JPH0587153B2 - - Google Patents

Info

Publication number
JPH0587153B2
JPH0587153B2 JP61302866A JP30286686A JPH0587153B2 JP H0587153 B2 JPH0587153 B2 JP H0587153B2 JP 61302866 A JP61302866 A JP 61302866A JP 30286686 A JP30286686 A JP 30286686A JP H0587153 B2 JPH0587153 B2 JP H0587153B2
Authority
JP
Japan
Prior art keywords
voltage
level shift
heterojunction
forming layer
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61302866A
Other languages
Japanese (ja)
Other versions
JPS63156367A (en
Inventor
Juji Awano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61302866A priority Critical patent/JPS63156367A/en
Priority to EP87311148A priority patent/EP0272885B1/en
Publication of JPS63156367A publication Critical patent/JPS63156367A/en
Priority to US07/398,281 priority patent/US4963948A/en
Publication of JPH0587153B2 publication Critical patent/JPH0587153B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8618Diodes with bulk potential barrier, e.g. Camel diodes, Planar Doped Barrier diodes, Graded bandgap diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 〔概要〕 本発明は、レベル・シフト・ダイオードに於い
て、ヘテロ接合界面にて電子親和力の差でエネル
ギ・バンドの不連続を生ずる一導電型異種化合物
半導体ヘテロ接合形成層を積層することに依り、
電圧シフト量を段階的でなく連続的に変え得るよ
うにしたものである。
[Detailed Description of the Invention] [Summary] The present invention is directed to the formation of a single conductivity type dissimilar compound semiconductor heterojunction in which energy band discontinuity occurs due to a difference in electron affinity at the heterojunction interface in a level shift diode. By stacking layers,
This allows the voltage shift amount to be changed continuously rather than stepwise.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体のヘテロ接合に於けるエネル
ギ・バンドの不連続性を利用したレベル・シフ
ト・ダイオードに関する。
The present invention relates to a level shift diode that utilizes energy band discontinuity in a semiconductor heterojunction.

〔従来の技術〕[Conventional technology]

従来、シリコン系半導体装置に於いては、pn
接合に於ける順方向の電圧降下が略一定であるこ
とを利用し、トランジスタを用いた論理回路など
の電圧レベルを所定値だけシフトさせる為のダイ
オードを構成している。一つのpn接合に依る電
圧降下で足りない場合には、必要に応じて複数個
のダイオードを直列接続して使用する。
Conventionally, in silicon-based semiconductor devices, pn
Utilizing the fact that the voltage drop in the forward direction at a junction is approximately constant, a diode is configured to shift the voltage level of a logic circuit using a transistor by a predetermined value. If the voltage drop caused by one pn junction is insufficient, use multiple diodes connected in series as necessary.

また、GaAs系半導体装置に於いては、pn接合
の代わりにシヨツトキ接合を用いるようにしてい
る。
Furthermore, in GaAs-based semiconductor devices, a Schottky junction is used instead of a pn junction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記説明したGaAs系半導体装置に於けるシヨ
ツトキ接合を用いたレベル・シフト・ダイオード
は、接合一つ当たりの電圧シフト量は0.6〜0.7
〔V〕と一定であるから、複数の接合を利用する
場合も、その整数倍のシフト量しか得られない。
In the level shift diode using a shotgun junction in the GaAs-based semiconductor device described above, the amount of voltage shift per junction is 0.6 to 0.7.
Since [V] is constant, even if a plurality of junctions are used, only an integral multiple of the shift amount can be obtained.

本発明は、GaAs系半導体装置に於いてもレベ
ル・シフト・ダイオードの電圧シフト量を任意に
設定できるように、しかも、逆方向耐圧を高く維
持できるようにしようとする。
The present invention attempts to make it possible to arbitrarily set the amount of voltage shift of a level shift diode even in a GaAs-based semiconductor device, and to maintain a high reverse breakdown voltage.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点のうち、GaAs系半導体装置に於い
てもレベル・シフト・ダイオードの電圧シフト量
を任意に設定できるようにする、という問題のみ
を解消したいのであれば、次に説明するようなレ
ベル・シフト・ダイオードを用いると良い。
Among the above-mentioned problems, if you want to solve only the problem of being able to arbitrarily set the voltage shift amount of the level shift diode even in GaAs-based semiconductor devices, the level shift diode described below can be used. It is better to use a shift diode.

第1図は電圧シフト量を任意に設定できるよう
にしたレベル・シフト・ダイオードを表す要部切
断側面図である。
FIG. 1 is a cutaway side view of a main part of a level shift diode in which the amount of voltage shift can be set arbitrarily.

図に於いて、1はn+型GaAsアノード・コンタ
クト層、2はn型GaAsヘテロ接合形成層、3は
n型AlGaAsヘテロ接合形成層、4はn+
AlGaAsカソード・コンタクト層、5はアノード
電極、6はカソード電極をそれぞれ示している。
In the figure, 1 is an n + type GaAs anode contact layer, 2 is an n type GaAs heterojunction forming layer, 3 is an n type AlGaAs heterojunction forming layer, and 4 is an n + type
An AlGaAs cathode contact layer, 5 an anode electrode, and 6 a cathode electrode, respectively.

第2図は第1図に見られるレベル・シフト・ダ
イオードのエネルギ・バンド・ダイヤグラムを表
している。
FIG. 2 represents the energy band diagram of the level shifting diode seen in FIG.

図に於いて、Ecは伝導帯の底、ΔEaはn型
GaAsヘテロ接合形成層2とn型AlGaAsヘテロ
接合形成層3との電子親和力の差で生成されるエ
ネルギ・バンド・ギヤツプに於けるバリヤ高さを
それぞれ示している。
In the figure, E c is the bottom of the conduction band, ΔE a is n-type
The barrier heights in the energy band gap generated due to the difference in electron affinity between the GaAs heterojunction forming layer 2 and the n-type AlGaAs heterojunction forming layer 3 are shown.

このレベル・シフト・ダイオードでは、アノー
ド電極5に正電圧を、カソード電極6に負電圧を
それぞれ印加し、その電圧を高めることに依り、
バリヤ高さEBが小さくなり、電流が流れるよう
になる。
In this level shift diode, by applying a positive voltage to the anode electrode 5 and a negative voltage to the cathode electrode 6, and increasing the voltage,
Barrier height E B becomes smaller and current begins to flow.

第3図及び第4図はその様子を説明する為のも
ので、第3図A,B,Cはアノード電圧Vaの如
何に対応したエネルギ・バンド・ダイヤグラム
を、第4図はアノード電圧Va対アノード電流Ia
線図をそれぞれ表し、第1図及び第2図に於いて
用いた記号と同記号は同部分を示すか或いは同じ
意味を持つものとする。
Figures 3 and 4 are for explaining the situation, and Figures 3A, B, and C are energy band diagrams corresponding to the anode voltage V a , and Figure 4 is the anode voltage V a. The graphs of a versus anode current I a are shown, and the same symbols as those used in FIGS. 1 and 2 indicate the same parts or have the same meanings.

第3図Aはアノード電圧Va=0の場合であつ
て、バリヤ高さΔEaは充分に高く、アノード電流
Iaは流れない。
Figure 3A shows the case where the anode voltage V a = 0, the barrier height ΔE a is sufficiently high, and the anode current
I a does not flow.

第3図Bはアノード電圧Va≦ΔEa/eの場合
であつて、バリヤ高さΔEaは低下し、アノード電
流Iaは僅かに流れ始める。
FIG. 3B shows a case where the anode voltage V a ≦ΔE a /e, the barrier height ΔE a decreases, and the anode current I a begins to flow slightly.

第3図Cはアノード電圧Va≒ΔEa/eの場合
であつて、バリヤ高さΔEaは更に低下し、アノー
ド電流Iaは大量に流れて飽和する。
FIG. 3C shows a case where the anode voltage V a ≈ΔE a /e, the barrier height ΔE a further decreases, and the anode current I a flows in a large amount and becomes saturated.

前記説明したレベル・シフト・ダイオードで
は、ヘテロ接合界面に於けるバリヤ高さΔEaの如
何に依つて電圧シフト量が変化し、そして、その
バリヤ高さΔEaはヘテロ接合界面を生成する為の
一方の半導体層であるn型AlGaAsヘテロ接合形
成層3に於ける組成、即ち、x値に依つて変える
ことができるものである。
In the level shift diode described above, the amount of voltage shift changes depending on the barrier height ΔE a at the heterojunction interface, and the barrier height ΔE a is This can be changed depending on the composition of the n-type AlGaAs heterojunction forming layer 3, which is one of the semiconductor layers, that is, the x value.

従つて、その電圧シフト量として、シヨツトキ
接合を用いた場合のように段階的なものでなく、
連続的に変えたものを実現することは極めて容易
である。
Therefore, the amount of voltage shift is not gradual as in the case of using a Schottky junction, but
It is extremely easy to realize continuous changes.

ところで、前記したレベル・シフト・ダイオー
ドは、n型AlGaAsヘテロ接合形成層3側、即
ち、カソード側に正電圧を印加した場合、n型
GaAsヘテロ接合形成層2に於ける伝導帯レベル
が高くなり、ヘテロ接合界面のポテンシヤル・バ
リヤを電子がトンネリングしてしまう。
By the way, when a positive voltage is applied to the n-type AlGaAs heterojunction forming layer 3 side, that is, the cathode side, the level shift diode described above becomes an n-type
The conduction band level in the GaAs heterojunction forming layer 2 becomes high, and electrons tunnel through the potential barrier at the heterojunction interface.

これは、前記レベル・シフト・ダイオードが、
連続的に電圧シフト量を変化させることができる
という優れた特性をもつていても、逆方向耐圧が
極めて低い旨の重大な欠点があることを意味して
いる。
This means that the level shift diode is
This means that even though it has the excellent property of being able to continuously change the amount of voltage shift, it has a serious drawback of extremely low reverse breakdown voltage.

そこで、本発明に依るレベル・シフト・ダイオ
ードに於いては、半導体基板上にアノード側一導
電型化合物半導体ヘテロ接合形成層及び該一導電
型化合物半導体ヘテロ接合形成層に比較して電子
親和力が小さいカソード側一導電型化合物半導体
ヘテロ接合形成層を一組とする積層体の複数が積
層形成されてなる構成を採つている。
Therefore, in the level shift diode according to the present invention, the electron affinity is smaller than that of the anode-side one-conductivity type compound semiconductor heterojunction-forming layer and the one-conductivity type compound semiconductor heterojunction-forming layer on the semiconductor substrate. A structure is adopted in which a plurality of laminates each having one conductivity type compound semiconductor heterojunction forming layer on the cathode side are stacked.

〔作用〕[Effect]

前記手段を採ることに依り、本発明のレベル・
シフト・ダイオードは、少なくとも三つのポテン
シヤル・バリヤが生成される構成になつていて、
逆方向耐圧は充分に高く維持することができ、ま
た、pn接合を利用するものに於ける段階的な電
圧シフト量と異なり、広い範囲にわたつて連続的
に適正な電圧シフト量を選択して設定することが
可能となり、そして、そのようなきめ細かい電圧
シフト量を得るには、エネルギ・バンドに不連続
を発生させるヘテロ接合界面を構成する一導電型
化合物半導体ヘテロ接合形成層の組成を適宜に変
えれば済み、従つて、その実施は容易である。
By taking the above means, the level of the present invention can be improved.
The shift diode is configured to generate at least three potential barriers,
The reverse breakdown voltage can be maintained sufficiently high, and unlike the stepwise voltage shift amount in devices that use pn junctions, the appropriate voltage shift amount can be continuously selected over a wide range. In order to obtain such a fine-grained voltage shift amount, it is necessary to appropriately adjust the composition of the one conductivity type compound semiconductor heterojunction forming layer that constitutes the heterojunction interface that causes discontinuity in the energy band. Therefore, its implementation is easy.

〔実施例〕〔Example〕

第5図は本発明一実施例で関するエネルギ・バ
ンド・ダイヤグラムであり、AはVa=0の場合、
BはVa=2×ΔEa/eの場合をそれぞれ表し、
また、第6図は第5図に見られる実施例のアノー
ド電圧Va対アノード電流Iaの線図を表し、それぞ
れ第1図乃至第4図に於いて用いた記号と同記号
は同部分を示すか或いは同じ意味を持つものとす
る。
FIG. 5 is an energy band diagram related to one embodiment of the present invention, where A is when V a =0;
B represents the case of V a =2×ΔE a /e, respectively,
In addition, FIG. 6 shows a diagram of the anode voltage V a versus anode current I a of the embodiment shown in FIG. 5, and the same symbols as those used in FIGS. or have the same meaning.

第5図から理解できようが、本実施例は、第1
図に見られるレベル・シフト・ダイオードを二つ
直列に接続した構成になつていることが明らかで
あり、その結果、三つのポテンシヤル・バリヤが
生成されている。
As can be understood from FIG. 5, this embodiment
It is clear that the two level shift diodes shown in the figure are connected in series, resulting in the creation of three potential barriers.

即ち、二つのレベル・シフト・ダイオードを接
続した関係から、その間に逆直列のダイオードが
入つた構成となり、その結果、n+型GaAsアノー
ド・コンタクト層1側に正の電圧を印加した場
合、電圧シフト量は2×ΔEa/eとなる。
In other words, since the two level shift diodes are connected, an anti-series diode is inserted between them, and as a result, when a positive voltage is applied to the n + type GaAs anode contact layer 1 side, the voltage The shift amount is 2×ΔE a /e.

また、n+型AlGaAsカソード・コンタクト層4
側に正の電圧を印加した場合、電圧シフト量は中
央のポテンシヤル・バリヤの一つ分、従つて、
ΔEa/eとなる。
In addition, n + type AlGaAs cathode contact layer 4
When a positive voltage is applied to the side, the voltage shift amount is one central potential barrier, and therefore,
ΔE a /e.

前記したところから明らかであるが、本実施例
では、順方向で2×ΔEa/eの電圧シフト、逆方
向でΔEa/eの電圧シフトを有するレベル・シフ
ト・ダイオードが実現され、逆方向にも充分な耐
圧が得られているのである。
As is clear from the above, in this embodiment, a level shift diode having a voltage shift of 2×ΔE a /e in the forward direction and a voltage shift of ΔE a /e in the reverse direction is realized. Sufficient pressure resistance is also obtained.

第7図は本発明に依るレベル・シフト・ダイオ
ードを用いたBFL(buffered field effect
transistor logic)回路の回路図を表している。
FIG. 7 shows a BFL (buffered field effect) using a level shift diode according to the present invention.
(transistor logic) circuit diagram.

図に於いて、Q1乃至Q4はトランジスタ、D
はレベル・シフト・ダイオード、INは入力端、
OTは出力端、VDDは正側電源電圧、VSSは接地側
電源電圧をそれぞれ示している。
In the figure, Q1 to Q4 are transistors, D
is the level shift diode, IN is the input terminal,
OT represents the output terminal, V DD represents the positive power supply voltage, and V SS represents the ground power supply voltage.

第8図は第7図に於いて破線で囲んだ部分を具
体化した半導体装置の要部切断側面図を表し、第
7図に於いて用いた記号と同記号は同部分を示す
か或いは同じ意味を持つものとする。
FIG. 8 shows a cutaway side view of the main parts of a semiconductor device embodying the part surrounded by the broken line in FIG. 7, and the same symbols as those used in FIG. 7 indicate the same parts or are the same. It shall have meaning.

図に於いて、11は半絶縁性のGaAs基板、1
2はアン・ドープGaAs能動層、13はn+
AlGaAs電子供給層、14はレベル・シフト・ダ
イオード形成層、15は素子間分離領域、16は
合金化領域、17は二次元電子ガス層、SQ3及
びSQ4はソース電極、DQ3並びにDQ4はドレ
イン電極、GQ3及びGQ4はゲート電極をそれ
ぞれ示している。
In the figure, 11 is a semi-insulating GaAs substrate;
2 is undoped GaAs active layer, 13 is n + type
AlGaAs electron supply layer, 14 is a level shift diode forming layer, 15 is an element isolation region, 16 is an alloying region, 17 is a two-dimensional electron gas layer, SQ3 and SQ4 are source electrodes, DQ3 and DQ4 are drain electrodes, GQ3 and GQ4 indicate gate electrodes, respectively.

ここでは、トランジスタQ3及びQ4として高
電子移動度トランジスタ(high electron
mobility transistor:HEMT)を採用している。
Here, high electron mobility transistors (high electron mobility transistors) are used as transistors Q3 and Q4.
mobility transistor (HEMT).

第9図は第8図に見られるレベル・シフト・ダ
イオード形成層14の層構成を具体的に表した要
部切断側面図であり、第1図乃至第8図に於いて
用いた記号と同記号は同部分を示すか或いは同じ
意味を持つものとする。
FIG. 9 is a cross-sectional side view of a main part specifically showing the layer structure of the level shift diode forming layer 14 shown in FIG. 8, and is the same as the symbols used in FIGS. 1 to 8. Symbols shall indicate the same part or have the same meaning.

このレベル・シフト・ダイオード形成層14
は、その不純物濃度の高さからして、電極コンタ
クト層としても充分に機能することは勿論であ
る。
This level shift diode forming layer 14
Of course, because of its high impurity concentration, it also functions satisfactorily as an electrode contact layer.

第8図及び第9図から明らかなようにトランジ
スタQ3のソース電極SQ3とトランジスタQ4
のドレイン電極DQ4、従つて、出力端OTとの
間にはレベル・シフト・ダイオード形成層14か
らなるレベル・シフト・ダイオードDが介挿され
た構成になつていて、回路としてみれば、第7図
として示した回路と全く同じである。
As is clear from FIGS. 8 and 9, the source electrode SQ3 of the transistor Q3 and the transistor Q4
A level shift diode D consisting of a level shift diode forming layer 14 is inserted between the drain electrode DQ4 of the circuit and the output terminal OT. The circuit is exactly the same as the one shown in the figure.

〔発明の効果〕〔Effect of the invention〕

本発明に依るレベル・シフト・ダイオードに於
いては、ヘテロ接合界面にて電子親和力の差でエ
ネルギ・バンドの不連続を生ずる一導電型異種化
合物半導体ヘテロ接合形成層を積層するようにし
ている。
In the level shift diode according to the present invention, heterojunction-forming layers of different compound semiconductors of one conductivity type are laminated to produce discontinuity in energy bands due to differences in electron affinities at the heterojunction interface.

前記構成を採ることに依り、本発明のレベル・
シフト・ダイオードに於いては、少なくとも三つ
のポテンシヤル・バリヤが生成されることになつ
て、順方向耐圧は勿論のこと、逆方向耐圧も充分
に高く維持することができる。また、pn接合を
利用するものに於ける段階的な電圧シフト量と異
なり、広い範囲にわたつて連続的に適正な電圧シ
フト量を選択して設定することが可能となり、そ
して、そのようなきめ細かい電圧シフト量を得る
には、エネルギ・バンドに不連続を発生させるヘ
テロ接合界面を構成する一導電型化合物半導体ヘ
テロ接合形成層の組成を適宜に変えれば済み、従
つて、その実施は容易である。
By adopting the above configuration, the level of the present invention can be improved.
Since at least three potential barriers are generated in the shift diode, not only the forward breakdown voltage but also the reverse breakdown voltage can be maintained sufficiently high. Also, unlike the stepwise voltage shift amount in devices that use p-n junctions, it is possible to continuously select and set the appropriate voltage shift amount over a wide range, and such fine-grained In order to obtain the amount of voltage shift, it is only necessary to appropriately change the composition of the one-conductivity type compound semiconductor heterojunction forming layer that constitutes the heterojunction interface that causes discontinuity in the energy band, and therefore it is easy to implement. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はヘテロ接合を利用したレベル・シフ
ト・ダイオードを表す要部切断側面図、第2図は
第1図に見られるレベル・シフト・ダイオードの
エネルギ・バンド・ダイヤグラム、第3図A,
B,Cは第1図に見られるレベル・シフト・ダイ
オードの動作を説明するためのエネルギ・バン
ド・ダイヤグラム、第4図はアノード電圧Va
アノード電流Iaの関係を示す線図、第5図A及び
Bは本発明一実施例を説明する為のエネルギ・バ
ンド・ダイヤグラム、第6図は第5図に見られる
実施例のアノード電圧Va対アノード電流Iaの関係
を示す線図、第7図は本発明に依るレベル・シフ
ト・ダイオードを用いたBFL回路の回路図、第
8図は第7図に見られる回路の一部を具体化した
半導体装置の要部切断側面図、第9図は第8図に
見られるレベル・シフト・ダイオード形成層の層
構成を具体的に示した要部切断側面図をそれぞれ
そ表している。 図に於いて、1はn+型GaAsアノード・コンタ
クト層、2はn型GaAsヘテロ接合形成層、3は
n型AlGaAsヘテロ接合形成層、4はn+
AlGaAsカソード・コンタクト層、5はアノード
電極、6はカソード電極をそれぞれ示している。
Figure 1 is a cutaway side view of the main part of a level shift diode using a heterojunction, Figure 2 is an energy band diagram of the level shift diode shown in Figure 1, Figure 3 is A,
B and C are energy band diagrams for explaining the operation of the level shift diode shown in Fig. 1, Fig. 4 is a diagram showing the relationship between anode voltage V a and anode current I a , and Fig. 5 Figures A and B are energy band diagrams for explaining one embodiment of the present invention, and Figure 6 is a diagram showing the relationship between anode voltage V a and anode current I a of the embodiment shown in Figure 5. FIG. 7 is a circuit diagram of a BFL circuit using a level shift diode according to the present invention, FIG. 9 is a cross-sectional side view of a main part specifically showing the layer structure of the level shift diode forming layer shown in FIG. 8. In the figure, 1 is an n + type GaAs anode contact layer, 2 is an n type GaAs heterojunction forming layer, 3 is an n type AlGaAs heterojunction forming layer, and 4 is an n + type
An AlGaAs cathode contact layer, 5 an anode electrode, and 6 a cathode electrode, respectively.

Claims (1)

【特許請求の範囲】 1 半導体基板上にアノード側一導電型化合物半
導体ヘテロ接合形成層及び該一導電型化合物半導
体ヘテロ接合形成層に比較して電子親和力が小さ
いカソード側一導電型化合物半導体ヘテロ接合形
成層を一組とする積層体の複数が積層形成されて
なること を特徴とするレベル・シフト・ダイオード。
[Scope of Claims] 1. On a semiconductor substrate, an anode side one conductivity type compound semiconductor heterojunction forming layer and a cathode side one conductivity type compound semiconductor heterojunction having a smaller electron affinity than the one conductivity type compound semiconductor heterojunction forming layer. A level shift diode characterized in that it is formed by laminating a plurality of laminated bodies each having a set of forming layers.
JP61302866A 1986-12-20 1986-12-20 Level shift diode Granted JPS63156367A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61302866A JPS63156367A (en) 1986-12-20 1986-12-20 Level shift diode
EP87311148A EP0272885B1 (en) 1986-12-20 1987-12-17 Semiconductor device having level shift diode
US07/398,281 US4963948A (en) 1986-12-20 1989-08-22 Semiconductor device having level shift diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61302866A JPS63156367A (en) 1986-12-20 1986-12-20 Level shift diode

Publications (2)

Publication Number Publication Date
JPS63156367A JPS63156367A (en) 1988-06-29
JPH0587153B2 true JPH0587153B2 (en) 1993-12-15

Family

ID=17914040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61302866A Granted JPS63156367A (en) 1986-12-20 1986-12-20 Level shift diode

Country Status (3)

Country Link
US (1) US4963948A (en)
EP (1) EP0272885B1 (en)
JP (1) JPS63156367A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120807B2 (en) * 1986-12-20 1995-12-20 富士通株式会社 Constant current semiconductor device
JP2513887B2 (en) * 1990-02-14 1996-07-03 株式会社東芝 Semiconductor integrated circuit device
JPH0414314A (en) * 1990-05-08 1992-01-20 Toshiba Corp Source electrode coupling type logic circuit
KR100356883B1 (en) * 1991-06-12 2003-01-08 텍사스 인스트루먼츠 인코포레이티드 Precharge triggering method, precharge triggered digital device, precharge triggered function stage, and synchronous pipeline system
US5398077A (en) * 1992-05-19 1995-03-14 Eastman Kodak Company Method for adjusting the luminance of a color signal
EP0935294A1 (en) * 1998-02-06 1999-08-11 Canare Electric Co., Ltd. Variable capacity device with quantum-wave interference layers
US20030015708A1 (en) * 2001-07-23 2003-01-23 Primit Parikh Gallium nitride based diodes with low forward voltage and low reverse current operation
US7183575B2 (en) 2002-02-19 2007-02-27 Nissan Motor Co., Ltd. High reverse voltage silicon carbide diode and method of manufacturing the same high reverse voltage silicon carbide diode
US7534633B2 (en) 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US8519437B2 (en) * 2007-09-14 2013-08-27 Cree, Inc. Polarization doping in nitride based diodes
US9012937B2 (en) 2007-10-10 2015-04-21 Cree, Inc. Multiple conversion material light emitting diode package and method of fabricating same
US9287469B2 (en) * 2008-05-02 2016-03-15 Cree, Inc. Encapsulation for phosphor-converted white light emitting diode
JP5506258B2 (en) 2008-08-06 2014-05-28 キヤノン株式会社 Rectifier element
EP2157613B1 (en) * 2008-08-20 2019-10-09 Ommic Method for monolithic integration of a pseudomorphic Resonant Interband Tuneling Diode (RITD) and a transistor made from III-V materials
US8415692B2 (en) 2009-07-06 2013-04-09 Cree, Inc. LED packages with scattering particle regions
US8536615B1 (en) 2009-12-16 2013-09-17 Cree, Inc. Semiconductor device structures with modulated and delta doping and related methods
US8604461B2 (en) 2009-12-16 2013-12-10 Cree, Inc. Semiconductor device structures with modulated doping and related methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1145482A (en) * 1979-12-28 1983-04-26 Takashi Mimura High electron mobility single heterojunction semiconductor device
US4353081A (en) * 1980-01-29 1982-10-05 Bell Telephone Laboratories, Incorporated Graded bandgap rectifying semiconductor devices
JPS58170054A (en) * 1982-03-31 1983-10-06 Fujitsu Ltd Light composite semiconductor device
JPS59231920A (en) * 1983-06-15 1984-12-26 Agency Of Ind Science & Technol Gaas logical integrated circuit
JPS6095973A (en) * 1983-10-31 1985-05-29 Fujitsu Ltd Semiconductor device
US4575924A (en) * 1984-07-02 1986-03-18 Texas Instruments Incorporated Process for fabricating quantum-well devices utilizing etch and refill techniques
JPS61274369A (en) * 1985-05-22 1986-12-04 Fujitsu Ltd Field effect type semiconductor device
JPH0614536B2 (en) * 1985-09-17 1994-02-23 株式会社東芝 Bipolar integrated circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IBM TECHNICAL DISCLOSURE BULLETIN=1978 *

Also Published As

Publication number Publication date
US4963948A (en) 1990-10-16
JPS63156367A (en) 1988-06-29
EP0272885A2 (en) 1988-06-29
EP0272885A3 (en) 1990-08-01
EP0272885B1 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
JP4645313B2 (en) Semiconductor device
JPH0587153B2 (en)
US5705827A (en) Tunnel transistor and method of manufacturing same
US11862630B2 (en) Semiconductor device having a bidirectional switch and discharge circuit
US8604512B2 (en) Bidirectional switch
JP5481103B2 (en) Nitride semiconductor device
US8497553B2 (en) Semiconductor device
KR100573720B1 (en) Power semiconductor device
WO2010092642A1 (en) Semiconductor device
US4484207A (en) Static induction transistor and semiconductor integrated circuit using hetero-junction
JP2016521008A (en) Compact electrostatic discharge (ESD) protection structure
JP2007150282A (en) Field-effect transistor
JPS5922367A (en) Semiconductor device
JPH0778978A (en) Vertical mosfet transistor
JP4742539B2 (en) Semiconductor device
JP2013041975A (en) Nitride semiconductor device
JPH05226638A (en) Semiconductor device
JPH0654796B2 (en) Composite semiconductor device
US4910562A (en) Field induced base transistor
JPS6211017Y2 (en)
WO2017134900A1 (en) Semiconductor device
JPS62128564A (en) Reverse conductive thyristor
JPS62128559A (en) Semiconductor device
WO2022172625A1 (en) Semiconductor device
EP4191656A1 (en) Automatic reverse blocking bidirectional switch

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees