JPH0570391A - Method for producing aromatic hydroxide - Google Patents

Method for producing aromatic hydroxide

Info

Publication number
JPH0570391A
JPH0570391A JP3260552A JP26055291A JPH0570391A JP H0570391 A JPH0570391 A JP H0570391A JP 3260552 A JP3260552 A JP 3260552A JP 26055291 A JP26055291 A JP 26055291A JP H0570391 A JPH0570391 A JP H0570391A
Authority
JP
Japan
Prior art keywords
copper
catalyst
chlorobenzene
selectivity
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3260552A
Other languages
Japanese (ja)
Inventor
Masahiko Furuya
方彦 古谷
Hitoshi Nakajima
斉 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3260552A priority Critical patent/JPH0570391A/en
Publication of JPH0570391A publication Critical patent/JPH0570391A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To produce a phenol in high selectivity and in high yield by hydrolyzing an aromatic halide in a vapor phase. CONSTITUTION:An aromatic halide is hydrolyzed in a vapor phase by using a mixture (e.g. CuO+Na-ZSM-5) prepared by blending a copper compound with a substantially nonacidic crystalline aluminosilicate as a catalyst to produce a phenol.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、芳香族水酸化物の製造
方法に関する。さらに詳しくは、芳香族ハロゲン化物を
気相にて銅含有化合物と実質的に無酸性の結晶性アルミ
ノシリケートとの混合触媒を用い加水分解し、芳香族水
酸化物を製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an aromatic hydroxide. More specifically, it relates to a method for producing an aromatic hydroxide by hydrolyzing an aromatic halide in a gas phase using a mixed catalyst of a copper-containing compound and a substantially acid-free crystalline aluminosilicate.

【0002】[0002]

【従来の技術】ハロゲン化芳香族化合物から気相にて加
水分解してフェノール類を製造する方法としては、銅を
担持したリン酸カルシュウムアパタイトを触媒として用
いる方法(米国特許第2,988,573号等)、銅を
担持したリン酸ジルコニウムを触媒として用いる方法
(特公昭51−6108号公報)、銅を担持した希土類
金属リン酸塩を触媒に用いる方法(特開昭47−279
36号公報)、最近金属成分含有の結晶性アルミノシリ
ケートを触媒として用いる方法(特開昭62−1923
30号公報、特開昭62−281834号公報)、結晶
性ボロシリケートを触媒とする方法(特開昭62−24
0635号公報)、結晶性鉄シリケートを触媒にする方
法(特開昭62−240636号公報)、結晶性クロモ
シリケートを触媒に用いる方法(特開昭62−2406
34号公報)が提案されている。
2. Description of the Related Art As a method for producing phenols by hydrolyzing a halogenated aromatic compound in a gas phase, a method using copper-supported calcium phosphate apatite as a catalyst (US Pat. No. 2,988,573) is used. No.), a method using zirconium phosphate supporting copper as a catalyst (Japanese Patent Publication No. 51-6108), and a method using a rare earth metal phosphate supporting copper as a catalyst (Japanese Patent Laid-Open No. 47-279).
No. 36), a method using a crystalline aluminosilicate containing a metal component as a catalyst recently (JP-A-62-1923).
30 and JP-A-62-281834), a method using a crystalline borosilicate as a catalyst (JP-A-62-24).
No. 0635), a method using a crystalline iron silicate as a catalyst (JP-A-62-240636), and a method using a crystalline chromosilicate as a catalyst (JP-A-62-2406).
No. 34) is proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、芳香族
ハロゲン化物の加水分解触媒として、リン酸カルシュウ
ムアパタイト、リン酸ジルコニウム、希土類リン酸塩の
触媒は、活性が低く、500℃以上の高温反応や低い空
間速度で反応させる必要がある。また、結晶性メタロシ
リケート系の触媒は、比較的活性は高いが選択性が充分
でない。特に高転化率における選択率が劣る問題を有し
ている。また、コーキングによる経時活性低下が大きい
問題も有しており、工業的には満足できるレベルにな
い。
However, as a hydrolysis catalyst for aromatic halides, calcium phosphate apatite, zirconium phosphate, and rare earth phosphate catalysts have low activity, and high temperature reaction at 500 ° C. or higher and low It is necessary to react at space velocity. Further, the crystalline metallosilicate-based catalyst has relatively high activity, but the selectivity is not sufficient. In particular, there is a problem that the selectivity is poor at high conversion. In addition, there is a problem that activity deterioration with time due to caulking is large, which is not industrially satisfactory.

【0004】[0004]

【課題を解決するための手段】本発明者らは、芳香族ハ
ロゲン化物の加水分解によりフェノール類を製造する方
法について鋭意検討した結果、加水分解触媒として銅含
有化合物と実質的に無酸性の結晶性アルミノシリケート
との混合触媒を用いることにより、高選択率、高収率
で、かつ、コーキングによる経時活性低下が少なく、安
定してフェノール類を製造できることを見いだし、本発
明を完成するに至った。
Means for Solving the Problems As a result of intensive studies on the method for producing phenols by hydrolysis of aromatic halides, the present inventors have found that a copper-containing compound and a substantially acid-free crystal as a hydrolysis catalyst. By using a mixed catalyst with a water-soluble aluminosilicate, it was found that phenols can be produced stably with a high selectivity, a high yield, and a decrease in the activity over time due to coking, and the present invention has been completed. ..

【0005】本発明に用いられる結晶性アルミノシリケ
ートとしては、ハイシリカの結晶性アルミノシリケート
が好ましい。例えば、ZSM−5、ZSM−11、AZ
−1(特開昭59−128210号公報)類似の構造を
有するものが好ましい。シリカ/アルミナ比としては1
0以上、100以下のものが好ましい。これら結晶性ア
ルミノシリケートの交換カチオンは、ナトリウム、カリ
ウム、セシウム等のアルカリ金属カチオンであって、実
質的に無酸性のものが用いられる。実質的に無酸性にす
るには、酸度を中和するアルカリ金属をイオン交換等に
よって結晶性アルミノシリケートに含有させればよい。
通常、アルカリ金属の量は、結晶性アルミノシリケート
骨格中のアルミニウム原子に対応し原子比として0.9
5〜1.05の量比が好ましい。
As the crystalline aluminosilicate used in the present invention, a high silica crystalline aluminosilicate is preferable. For example, ZSM-5, ZSM-11, AZ
-1 (Japanese Patent Laid-Open No. 59-128210) Those having a similar structure are preferable. Silica / alumina ratio is 1
It is preferably 0 or more and 100 or less. Exchange cations of these crystalline aluminosilicates are alkali metal cations such as sodium, potassium and cesium, which are substantially non-acidic. In order to make it substantially non-acidic, an alkali metal that neutralizes the acidity may be added to the crystalline aluminosilicate by ion exchange or the like.
Usually, the amount of alkali metal corresponds to the aluminum atom in the crystalline aluminosilicate skeleton, and the atomic ratio is 0.9.
A quantitative ratio of 5 to 1.05 is preferable.

【0006】本発明において結晶性アルミノシリケート
は、スチーム存在下で200〜700℃の温度で処理す
るか、スチーム非存在下で600〜850℃の温度下で
熱処理したものが、選択性、触媒の安定性から好ましく
用いられる。芳香族ハロゲン化物としては、塩素原子、
臭素原子のいずれか1つ以上が芳香族核に直接置換した
ものであって、例えば、クロロベンゼン、ジクロロベン
ゼン、ブロモベンゼン、ジブロモベンゼン、クロロトル
エン、ブロモトルエン、クロロキシレン、ブロモキシレ
ン等のハロゲン置換ベンゼン類、クロロナフタレン、ブ
ロモナフタレン等のハロゲン置換ナフタレン類を挙げる
ことができる。
In the present invention, the crystalline aluminosilicate is treated at a temperature of 200 to 700 ° C. in the presence of steam or heat-treated at a temperature of 600 to 850 ° C. in the absence of steam to obtain the selectivity and the catalytic property. It is preferably used because of its stability. As the aromatic halide, a chlorine atom,
Any one or more of bromine atoms directly substituted with an aromatic nucleus, for example, halogen-substituted benzene such as chlorobenzene, dichlorobenzene, bromobenzene, dibromobenzene, chlorotoluene, bromotoluene, chloroxylene, bromoxylene, etc. And halogen-substituted naphthalenes such as chloronaphthalene and bromonaphthalene.

【0007】本発明の触媒調製に用いられる銅含有化合
物としては、酸化銅、水酸化銅、硝酸銅、塩化銅、酢酸
銅等を挙げることができる。好ましいのは酸化銅、水酸
化銅である。銅の触媒中の含有量は、金属として0.0
5〜10重量%、好ましくは0.1〜5重量%である。
Examples of the copper-containing compound used for preparing the catalyst of the present invention include copper oxide, copper hydroxide, copper nitrate, copper chloride and copper acetate. Copper oxide and copper hydroxide are preferred. The content of copper in the catalyst is 0.0 as a metal.
It is 5 to 10% by weight, preferably 0.1 to 5% by weight.

【0008】本発明の触媒としては、銅含有化合物粉末
と実質的に無酸性の結晶性アルミノシリケートを均一に
混合し、必要ならアルミナ、シリカ、粘度等の無機バイ
ンダーを加え成型したものが用いられる。無機バインダ
ーとしては、低酸性度のものを用いるのが好ましい。通
常、無機バインダーは成型触媒の10〜90重量%の範
囲で選ぶことができる。触媒の成型方法としては、押出
し造粒法、圧縮成型造粒法、転動造粒法、油中成型造粒
法、噴霧造粒法等通常用いられる方法により、ペレット
状、タブレット状、球状等使用状体に応じ任意の形、大
きさに造粒することができる。本発明方法は、固定床、
移動床、流動床等いずれの方式でも実施することができ
る。
As the catalyst of the present invention, a copper-containing compound powder and a substantially acid-free crystalline aluminosilicate are uniformly mixed, and if necessary, an inorganic binder such as alumina, silica, or a viscosity is added and molded. .. As the inorganic binder, it is preferable to use one having a low acidity. Usually, the inorganic binder can be selected in the range of 10 to 90% by weight of the molded catalyst. Examples of the catalyst molding method include extrusion granulation method, compression molding granulation method, tumbling granulation method, in-oil molding granulation method, and spray granulation method. It can be granulated into any shape and size depending on the state of use. The method of the present invention comprises a fixed bed,
It can be carried out by any method such as a moving bed or a fluidized bed.

【0009】本発明方法の反応条件としては、原料ハロ
ゲン化芳香族化合物により異なるが、通常、250〜6
00℃の温度、好ましくは300〜550℃の温度、さ
らに好ましくは350〜500℃の反応温度が、水のハ
ロゲン化芳香族化合物に対するモル比としては0.5〜
100、好ましくは1〜50、さらに好ましくは1.5
〜20が用いられる。原料ハロゲン化芳香物の供給速度
としては、重量時間空間速度(WHSV)で0.05〜
20Hr-1、好ましくは0.1〜10Hr-1が用いられ
る。
The reaction conditions of the method of the present invention differ depending on the halogenated aromatic compound as the raw material, but usually 250 to 6
A temperature of 00 ° C., preferably 300 to 550 ° C., more preferably 350 to 500 ° C. is used as a molar ratio of water to the halogenated aromatic compound of 0.5 to
100, preferably 1-50, more preferably 1.5
~ 20 are used. The feed rate of the raw material halogenated aroma is 0.05-hour by weight hourly space velocity (WHSV).
20Hr −1 , preferably 0.1 to 10Hr −1 is used.

【0010】[0010]

【実施例】以下に実施例を挙げて具体的に説明するが、
本発明は、これに限定されるものではない。 実施例1 公知の方法によりZSM−5(SiO2 /AL2 3
45)を水熱合成し、次いで、常法により塩化ナトリウ
ム水溶液を用いナトリウム交換し、水洗、乾燥後、酸化
銅粉末を加え、乳鉢にて均一混合し、銅として0.6重
量%含ませたものを圧縮成型し、8〜20メッシュに揃
え反応に供した。
[Examples] Specific examples will be described below.
The present invention is not limited to this. Example 1 According to a known method, ZSM-5 (SiO 2 / AL 2 O 3 =
45) was hydrothermally synthesized, and then sodium exchange was carried out using a sodium chloride aqueous solution by a conventional method. After washing with water and drying, copper oxide powder was added and uniformly mixed in a mortar to contain 0.6% by weight of copper. The product was compression-molded and made into a mesh of 8 to 20 and subjected to a reaction.

【0011】反応は10mm径の石英製反応管に触媒を5
g充填し、加熱炉により所定温度に加熱、定量ポンプで
クロロベンゼン、水を各々所定量供給し、加水分解反応
を実施した。反応条件として450℃、水/クロロベン
ゼンモル比6、クロロベンゼンの供給量WHSVとして
0.3Hr-1、希釈剤として窒素を窒素/クロロベンゼ
ンモル比1.1で行なった。通液開始後2〜3時間目の
サンプリング液のガスクロマトグラフ分析より、クロロ
ベンゼンの転化率35%、フェノール選択率99.2mo
l %、ベンゼン選択率0.7mol %であった。
The reaction is carried out by adding a catalyst to a quartz reaction tube of 10 mm in diameter.
The mixture was charged with g, heated to a predetermined temperature in a heating furnace, and a predetermined amount of chlorobenzene and water were supplied by a metering pump to carry out the hydrolysis reaction. The reaction conditions were 450 ° C., a water / chlorobenzene molar ratio of 6, a chlorobenzene supply amount WHSV of 0.3 Hr −1 , and nitrogen as a diluent at a nitrogen / chlorobenzene molar ratio of 1.1. From the gas chromatographic analysis of the sampling liquid 2 to 3 hours after the start of liquid passage, the conversion of chlorobenzene was 35% and the selectivity of phenol was 99.2mo.
It was l% and the benzene selectivity was 0.7 mol%.

【0012】比較例1 実施例1に用いたZSM−5を、常法にしたがい塩化第
二銅水溶液を用い銅交換し、銅として0.6重量%含ま
せたものを実施例1と同様に成型し、クロロベンゼンの
加水分解反応に供した。反応条件は実施例1と同様条件
で行なった。その結果、クロロベンゼンの転化率は37
%、フェノール選択率は93mol %、ベンゼン選択率5
mol %、他は高沸点物で、主成分はナフタレン類であっ
た。反応条件のWHSVを1.0Hr-1に替え実施し
た。クロロベンゼン転化率18%、フェノール選択率9
8%を示した。
Comparative Example 1 ZSM-5 used in Example 1 was copper-exchanged with an aqueous solution of cupric chloride according to a conventional method, and 0.6% by weight of copper was contained in the same manner as in Example 1. It was molded and subjected to a hydrolysis reaction of chlorobenzene. The reaction conditions were the same as in Example 1. As a result, the conversion rate of chlorobenzene was 37
%, Phenol selectivity 93 mol%, benzene selectivity 5
Mol% and others were high-boiling substances, and the main component was naphthalene. The reaction conditions were changed from WHSV to 1.0 Hr −1 . Chlorobenzene conversion 18%, phenol selectivity 9
8%.

【0013】比較例2 実施例1と同様に、ただし、ナトリウム交換の替わりに
塩化アンモニウム水溶液を用い、アンモニウム交換し、
乾燥後、500℃で仮焼し、プロトン型とした。このも
のに酸化銅粉末を均一混合し、次いで、圧縮成型し、銅
として0.8重量%含む触媒を得た。実施例1と同様
に、この触媒をクロロベンゼンの加水分解反応に供し
た。実施例1と同様の反応条件で反応を行なった結果、
クロロベンゼンの転化率38%、フェノール選択率92
mol %、ベンゼン選択率5mol %であった。
Comparative Example 2 As in Example 1, except that an ammonium chloride aqueous solution was used instead of sodium exchange, and ammonium exchange was performed.
After drying, it was calcined at 500 ° C. to obtain a proton type. Copper oxide powder was uniformly mixed with this product and then compression molded to obtain a catalyst containing 0.8% by weight of copper. This catalyst was subjected to a hydrolysis reaction of chlorobenzene in the same manner as in Example 1. As a result of carrying out the reaction under the same reaction conditions as in Example 1,
Chlorobenzene conversion 38%, phenol selectivity 92
The mol% and the benzene selectivity were 5 mol%.

【0014】比較例3 実施例1のZSM−5ゼオライトを、常法にしたがい塩
化アンモニウム水溶液を用いアンモニウム交換し、乾
燥、次いで、500℃、5時間空気中で焼成し、プロト
ン型にしたものを比較例1と同様に、塩化第二銅水溶液
を用いイオン交換し、水洗、乾燥、500℃で5時間空
気中で焼成し、圧縮成型し銅として1.0重量%含む触
媒を得た。この触媒を実施例1と同様に、クロロベンゼ
ンの加水分解反応に用いた。実施例1と同様条件で実施
した結果、クロロベンゼン転化率36%、フェノール選
択率88mol %であった。反応条件のWHSVを1.0
に替え同様に実施したところ、クロロベンゼンの転化率
18%、フェノール選択率98%を示した。
Comparative Example 3 The ZSM-5 zeolite of Example 1 was exchanged with ammonium using an ammonium chloride aqueous solution according to a conventional method, dried, and then calcined in the air at 500 ° C. for 5 hours to obtain a proton type. In the same manner as in Comparative Example 1, an aqueous cupric chloride solution was used for ion exchange, followed by washing with water, drying, firing in air at 500 ° C. for 5 hours, and compression molding to obtain a catalyst containing 1.0% by weight of copper. This catalyst was used in the hydrolysis reaction of chlorobenzene as in Example 1. As a result of carrying out under the same conditions as in Example 1, the chlorobenzene conversion rate was 36% and the phenol selectivity was 88 mol%. The reaction condition WHSV is 1.0
Was carried out in the same manner, but the conversion of chlorobenzene was 18% and the selectivity of phenol was 98%.

【0015】実施例2 実施例1と同様に、ただし、Na型ZSM−5を80容
量%水蒸気/窒素雰囲気にて、450℃温度下で20時
間加熱処理した。次いで、酸化銅を銅として1.0重量
%およびシリカゾルをバインダーとして添加(シリカと
して30重量%)混練り、押し出し成型、乾燥、500
℃で焼成し、1mmφ×3mmのペレットとし、クロロベン
ゼンの加水分解反応に供した。反応条件は450℃、W
HSV=0.2Hr-1、水/クロロベンゼンモル比2、
窒素/クロロベンゼンモル比8で実施した。その結果、
2〜3時間目のクロロベンゼン転化率42%、フェノー
ル選択率99.0mol %で、20時間目のクロロベンゼ
ン転化率は35%、フェノール選択率は99.3mol %
を示した。
Example 2 As in Example 1, except that Na-type ZSM-5 was heat-treated at a temperature of 450 ° C. for 20 hours in an 80 vol% steam / nitrogen atmosphere. Then, copper oxide was added as copper at 1.0% by weight and silica sol was added as a binder (30% by weight as silica), kneading, extrusion molding, drying, 500
The pellets were baked at 0 ° C. to give pellets of 1 mmφ × 3 mm, which were subjected to a hydrolysis reaction of chlorobenzene. The reaction conditions are 450 ° C, W
HSV = 0.2 Hr -1 , water / chlorobenzene molar ratio 2,
It was carried out at a nitrogen / chlorobenzene molar ratio of 8. as a result,
Chlorobenzene conversion rate of 2 to 3 hours is 42%, phenol selectivity is 99.0 mol%, chlorobenzene conversion rate of 20 hours is 35%, phenol selectivity is 99.3 mol%.
showed that.

【0016】実施例3 実施例1と同様に、ただし、酸化銅に替えて塩化銅を用
い、Na型のZSM−5とブレンドし、実施例1と同様
に、銅として0.6重量%含む成型体を触媒に用い、実
施例1と同様に、クロロベンゼンの加水分解反応を行な
った。その結果、クロロベンゼン転化率47%で、フェ
ノール選択率97mol %であった。
Example 3 Similar to Example 1, except that copper chloride was used in place of copper oxide, blended with Na-type ZSM-5, and contained 0.6% by weight of copper as in Example 1. Using the molded body as a catalyst, hydrolysis reaction of chlorobenzene was carried out in the same manner as in Example 1. As a result, the chlorobenzene conversion rate was 47% and the phenol selectivity was 97 mol%.

【0017】実施例4 実施例1と同様に、ただし、酸化銅に替えて水酸化銅を
Na型ZSM−5に混合し、銅として0.6重量%含ま
せた成型体を触媒に用い、クロロベンゼンの加水分解を
実施例1と同様に行なった。その結果、反応開始後1〜
2時間のクロロベンゼン転化率は33%、フェノール選
択率は反応98.2mol %を示し、9〜10時間目のク
ロロベンゼン転化率は28%、フェノール選択率は9
8.7mol%であった。
Example 4 As in Example 1, except that copper hydroxide was mixed with Na-type ZSM-5 instead of copper oxide, and 0.6% by weight of copper was added to the catalyst, and a catalyst was used. Hydrolysis of chlorobenzene was performed as in Example 1. As a result, 1 to
The chlorobenzene conversion rate for 2 hours was 33%, the phenol selectivity was 98.2 mol% for the reaction, and the chlorobenzene conversion rate for 9 to 10 hours was 28% and the phenol selectivity was 9%.
It was 8.7 mol%.

【0018】[0018]

【発明の効果】本発明の方法によれば、芳香族ハロゲン
化物を加水分解し、フェノール類を高転化率で、かつ、
高選択率で製造することができ、副生物がきわめて少な
い等工業的意義は大である。
According to the method of the present invention, aromatic halides are hydrolyzed, phenols are converted at a high conversion rate, and
It can be manufactured with high selectivity and has very few industrial by-products, which has great industrial significance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 芳香族ハロゲン化物を気相にて加水分解
し、芳香族水酸化物を製造する方法において、銅含有化
合物と実質的に無酸性の結晶性アルミノシリケートとの
混合触媒を用いることを特徴とする芳香族水酸化物の製
造法。
1. A method for producing an aromatic hydroxide by hydrolyzing an aromatic halide in a gas phase, wherein a mixed catalyst of a copper-containing compound and a substantially acid-free crystalline aluminosilicate is used. A process for producing an aromatic hydroxide, characterized by:
【請求項2】 銅含有化合物が酸化銅、水酸化銅であっ
て、実質的に無酸性の結晶性アルミノシリケートがアル
カリ型結晶性アルミノシリケートである請求項1記載の
方法
2. The method according to claim 1, wherein the copper-containing compound is copper oxide or copper hydroxide, and the substantially acid-free crystalline aluminosilicate is an alkaline crystalline aluminosilicate.
JP3260552A 1991-09-12 1991-09-12 Method for producing aromatic hydroxide Withdrawn JPH0570391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3260552A JPH0570391A (en) 1991-09-12 1991-09-12 Method for producing aromatic hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3260552A JPH0570391A (en) 1991-09-12 1991-09-12 Method for producing aromatic hydroxide

Publications (1)

Publication Number Publication Date
JPH0570391A true JPH0570391A (en) 1993-03-23

Family

ID=17349545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3260552A Withdrawn JPH0570391A (en) 1991-09-12 1991-09-12 Method for producing aromatic hydroxide

Country Status (1)

Country Link
JP (1) JPH0570391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131617A (en) * 2004-10-05 2006-05-25 Sumitomo Chemical Co Ltd Method for producing hydroxy compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131617A (en) * 2004-10-05 2006-05-25 Sumitomo Chemical Co Ltd Method for producing hydroxy compound

Similar Documents

Publication Publication Date Title
JP2583483B2 (en) Method for producing halogenated benzene derivatives
JP2542401B2 (en) Method for producing alkene carboxylic acid ester
JP2557420B2 (en) Method for producing 4-pentenoate ester
US4743702A (en) Preparation of aliphatic dinitriles
US5019657A (en) Process for the preparation of halophenols
JPS61289060A (en) Manufacture of 4-pentenoic acid ester
JPH0570391A (en) Method for producing aromatic hydroxide
JPS62167749A (en) Manufacture of nitrile
US4604470A (en) Process for the isomerization of halogenated thiophenes
JPH0570390A (en) Method for producing aromatic hydroxide
JPH01233246A (en) Production of phenylethanol
JPH04334332A (en) Production of hydroxy aromatic compound
JPH059141A (en) Production of hydroxy aromatic compound
JPH04117339A (en) Production of aromatic hydroxide
US4555584A (en) Process for producing conjugated dienes
JPH04117338A (en) Production of aromatic hydroxide
JPH059142A (en) Production of phenol compounds
JPH04334333A (en) Production of phenols
JPH0720894B2 (en) Method for producing halogenated benzene derivative
JPH0421645A (en) Preparation of hydroxy aromatic compound
JPS61112040A (en) Production of phenylacetaldehyde
JP2715525B2 (en) Dehydrohalogenation method
JPS6311331B2 (en)
JPH0570389A (en) Method for producing phenols
JPH047039A (en) Production of catalyst

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203