the pH of the washing water became approximately 8, and heated at 110°C for 12 hours.
It was dried for an hour and fired at 550°C for 3 hours.

この生成物の結晶粒径は、1μ前後であり、酸化物のモ
ル比で表わした組成は脱水の形態で表わして、(H,N
a) 2O ” (0,IFe、O,+ 0.9A1.
D3) ’30S102であった。これを結晶性シリケ
ート1と称する。
The crystal grain size of this product is around 1μ, and the composition expressed in molar ratio of oxides is expressed in dehydrated form (H,N
a) 2O” (0,IFe,O,+0.9A1.
D3) It was '30S102. This is called crystalline silicate 1.

この結晶性シリケート1を合成する場合、原料の中で硫
酸の代わりに塩酸などを用いても、又、硫酸第二鉄の代
わりに塩化第二鉄を用いても、又水ガラスの代わりにシ
リカゾルを用いても同様のシリケートが得られた。
When synthesizing this crystalline silicate 1, it is possible to use hydrochloric acid instead of sulfuric acid among the raw materials, ferric chloride instead of ferric sulfate, or silica sol instead of water glass. A similar silicate was obtained using

又、水熱合成条件として160℃で3日間反応させる代
わりに170℃または180℃で2日間反応させても同
様のシリケートが得られた。
Furthermore, similar silicates were obtained by reacting at 170°C or 180°C for 2 days instead of at 160°C for 3 days as the hydrothermal synthesis conditions.

結晶性シリケート1の原料調合時の硫酸第二鉄と硫酸ア
ルミニウムの添加量をFezO3とAl2O3のモル比
に換算して下記のように変えた以外は、結晶性シリケー
ト1の場合と同じ操作を繰り返して結晶性シリケート2
〜4を調整した。
Repeat the same operations as for crystalline silicate 1, except that the amounts of ferric sulfate and aluminum sulfate added when preparing the raw materials for crystalline silicate 1 were converted into the molar ratio of FezO3 and Al2O3 and changed as shown below. crystalline silicate 2
~4 was adjusted.

結晶性シリケート1の調合時において、硫酸の代わりに
塩酸を用い、また硫酸第二鉄の代わりに、塩化コバルト
、塩化ルテニウム、塩化ロジウム、塩化ランタン、塩化
セリウム、塩化チタン、塩化バナジウム、塩化クロム、
塩化アンチモン、塩化ガリウムを各々酸化物換算でPe
2Oaと同じモル数だけ添加した以外は結晶性シリケー
ト1と同じ操作を繰返して結晶性シリケート5〜14を
調製した。これらの結晶性シリケートの有機窒素含有化
合物を除外した組成は、酸化物のモル比(脱水の形態)
で表わして、(H,Na)2O ” (0,1M2O3
0,9A12O3) ” 30Si02テあった。ここ
でMはCo、 Ru、 Rh、 La、 Ce、 Ti
、 V。
When preparing crystalline silicate 1, hydrochloric acid was used instead of sulfuric acid, and cobalt chloride, ruthenium chloride, rhodium chloride, lanthanum chloride, cerium chloride, titanium chloride, vanadium chloride, chromium chloride,
Antimony chloride and gallium chloride are each converted into oxides of Pe.
Crystalline silicates 5 to 14 were prepared by repeating the same operation as for crystalline silicate 1 except that the same number of moles as 2Oa was added. The composition of these crystalline silicates excluding organic nitrogen-containing compounds is the molar ratio of oxides (dehydrated form)
Expressed as (H,Na)2O'' (0,1M2O3
0.9A12O3)" 30Si02Te.Here, M is Co, Ru, Rh, La, Ce, Ti
, V.

[:r、 Sb、 Ga (結晶性シリケート5〜14
の番号順)である。
[:r, Sb, Ga (crystalline silicate 5-14
(in numerical order).

また結晶性シリケート1において調合時の5I02/ 
(0,1Fe2O3 + 0.9A12O3)比を2O
.80とした以外は結晶性シリケート1と同じ操作を繰
り返して各々結晶性シリケー)15.16を調製した。
In addition, in crystalline silicate 1, 5I02/
(0,1Fe2O3 + 0.9A12O3) ratio 2O
.. Crystalline silicates 15 and 16 were prepared by repeating the same operation as for crystalline silicate 1, except that the silicates were changed to 80%.

以上の結晶性シリケート1〜16の粉末X*回折パター
ンは表1に示すパターンを示すことが確認された。
It was confirmed that the powder X* diffraction patterns of the above crystalline silicates 1 to 16 showed the patterns shown in Table 1.

以上の結晶性シリケート1〜16のそれぞれ10gを塩
化第二銅1gと塩化亜鉛1gを500ccの水に溶解し
た水溶液の中に入れ、室温にて12時間攪拌するイオン
交換操作を行った。このイオン交換操作を3回繰返し行
った後、水洗し、100℃で12時間乾燥し、触媒1〜
16(結晶性シリケートの番号に対応)を調製した。
10 g of each of the above crystalline silicates 1 to 16 was placed in an aqueous solution in which 1 g of cupric chloride and 1 g of zinc chloride were dissolved in 500 cc of water, and an ion exchange operation was performed by stirring at room temperature for 12 hours. After repeating this ion exchange operation three times, it was washed with water and dried at 100°C for 12 hours.
16 (corresponding to the number of crystalline silicate) was prepared.

さらに、結晶性シリケー)1 10gを塩化第二銅(C
uCl2 ・2H2O) 1 gと、塩化亜鉛(ZnC
1z)に代えて、塩化カルシウム(Cat:I2・H,
O) 、塩化バリウム(BaC12・2H,0)、塩化
ストロンチウム(SrC12・6H2O)、塩化ナトリ
ウム(NaC1)塩化カリウム(KCI)、ホウ酸(8
3BO,)、塩化アルミニウム(AIC1,)、塩化ス
ズ (SnC12・2H2O)四塩化ケイ素(SIC1
4)を各々1gを500 ccの水に溶解した水溶液に
入れ、室温にて12時間攪拌するイオン交換操作を行っ
た。このイオン交換操作を3回繰り返した後、水洗し、
100℃で12時間乾燥し触媒17〜25を調製した。
Furthermore, 10 g of crystalline silica) 1 was added to cupric chloride (C
uCl2 ・2H2O) 1 g and zinc chloride (ZnC
1z), calcium chloride (Cat: I2.H,
O), barium chloride (BaC12.2H,0), strontium chloride (SrC12.6H2O), sodium chloride (NaC1) potassium chloride (KCI), boric acid (8
3BO,), aluminum chloride (AIC1,), tin chloride (SnC12・2H2O) silicon tetrachloride (SIC1
An ion exchange operation was performed in which 1 g of each of 4) was dissolved in 500 cc of water and stirred for 12 hours at room temperature. After repeating this ion exchange operation three times, wash with water,
Catalysts 17 to 25 were prepared by drying at 100°C for 12 hours.

また、結晶性シリケー)2 10gに塩化第2銅(Cu
[:lz ・2H2O)と、塩化アンチモン(5bC1
s)、四塩化チタン(TIC14)、三塩化バナジウム
(vC13)、塩化ニオブ(NbCIS)、三塩化鉄(
Feels)、塩化コバルト([:0CI2 ・6LO
)、塩化ニッケル(NIC12・6H2O)、塩化マン
ガン(MnC12−482O) 、塩化ランタン(La
C1s)、塩化セリウム(Ce[:I3)、塩化プラセ
オジウム(PrC1+ ・7H2O) 、塩化ネオジウ
ム(NdC13)、塩化サマリウム(SmCI+)、塩
化タングステン(WCl2)の各水溶液を、上記結晶性
シリケートに対して各原子比にてCu 0.6 mmo
l/g、上記元素をQ、 4 mmol八担持へれるよ
うに含浸し、110℃にて24時間乾燥し、触媒26〜
39を調製した。
In addition, cupric chloride (Cu
[:lz ・2H2O) and antimony chloride (5bC1
s), titanium tetrachloride (TIC14), vanadium trichloride (vC13), niobium chloride (NbCIS), iron trichloride (
Cobalt chloride ([:0CI2 ・6LO
), nickel chloride (NIC12.6H2O), manganese chloride (MnC12-482O), lanthanum chloride (La
Aqueous solutions of cerium chloride (Ce[:I3), praseodymium chloride (PrC1+ .7H2O), neodymium chloride (NdC13), samarium chloride (SmCI+), and tungsten chloride (WCl2) were added to the crystalline silicate. Cu 0.6 mmo in atomic ratio
1/g, the above elements were impregnated so as to support Q, 4 mmol, and dried at 110°C for 24 hours.
No. 39 was prepared.

触媒1〜39を16〜32メツシユに整粒し、触媒0.
5gを常圧固定床流通式反応器に充填し、次の反応条件
下で活性評価試験を行った。その結果を表2に併せて示
す。
Catalysts 1 to 39 were sized into 16 to 32 meshes, and catalysts 0.
5 g was packed into an atmospheric fixed bed flow reactor and an activity evaluation test was conducted under the following reaction conditions. The results are also shown in Table 2.

ガス組成: NO: 500ppm、 C3H6: 5
00ppm、 CO:0.5%、0.:2%、  He
バランスガス流量:2Nlh、  反応温度:500℃
〔比較例1〕 実施例1に記す結晶性シリケート1を10g用いて塩化
第2銅1gを500 ccの水に溶解した水溶液に入れ
、室温にて12時間攪拌を3回繰り返すイオン交換操作
を行った。イオン交換後、水洗し100℃で12時間乾
燥し、触媒40を調製した。
Gas composition: NO: 500ppm, C3H6: 5
00ppm, CO: 0.5%, 0.00ppm. :2%, He
Balance gas flow rate: 2Nlh, reaction temperature: 500℃
[Comparative Example 1] 10 g of crystalline silicate 1 described in Example 1 was added to an aqueous solution in which 1 g of cupric chloride was dissolved in 500 cc of water, and an ion exchange operation was performed by repeating stirring three times for 12 hours at room temperature. Ta. After ion exchange, it was washed with water and dried at 100° C. for 12 hours to prepare catalyst 40.

この触媒40を実施例1に示した条件と同一条件にて活
性評価試験を実施した。結果を表2に併せて示す。
An activity evaluation test was conducted on this catalyst 40 under the same conditions as those shown in Example 1. The results are also shown in Table 2.

〔実施例2〕 実施例1の触媒1と比較例1の触媒40を0.5g、常
圧固定床流通式反応器に充填し、反応条件を変えて活性
評価試験を行った。その結果を表3に示す。
[Example 2] 0.5 g of Catalyst 1 of Example 1 and Catalyst 40 of Comparative Example 1 were packed into an atmospheric pressure fixed bed flow reactor, and an activity evaluation test was conducted under different reaction conditions. The results are shown in Table 3.

なお、表3に示す100時間後・の活性評価結果は73
0℃X100時間(ガス組成雰囲気)強制加熱試験後に
実施した活性評価結果である。
In addition, the activity evaluation result after 100 hours shown in Table 3 is 73
These are the results of an activity evaluation conducted after a forced heating test at 0° C. for 100 hours (gas composition atmosphere).

以上のように本発明で使用される触媒は、SO3が含有
したガスを用いても活性が高いこと、また活性の経時変
化が少ないことがわかった。
As described above, it was found that the catalyst used in the present invention has high activity even when using a gas containing SO3, and that the activity changes little over time.

〔実施例3〕 実施例1の結晶性シリケート1の原料調合時の硫酸第二
鉄の代わりに塩化第二鉄と塩化クロムの混合物を用い、
NazO・(0,09Fez03・0.01Cr2L 
・0.9^1.0.) −30Si02−1600H,
0のモル比になるように調合した点以外は、結晶性シリ
ケート1と同じ方法で結晶性シリケートを得、同じ方法
でCuとZnの共イオン交換を実施し触媒41を得た。
[Example 3] A mixture of ferric chloride and chromium chloride was used instead of ferric sulfate when preparing the raw material for crystalline silicate 1 in Example 1,
NazO・(0.09Fez03・0.01Cr2L
・0.9^1.0. )-30Si02-1600H,
Crystalline silicate was obtained in the same manner as Crystalline Silicate 1, except that the molar ratio was adjusted to 0, and Catalyst 41 was obtained by co-ion exchange of Cu and Zn in the same manner.

また結晶性シリケート1を用いて実施例1と同じ方法で
Cuと2nとMgの3種金属の共イオン交換を実施し、
触媒42を得た。実施例1と同じ活性評価を行った結果
を表2に併せて示す。
In addition, co-ion exchange of three metals, Cu, 2n, and Mg, was carried out using crystalline silicate 1 in the same manner as in Example 1,
A catalyst 42 was obtained. Table 2 also shows the results of the same activity evaluation as in Example 1.

〔発明の効果〕〔Effect of the invention〕

以上、実施例に示したように、本発明において特定の結
晶構造と特定の組成を有する結晶性シリケートに銅とさ
らに特定の金属を共合させた触媒を用いることにより、
NOx 、 Co 、 HCを含有する排ガス中のNO
X 、 CO、HCを低減させることが可能となる。
As shown in the examples above, in the present invention, by using a catalyst in which copper and a specific metal are combined with a crystalline silicate having a specific crystal structure and a specific composition,
NO in exhaust gas containing NOx, Co, and HC
It becomes possible to reduce X, CO, and HC.

なお、本実施例では本触媒を粒状にて活性評価試験を行
っているが、コーデイユライト等1のハニカム基材に本
触媒をコーティングし、/’tニカム形状においても有
効な作用を有することは言うまでもない。
In this example, the activity evaluation test was carried out using the present catalyst in the form of granules, but it is possible that the present catalyst would have an effective effect even in the form of a honeycomb substrate such as cordeurite. Needless to say.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は自動車排ガスの組成(触媒なし)図表、第2図
は三元触媒を用した場合の排ガス組成図表である。
FIG. 1 is a diagram of the composition of automobile exhaust gas (without catalyst), and FIG. 2 is a diagram of the composition of exhaust gas when a three-way catalyst is used.

Claims (2)

【特許請求の範囲】[Claims] (1)下記A表で示されるX線回折特性を有し、脱水さ
れた状態において酸化物のモル比で表わして、 (1.0±0.8)R_2O・〔aM_2O_3・bA
l_2O_3〕・ySiO_2(但し、上記式中、Rは
アルカリ金属イオン及び/又は水素、MはVIII族金属、
希土類金属、チタン、バナジウム、クロム、ニオブ、ア
ンチモン、ガリウムからなる群から選ばれた1種以上の
元素イオン、a+b=1,a≧0,b≧0,y>11) の化学式を有する結晶性シリケートに、銅とさらに特定
の金属を共存させてなることを特徴とする排ガス処理触
媒。 A表 ▲数式、化学式、表等があります▼ W:弱 M:中級 S:強 VS:非常に強 〔照射は銅のKα線〕 〔I_0は最も強いピーク強度でI/I_0は相対強度
(1) It has the X-ray diffraction characteristics shown in Table A below, expressed as the molar ratio of oxide in a dehydrated state, (1.0±0.8)R_2O・[aM_2O_3・bA
l_2O_3]・ySiO_2 (However, in the above formula, R is an alkali metal ion and/or hydrogen, M is a group VIII metal,
One or more element ions selected from the group consisting of rare earth metals, titanium, vanadium, chromium, niobium, antimony, and gallium, crystalline with the chemical formula a+b=1, a≧0, b≧0, y>11) An exhaust gas treatment catalyst characterized by being made by coexisting silicate with copper and a specific metal. Table A ▲ Contains mathematical formulas, chemical formulas, tables, etc. ▼ W: Weak M: Intermediate S: Strong VS: Very strong [Irradiation is copper Kα ray] [I_0 is the strongest peak intensity and I/I_0 is relative intensity]
(2)上記他の活性金属がマグネシウム、カルシウム、
バリウム、ストロンチウム、リチウム、ナトリウム、カ
リウム、ホウ素、アルミニウム、リン、スズ、アンチモ
ン、シリコン、チタニウム、亜鉛、バナジウム、ニオブ
、鉄、コバルト、ニッケル、マンガン、ランタン、セリ
ウム、プラセオジウム、ネオジウム、サマリウム、タン
グステンの中から少なくとも1種以上が含まれる特許請
求の範囲第1項記載の排気ガス処理触媒。
(2) The other active metals mentioned above are magnesium, calcium,
Barium, strontium, lithium, sodium, potassium, boron, aluminum, phosphorus, tin, antimony, silicon, titanium, zinc, vanadium, niobium, iron, cobalt, nickel, manganese, lanthanum, cerium, praseodymium, neodymium, samarium, tungsten. The exhaust gas treatment catalyst according to claim 1, which contains at least one kind selected from among them.
JP2105168A 1990-04-23 1990-04-23 Exhaust gas treatment catalyst Expired - Fee Related JP2778801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2105168A JP2778801B2 (en) 1990-04-23 1990-04-23 Exhaust gas treatment catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2105168A JP2778801B2 (en) 1990-04-23 1990-04-23 Exhaust gas treatment catalyst

Publications (2)

Publication Number Publication Date
JPH044045A true JPH044045A (en) 1992-01-08
JP2778801B2 JP2778801B2 (en) 1998-07-23

Family

ID=14400155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2105168A Expired - Fee Related JP2778801B2 (en) 1990-04-23 1990-04-23 Exhaust gas treatment catalyst

Country Status (1)

Country Link
JP (1) JP2778801B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422333A (en) * 1992-08-25 1995-06-06 Idemitsu Kosan Company Limited Exhaust gas purifying catalyst
US5928441A (en) * 1995-08-15 1999-07-27 Sumitomo Metal Industries, Ltd. Hot rolling method of steel products and hot rolling roll for steel products
US6488903B2 (en) * 1998-05-29 2002-12-03 Siemens Aktiengesellschaft Method for cleaning diesel engine exhaust gas
WO2009017012A1 (en) * 2007-07-30 2009-02-05 Nippon Chemical Industrial Co., Ltd Process for producing ss-zeolite containing rhodium
CN105263617B (en) * 2013-12-11 2017-06-06 浙江大学 For the catalyst and preparation method of nitre mercury Collaborative Control

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422333A (en) * 1992-08-25 1995-06-06 Idemitsu Kosan Company Limited Exhaust gas purifying catalyst
US5928441A (en) * 1995-08-15 1999-07-27 Sumitomo Metal Industries, Ltd. Hot rolling method of steel products and hot rolling roll for steel products
US6488903B2 (en) * 1998-05-29 2002-12-03 Siemens Aktiengesellschaft Method for cleaning diesel engine exhaust gas
WO2009017012A1 (en) * 2007-07-30 2009-02-05 Nippon Chemical Industrial Co., Ltd Process for producing ss-zeolite containing rhodium
CN105263617B (en) * 2013-12-11 2017-06-06 浙江大学 For the catalyst and preparation method of nitre mercury Collaborative Control

Also Published As

Publication number Publication date
JP2778801B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
CA2151229C (en) Ammonia decomposition catalysts
JP4957176B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
EP0462598B1 (en) Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
JP2656061B2 (en) Purification method of oxidizing gas emission containing nitrogen oxides
JPH04219141A (en) Exhaust gas purification catalyst
JPH044045A (en) Catalyst for processing exhaust gas
CA2045128C (en) A catalyst for decomposing nitrogen oxides and a method of purifying a waste gas containing nitrogen oxides
JP3276678B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
US5219545A (en) Catalyst and method for catalytically decomposing nitrogen oxides
JPH07328437A (en) Ammonia decomposition catalyst
JPH0416239A (en) Treatment of exhaust gas
JP2659840B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP3510908B2 (en) Exhaust gas purification catalyst
JP2734476B2 (en) Catalyst for direct catalytic cracking of nitrogen oxides
EP0445816B1 (en) Use of a zeolitic catalyst for decomposing nitrogen oxides in the absence of reducing agent
JPH02164453A (en) Preparation and use of nitrogen oxide removing catalyst
JPH04244218A (en) Method for purifying exhaust gas
JPH0889758A (en) Decomposing method of ammonia
KR0146879B1 (en) Mordenite containing zeolite catalyst for nox removal
JPH04193347A (en) Catalyst for purification of exhaust gas
JP3229117B2 (en) Ammonia decomposition method
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH03101837A (en) Production of catalyst for decomposition of nitrogen oxide
JPH06335618A (en) Ammonia decomposing method
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees