JPH0587585B2 - - Google Patents

Info

Publication number
JPH0587585B2
JPH0587585B2 JP59204776A JP20477684A JPH0587585B2 JP H0587585 B2 JPH0587585 B2 JP H0587585B2 JP 59204776 A JP59204776 A JP 59204776A JP 20477684 A JP20477684 A JP 20477684A JP H0587585 B2 JPH0587585 B2 JP H0587585B2
Authority
JP
Japan
Prior art keywords
etching
nickel
alloy
carbon content
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59204776A
Other languages
Japanese (ja)
Other versions
JPS6182453A (en
Inventor
Tsunenori Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP20477684A priority Critical patent/JPS6182453A/en
Publication of JPS6182453A publication Critical patent/JPS6182453A/en
Publication of JPH0587585B2 publication Critical patent/JPH0587585B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はエツチング加工用素材に係り、更に詳
しくはIC用リードフレームなどのエツチング加
工用素材に関する。 〔従来の技術〕 IC用リードフレームの多くは板厚0.10〜0.30mm
の42合金と呼ばれる42%−ニツケル−鉄合金をプ
レス打ち抜き加工、あるいはエツチング加工によ
つて製造されている。また、表示管などの各種電
子部品用素材として50%ニツケル−鉄合金や52%
ニツケル−鉄合金などのニツケル−鉄合金が用い
られている。 しかしながら、ニツケル−鉄合金よりなる素材
をエツチング加工する場合、比較的長いエツチン
グ時間を要し、特に細かいパターンをエツチング
加工するときにエツチング時間が長くなることか
ら、フオトレジストと素材の密着力が低下し、エ
ツチングによつて形成される製品の加工部の直線
性などがそこなわれるという問題があつた。 又、エツチングによつて形成される断面がアラ
ビと呼ばれる状態になり、ガサツキが生じてしま
うという問題があつた。 〔発明が解決しようとする問題点〕 そこで本発明が解決しようとする問題点は上記
の従来の欠点を解消したエツチング加工用素材を
提供することにある。 〔問題点を解決するための手段〕 本発明者は上記の問題点を解決すべく研究の結
果、素材中の炭素含有量を0.01%以下にすること
により、所期の目的を達成し得ることを見いだ
し、かかる知見にもとづいて本発明を完成したも
のである。 即ち、本発明の要旨は冷間圧延によつて製造さ
れる板厚0.020〜0.40mmの42%Ni−Fe合金または
36%Ni−Fe合金よりなるエツチング加工用のニ
ツケル−鉄合金素材において、該素材中の炭素含
有量が0.01%以下であることを特徴とするエツチ
ング加工用素材である。 ここで、42%Ni−Fe合金、36%Ni−Fe合金と
いうのは、たとえばMilitary規格(MIL−I−
23011C(1974年3月29日)「IRON−NICKEL
ALLOYS FOR SEALING TO GLASSES
AND CERAMICS」(Table Class5、
Class7参照))で規定される公知のいわゆる42%
合金、36%合金を意味し、具体的には、42%程度
のNiを含有する、あるいは36%程度のNiを含有
するNi−Fe合金を意味する。 〔作用〕 而して本発明において炭素含有量を0.01%以下
にすることによりエツチング速度は早められると
共にアラビが解消されるものである。 ニツケル−鉄合金のエツチング速度はニツケル
含有量によつて変わり、ニツケル含有量が少ない
ほど早くなる傾向はあるが、ニツケル含有量が50
%以下のニツケル−鉄合金について調べた結果、
複数のニツケル含有量が異なるニツケル−鉄合金
について炭素含有量が0.01%以下のときエツチン
グ速度が早いという共通の現象が認められた。 なお、上記のようなエツチング加工用素材は、
通常、所定の板厚に加工するために、熱間圧延、
冷間圧延、焼鈍などの工程が繰り返して行われる
が、特に冷間圧延はIC用リードフレームやシヤ
ドウマスクなどのエツチング加工用素材に必須の
工程である。また、これらのエツチング加工用素
材としては、一般に0.020〜0.40mmの範囲の板厚
に加工され、所定のエツチングが施される。板厚
が0.020mm未満では、素材形状の維持、強度の点
からエツチング用素材として不利であり、一方、
板厚が0.40mmを超えるとエツチング時間が増大
し、レジストの強度も不足して寸法精度がいきお
い悪くなるので好ましくない。 第1図は42%ニツケル−鉄合金についてもとめ
た炭素含有量によるエツチング速度の変化を示
す。 この図からあきらかなように炭素含有量が0.02
%のときのエツチング速度を1とすると0.01%以
下の炭素含有量のときには1.25〜1.30と炭素含有
量が0.02%の場合に比して25%〜30%早くなる。 又、第2図は36%ニツケル−鉄合金についても
とめた炭素含有量によるエツチング速度の変化を
示す。 36%ニツケル−鉄合金についても42%ニツケル
−鉄合金の場合も同様に炭素含有量が0.01%以下
のときにエツチング速度が早くなつている。 なお、Ni−Fe合金において、Ni含有量が42%
のものは、その熱膨張係数がセラミツクスやシリ
コンなどの熱膨張係数に近いため、従来からIC
リードフレーム材などに好適に用いられている素
材である。また、Ni含有量が36%のものは、そ
の熱膨張係数が著しく小さくアンバー材として公
知のものであり、近年、その熱膨張係数や耐食性
の特性を生かしてシヤドウマスク材などに用いら
れるようになつてきた素材である。 〔実施例〕 板厚0.15mmのNi%;41.5%,C%;0.007%であ
るニツケル−鉄合金よりなる素材の両面に100ピ
ンのリードフレームのレジストパターンを設け、
液温70℃の48゜B′e FeCl3腐蝕液を用い、2.0Kg/
cm2のスプレイ圧で両面からスプレイエツチングし
て、製品を得た。 〔比較例〕 板厚0.15mmのNi%;41.8%,C%;0.023%のニ
ツケル−鉄合金よりなる素材に対して実施例と同
様にしてレジスト製版したのち、液温70℃の
48゜B′e FeCl3腐蝕液を用い、20Kg/cm2のスプレイ
圧で両面からスプレイエツチングし、製品を得
た。 第1表は実施例及び比較例の結果を示す。
[Industrial Application Field] The present invention relates to a material for etching processing, and more particularly to a material for etching processing such as a lead frame for an IC. [Conventional technology] Most IC lead frames have a thickness of 0.10 to 0.30 mm.
It is manufactured from a 42% nickel-iron alloy called 42 alloy by press punching or etching. In addition, 50% nickel-iron alloy and 52% nickel-iron alloy are used as materials for various electronic parts such as display tubes.
Nickel-iron alloys such as nickel-iron alloys are used. However, when etching a material made of nickel-iron alloy, a relatively long etching time is required.Especially when etching a fine pattern, the longer etching time reduces the adhesion between the photoresist and the material. However, there was a problem in that the straightness of the processed parts of products formed by etching was impaired. Further, there was a problem in that the cross section formed by etching became rough, resulting in a state called arabic. [Problems to be Solved by the Invention] Therefore, the problem to be solved by the present invention is to provide a material for etching processing that eliminates the above-mentioned conventional drawbacks. [Means for Solving the Problems] As a result of research to solve the above problems, the present inventor has found that the intended purpose can be achieved by reducing the carbon content in the material to 0.01% or less. The present invention was completed based on this finding. That is, the gist of the present invention is to produce a 42% Ni-Fe alloy or
This is a nickel-iron alloy material for etching made of a 36% Ni-Fe alloy, characterized in that the carbon content in the material is 0.01% or less. Here, 42% Ni-Fe alloy and 36% Ni-Fe alloy are, for example, Military Standard (MIL-I-Fe alloy).
23011C (March 29, 1974) “IRON-NICKEL
ALLOYS FOR SEALING TO GLASSES
AND CERAMICS” (Table Class5,
The so-called 42% of public knowledge stipulated in Class 7))
Alloy, 36% alloy, and specifically means a Ni-Fe alloy containing about 42% Ni or about 36% Ni. [Function] Accordingly, in the present invention, by reducing the carbon content to 0.01% or less, the etching rate is increased and the arabic problem is eliminated. The etching rate of nickel-iron alloys varies depending on the nickel content, and tends to be faster as the nickel content decreases, but when the nickel content is 50
As a result of investigating nickel-iron alloys of less than %
A common phenomenon was observed in multiple nickel-iron alloys with different nickel contents: the etching rate is faster when the carbon content is 0.01% or less. In addition, the materials for etching processing as mentioned above are
Usually, hot rolling,
Processes such as cold rolling and annealing are performed repeatedly, and cold rolling in particular is an essential process for etching materials such as IC lead frames and shadow masks. These etching materials are generally processed to a thickness in the range of 0.020 to 0.40 mm and subjected to predetermined etching. If the plate thickness is less than 0.020 mm, it is disadvantageous as an etching material in terms of maintaining the material shape and strength.
If the plate thickness exceeds 0.40 mm, the etching time will increase, the strength of the resist will be insufficient, and the dimensional accuracy will deteriorate, which is not preferable. Figure 1 shows the variation of etching rate with carbon content determined for a 42% nickel-iron alloy. As is clear from this figure, the carbon content is 0.02
%, the etching rate is 1.25 to 1.30 when the carbon content is 0.01% or less, which is 25% to 30% faster than when the carbon content is 0.02%. FIG. 2 also shows the change in etching rate as a function of carbon content for a 36% nickel-iron alloy. Similarly, in the case of 36% nickel-iron alloy and 42% nickel-iron alloy, the etching rate becomes faster when the carbon content is 0.01% or less. In addition, in the Ni-Fe alloy, the Ni content is 42%.
Since its thermal expansion coefficient is close to that of ceramics and silicon, it has traditionally been used as an IC.
This material is suitably used for lead frame materials, etc. In addition, materials with a Ni content of 36% have a significantly small coefficient of thermal expansion and are known as amber materials, and in recent years, they have been used for materials such as shadow masks due to their thermal expansion coefficient and corrosion resistance. It is a material that has been used for a long time. [Example] A resist pattern of a 100-pin lead frame was provided on both sides of a material made of a nickel-iron alloy with a thickness of 0.15 mm and a Ni% of 41.5% and a C% of 0.007%.
Using 48°B′e FeCl 3 corrosive solution with a liquid temperature of 70°C, 2.0Kg/
The product was obtained by spray etching from both sides with a spray pressure of cm 2 . [Comparative Example] Resist plate making was performed on a material made of a nickel-iron alloy with Ni% of 41.8% and C% of 0.023% with a plate thickness of 0.15 mm in the same manner as in the example, and then a plate was prepared at a liquid temperature of 70°C.
A product was obtained by spray etching from both sides using a 48°B′e FeCl 3 etchant at a spray pressure of 20 kg/cm 2 . Table 1 shows the results of Examples and Comparative Examples.

〔発明の効果〕〔Effect of the invention〕

以上詳記した通り、本発明の素材によれば早
く、精度良くエツチング加工することができ、ア
ラビはみられず、品質の良いエツチング製品を製
造することができる。
As detailed above, according to the material of the present invention, it is possible to perform etching processing quickly and with high precision, and it is possible to produce etched products of good quality without any arabic defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は42%Ni−Fe合金についてもとめた炭
素量によるエツチング速度の変化を示すグラフ、
第2図は36%Ni−Fe合金についてもとめた炭素
量によるエツチング速度の変化を示すグラフであ
り、第3図は比較例におけるエツチング断面部の
金属組織のSEM写真(500倍)であり、第4図は
実施例におけるエツチング断面部の金属組織の
SEM写真(500倍)である。
Figure 1 is a graph showing the change in etching rate depending on the amount of carbon determined for a 42% Ni-Fe alloy.
Figure 2 is a graph showing the change in etching rate depending on the carbon content determined for the 36% Ni-Fe alloy, and Figure 3 is a SEM photograph (500x magnification) of the metal structure of the etched cross section in a comparative example. Figure 4 shows the metal structure of the etched cross section in the example.
This is a SEM photograph (500x magnification).

Claims (1)

【特許請求の範囲】 1 冷間圧延によつて製造される板厚0.020〜
0.40mmの42%Ni−Fe合金よりなるエツチング加
工用のニツケル−鉄合金素材において、該素材中
の炭素含有量が0.01%以下であることを特徴とす
るIC用リードフレーム、シヤドウマスクなどの
エツチング加工用素材。 2 冷間圧延によつて製造される板厚0.020〜
0.40mmの36%Ni−Fe合金よりなるエツチング加
工用のニツケル−鉄合金素材において、該素材中
の炭素含有量が0.01%以下であることを特徴とす
るIC用リードフレーム、シヤドウマスクなどの
エツチング加工用素材。
[Claims] 1. Plate thickness 0.020~ manufactured by cold rolling
Etching processing of lead frames for ICs, shadow masks, etc., which is a nickel-iron alloy material for etching made of 0.40 mm of 42% Ni-Fe alloy, characterized in that the carbon content in the material is 0.01% or less Material for use. 2 Plate thickness 0.020~ manufactured by cold rolling
Etching processing of lead frames for ICs, shadow masks, etc., which is a 0.40 mm nickel-iron alloy material for etching made of 36% Ni-Fe alloy, characterized in that the carbon content in the material is 0.01% or less. Material for use.
JP20477684A 1984-09-29 1984-09-29 Etching material Granted JPS6182453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20477684A JPS6182453A (en) 1984-09-29 1984-09-29 Etching material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20477684A JPS6182453A (en) 1984-09-29 1984-09-29 Etching material

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP28414594A Division JPH07180072A (en) 1994-10-25 1994-10-25 Production of etched parts
JP23808196A Division JPH09118959A (en) 1996-09-09 1996-09-09 Stock for etching

Publications (2)

Publication Number Publication Date
JPS6182453A JPS6182453A (en) 1986-04-26
JPH0587585B2 true JPH0587585B2 (en) 1993-12-17

Family

ID=16496157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20477684A Granted JPS6182453A (en) 1984-09-29 1984-09-29 Etching material

Country Status (1)

Country Link
JP (1) JPS6182453A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787235B2 (en) * 1989-12-19 1995-09-20 凸版印刷株式会社 Material for lead frame for semiconductor device and method for manufacturing lead frame for semiconductor device
JPH03188658A (en) * 1989-12-19 1991-08-16 Toppan Printing Co Ltd Lead frame material for semiconductor device and manufacture of lead flame for semiconductor device
JPH03188656A (en) * 1989-12-19 1991-08-16 Toppan Printing Co Ltd Lead frame material for semiconductor device and manufacture of lead frame for semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210818A (en) * 1976-07-16 1977-01-27 Nisshin Steel Co Ltd High ni-fe alloy of good productivity
JPS5845353A (en) * 1982-08-18 1983-03-16 Sumitomo Special Metals Co Ltd Fe-ni alloy with superior stress corrosion cracking resistance
JPS6144157A (en) * 1984-08-09 1986-03-03 Nippon Mining Co Ltd Fe-ni alloy having superior suitability to press blanking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210818A (en) * 1976-07-16 1977-01-27 Nisshin Steel Co Ltd High ni-fe alloy of good productivity
JPS5845353A (en) * 1982-08-18 1983-03-16 Sumitomo Special Metals Co Ltd Fe-ni alloy with superior stress corrosion cracking resistance
JPS6144157A (en) * 1984-08-09 1986-03-03 Nippon Mining Co Ltd Fe-ni alloy having superior suitability to press blanking

Also Published As

Publication number Publication date
JPS6182453A (en) 1986-04-26

Similar Documents

Publication Publication Date Title
JPH0148343B2 (en)
JPH0443980B2 (en)
JPH0587585B2 (en)
JPH1060525A (en) Production of low thermal expansion alloy thin sheet excellent in sheet shape and thermal shrinkage resistance
JPH0798975B2 (en) Method for producing Fe-Ni alloy
JPS6021331A (en) Production of low thermally expanding fe-ni alloy sheet
JP3151100B2 (en) Fe-Ni alloy shadow mask material
JP2702731B2 (en) Fe-Ni alloy with excellent etching processability and stress corrosion cracking resistance
JP3562492B2 (en) Stainless steel plate for photoetching and method of manufacturing the same
JPH07180072A (en) Production of etched parts
JPH09118959A (en) Stock for etching
JPH0995740A (en) Production of low thermal expansion alloy thin sheet excellent in sheet shape and thermal shrinkage resistance
JPH04160112A (en) Production of lead frame material
JPH04231418A (en) Production of lead frame material
JP2919842B2 (en) Lead frame material
JP3573303B2 (en) Method for producing Fe-Ni-based alloy sheet having excellent surface cleanliness
JPH08199332A (en) Super-nonmagnetic steel, super-nonmagnetic steel product and their production
JPH04221039A (en) Alloy material for lead frame and its production
JP3251691B2 (en) Fe-Ni alloy material for lead frame and manufacturing method
JPH04224630A (en) Manufacture of lead frame material
JPH02285054A (en) Fe-ni alloy for lead frame excellent in etching workability
JPH0681035A (en) Production of lead frame material
JP3029670B2 (en) Method for producing Fe-Ni alloy
TW494142B (en) Fe-Ni alloy for shadow mask
JPH06100982A (en) Production of lead frame material and lead frame using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term