JPH058670Y2 - - Google Patents

Info

Publication number
JPH058670Y2
JPH058670Y2 JP13526185U JP13526185U JPH058670Y2 JP H058670 Y2 JPH058670 Y2 JP H058670Y2 JP 13526185 U JP13526185 U JP 13526185U JP 13526185 U JP13526185 U JP 13526185U JP H058670 Y2 JPH058670 Y2 JP H058670Y2
Authority
JP
Japan
Prior art keywords
film
reaction chamber
irradiation window
reaction
inclined surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13526185U
Other languages
Japanese (ja)
Other versions
JPS6244435U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13526185U priority Critical patent/JPH058670Y2/ja
Publication of JPS6244435U publication Critical patent/JPS6244435U/ja
Application granted granted Critical
Publication of JPH058670Y2 publication Critical patent/JPH058670Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 本考案は、光エネルギにより反応ガスを分解し
例えばアモルフアス半導体膜、微結晶膜等の薄膜
を形成する光CVD装置に関する。
[Detailed Description of the Invention] (a) Field of Industrial Application The present invention relates to an optical CVD device that decomposes a reactive gas using light energy to form a thin film such as an amorphous semiconductor film or a microcrystalline film.

(ロ) 従来の技術 アモルフアス半導体を光CVDにより形成する
ことは既に知られているが、電気学会研究会資料
SPC−84−48に述べられているように、その際用
いられる光源にあつては、照射窓に低蒸気圧油脂
を塗布したり、不活性ガスを吹きつけることで、
蒸気照射へのアモルフアス半導体の付着を防止し
ていた。しかし、この方法でも照射窓へのアモル
フアス半導体の付着は完全に避けられず、従つて
照射窓のくもりにより、反応雰囲気への充分な光
エネルギの供給ができず、このため、成膜中に著
しい世膜速度の低下が生じた。
(b) Conventional technology Although it is already known that amorphous semiconductors can be formed by optical CVD,
As stated in SPC-84-48, the light source used in this case can be coated with low vapor pressure oil or sprayed with inert gas on the irradiation window.
This prevents amorphous semiconductors from adhering to steam irradiation. However, even with this method, adhesion of the amorphous semiconductor to the irradiation window cannot be completely avoided, and therefore, due to fogging of the irradiation window, sufficient light energy cannot be supplied to the reaction atmosphere, resulting in significant damage during film formation. A decrease in membrane speed occurred.

(ハ) 考案が解決しようとする問題点 本考案は上述の如く照射窓のくもりにより反応
雰囲気への充分な光エネルギの供給ができず、こ
のため成膜中に著しい成膜速度の低下が生じてい
た点を解決しようとするものである。
(c) Problems to be solved by the invention In the present invention, as mentioned above, sufficient light energy cannot be supplied to the reaction atmosphere due to clouding of the irradiation window, which causes a significant decrease in the film formation rate during film formation. This is an attempt to resolve the issues that have arisen.

(ニ) 問題点を解決するための手段 本考案光CVD装置は、反応ガスを分解すべき
光エネルギを装置の底部に傾斜して設けられた照
射窓から反応室内に供給すると共に、上記照射窓
の反応室側傾斜面に該傾斜斜面への膜の付着を防
止する防止液を移動自在に設けたことを特徴とす
る。
(d) Means for solving the problem The optical CVD apparatus of the present invention supplies light energy for decomposing a reaction gas into the reaction chamber from an irradiation window provided at an angle at the bottom of the apparatus, and also The present invention is characterized in that a prevention liquid for preventing the film from adhering to the inclined surface is movably provided on the inclined surface on the side of the reaction chamber.

(ホ) 作用 上記反応室側傾斜面に該傾斜面への膜の付着を
防止する防止液を移動自在に設けることによつ
て、上記傾斜面は絶えず清浄な状態に保たれる。
(e) Effect By movably disposing a preventive liquid on the reaction chamber-side inclined surface to prevent the film from adhering to the inclined surface, the inclined surface is constantly kept in a clean state.

(ヘ) 実施例 第1図は本考案光CVD装置の一実施例であつ
て、反応室1の底面に石英板からなる照射窓2が
傾斜して設けられ、その照射窓2の更に下方に波
長1849Åと2537Åの紫外光を輻射する低圧水銀ラ
ンプの光源3が配置され、斯る光源3から輻射さ
れた上記紫外光は照射窓2を透過して反応室1内
に到達する。反応室1内の中央には、予めガラ
ス、セラミツク、金属板或いは前記ガラスやセラ
ミツクの表面にSnO2やITOに代表される透光性
導電膜や金属膜がコーテイングされた導電性ガラ
スや導電性セラミツク等の膜厚サブミクロン〜数
ミクロン程度の薄膜を支持するに好適な支持体4
がヒータ5を内蔵した載置台6に固定され、上記
照射窓2と反応空間を挟んで対峙している。上記
紫外光の光エネルギにより分解される反応ガスは
斯る反応ガスを貯蔵するガスボンベ7a,7b,
7c…を出発し、バルブ8a,8b,8c…、マ
スフローコントローラ9a,9b,9c…を介し
て、所定温度例えば室温〜80℃程度に制御された
水銀槽10を通過して、増感材として作用する水
銀蒸気と共に反応室1内に導入される。このよう
に水銀蒸気を利用した方法は水銀増感法と称せら
れ、これ自体は広く知られた技術であり、紫外光
を吸収しない或いは吸収率の低い分子に分解反応
を起させるときに用いられる。すなわち、反応ガ
スは紫外光により直接分解されるのではなく、水
銀蒸気が斯る紫外光を吸収して励起され高エネル
ギ状態となり、高エネルギ状態の水銀が反応ガス
分子と衝突することによつて分解反応を起すもの
である。
(F) Embodiment Figure 1 shows an embodiment of the optical CVD apparatus of the present invention, in which an irradiation window 2 made of a quartz plate is provided at an angle on the bottom of a reaction chamber 1, and a window further below the irradiation window 2 is provided. A light source 3 of a low-pressure mercury lamp that emits ultraviolet light with wavelengths of 1849 Å and 2537 Å is arranged, and the ultraviolet light radiated from the light source 3 passes through the irradiation window 2 and reaches the inside of the reaction chamber 1. In the center of the reaction chamber 1, there is a conductive glass, ceramic, metal plate, or a conductive glass or ceramic plate whose surface is coated with a transparent conductive film or metal film such as SnO 2 or ITO. Support 4 suitable for supporting a thin film made of ceramic or the like with a film thickness of submicron to several microns
is fixed to a mounting table 6 containing a heater 5, and faces the irradiation window 2 with a reaction space in between. The reaction gas decomposed by the light energy of the ultraviolet light is stored in gas cylinders 7a, 7b,
7c... through valves 8a, 8b, 8c..., mass flow controllers 9a, 9b, 9c..., and passes through a mercury bath 10 controlled at a predetermined temperature, for example, room temperature to about 80°C, as a sensitizing material. It is introduced into the reaction chamber 1 together with the acting mercury vapor. This method of using mercury vapor is called mercury sensitization, which is itself a widely known technique, and is used to cause a decomposition reaction in molecules that do not absorb ultraviolet light or have a low absorption rate. . In other words, the reaction gas is not directly decomposed by the ultraviolet light, but mercury vapor absorbs the ultraviolet light and is excited and becomes a high-energy state, and the high-energy mercury collides with the reaction gas molecules. It causes a decomposition reaction.

而して、本考案装置の特徴は上記照射窓2の反
応室1側に於ける傾斜面11には該傾斜面11へ
の膜の付着を防止する例えばパーフロポリエール
等の低蒸気圧油脂からなる防止液12がその傾斜
面11に沿つて上方から下方に向つて移動自在に
設けられている。即ち、上記防止液12は反応室
1内に於ける傾斜面11の上方に設けられた流出
口13からその傾斜面11に沿つて全面を覆い膜
の付着を防止しながら流出し、その下方に設けら
れた回収口14により回収された後、斯る傾斜面
11の移動過程によつて汚染された防止液12を
浄化フイルタ15に導いて浄化し、浄化された防
止液12はタンク16に一旦貯蔵され、送り出し
ポンプ17から再び流出口13に送出されるのを
待つ循環系を構成する。従つて、防止液12は再
び傾斜面11に供給されることとなり、防止液1
2の無駄を回避することができる。
The feature of the device of the present invention is that the inclined surface 11 on the side of the reaction chamber 1 of the irradiation window 2 is coated with a low vapor pressure oil such as perfluoropolyale to prevent the film from adhering to the inclined surface 11. A preventing liquid 12 is provided movably along the inclined surface 11 from above to below. That is, the preventive liquid 12 flows out from the outlet 13 provided above the inclined surface 11 in the reaction chamber 1 while covering the entire surface along the inclined surface 11 and preventing the film from adhering to the surface. After being collected through the provided recovery port 14, the prevention liquid 12 contaminated by the movement process of the inclined surface 11 is guided to the purification filter 15 and purified, and the purified prevention liquid 12 is temporarily stored in the tank 16. A circulation system is constructed in which the liquid is stored and waits to be sent out from the delivery pump 17 to the outlet 13 again. Therefore, the prevention liquid 12 will be supplied to the inclined surface 11 again, and the prevention liquid 12 will be supplied to the inclined surface 11 again.
2 waste can be avoided.

第2図は本考案装置と従来装置とを用いてアモ
ルフアスシリコン膜を形成したときの成膜速度を
比較したものである。形成条件は両者とも同一で
あり、反応ガスとしてSi2H6を用いると共に斯る
Si2H6ガスを50℃程度に温度制御された水銀槽1
0を通過せしめ反応室1内に20SCCMの流量で導
入する水銀増感法を使用した。そして、本考案装
置にあつてはパーフロポリエールが20cc/mit.m
の流量速度でもつて供給された。尚、光源2とし
ては上述の如く波長1849Åと2537Åの共鳴線であ
る紫外光を輻射する低圧水銀ランプを使用した。
斯る実験の結果、本考案装置の成膜速度は長時間
経過後もほとんど低下しないのに対し、従来装置
の成膜速度は10分経過後序々に低下し、40分経過
にあつては著しく低下している。この様に従来装
置では明らかに照射窓2の内面に膜の付着を招い
ていることが判る。
FIG. 2 compares the film formation speed when an amorphous silicon film is formed using the apparatus of the present invention and the conventional apparatus. The formation conditions are the same for both, using Si 2 H 6 as the reaction gas and
Mercury tank 1 containing Si 2 H 6 gas with temperature controlled at around 50℃
A mercury sensitization method was used in which mercury was introduced into the reaction chamber 1 at a flow rate of 20 SCCM. And, in the case of the device of this invention, the perfropolier is 20cc/mit.m
It was also supplied at a flow rate of . As the light source 2, a low-pressure mercury lamp was used which emits ultraviolet light having resonance lines of wavelengths 1849 Å and 2537 Å as described above.
As a result of such experiments, the film formation speed of the device of the present invention hardly decreases even after a long period of time, while the film formation speed of the conventional device gradually decreases after 10 minutes, and significantly decreases after 40 minutes. It is declining. In this manner, it can be seen that the conventional apparatus clearly causes a film to adhere to the inner surface of the irradiation window 2.

(ト) 考案の効果 本考案装置は以上の説明から明らかな如く、反
応ガスを分解すべき光エネルギの照射窓は絶えず
清浄な状態に保たれるので、長時間に亘つて安定
した成膜速度を得ることができる。また成膜速度
のバラツキに起因する膜質の変動も防止すること
ができる。更に本考案装置は数1000Å以上の膜厚
のアモルフアスシリコンであつても膜質の変動な
く形成することができるので、Pin接合型アモル
フアスシリコン系太陽電池の特に発電に寄与する
肉厚なi型(ノンドープ)層の形成に適用するこ
とができ、斯るi型(ノンドープ)層を形成する
従来のプラズマCVD装置に比してプラズマダメ
ージのない良質の膜が得られ光電変換効率の上昇
を図ることができる。
(g) Effects of the invention As is clear from the above explanation, the device of the present invention maintains a constant clean state of the irradiation window for the light energy that decomposes the reaction gas, so that the film formation rate is stable over a long period of time. can be obtained. It is also possible to prevent variations in film quality due to variations in film formation rate. Furthermore, the device of the present invention can form amorphous silicon with a thickness of several thousand Å or more without any change in film quality. It can be applied to the formation of (non-doped) layers, and compared to conventional plasma CVD equipment that forms such i-type (non-doped) layers, a high-quality film without plasma damage can be obtained and the photoelectric conversion efficiency can be increased. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案光CVD装置の概略を示す模式
図、第2図は本考案装置と従来装置との成膜速度
の経時変化を示す特性図である。 1……反応室、2……照射窓、3……光源、1
1……傾斜面、12……防止液、13……流出
口、14……回収口、15……浄化フイルタ、1
6……タンク、17……送り出しポンプ。
FIG. 1 is a schematic diagram showing the outline of the optical CVD apparatus of the present invention, and FIG. 2 is a characteristic diagram showing the change over time in the film-forming rate of the apparatus of the present invention and the conventional apparatus. 1...Reaction chamber, 2...Irradiation window, 3...Light source, 1
1... Inclined surface, 12... Prevention liquid, 13... Outlet, 14... Collection port, 15... Purification filter, 1
6...Tank, 17...Delivery pump.

Claims (1)

【実用新案登録請求の範囲】 (1) 反応室に反応ガスを導入し、この反応ガスを
光源から輻射された光エネルギにより分解し薄
膜を形成する光CVD装置であつて、上記光源
から輻射される光エネルギは装置の底部に傾斜
して設けられた照射窓から反応室内に供給され
ると共に、上記照射窓の反応室側傾斜面には該
傾斜面への膜の付着を防止する防止液が移動自
在に設けられていることを特徴とした光CVD
装置。 (2) 上記防止液は低蒸気圧油脂であることを特徴
とした実用新案登録請求の範囲第1項記載の光
CVD装置。 (3) 上記低蒸気圧油脂はパーフロポリエールであ
ることを特徴とした実用新案登録請求の範囲第
2項記載の光CVD装置。
[Claims for Utility Model Registration] (1) An optical CVD device that introduces a reaction gas into a reaction chamber and decomposes the reaction gas using light energy radiated from a light source to form a thin film, The light energy is supplied into the reaction chamber from an irradiation window provided at an angle at the bottom of the apparatus, and a preventive liquid is provided on the slanted surface of the irradiation window on the reaction chamber side to prevent the film from adhering to the slanted surface. Optical CVD characterized by being movable
Device. (2) The light according to claim 1 of the utility model registration claim, wherein the prevention liquid is a low vapor pressure oil or fat.
CVD equipment. (3) The optical CVD apparatus according to claim 2, wherein the low vapor pressure oil is perfluoropolier.
JP13526185U 1985-09-04 1985-09-04 Expired - Lifetime JPH058670Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13526185U JPH058670Y2 (en) 1985-09-04 1985-09-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13526185U JPH058670Y2 (en) 1985-09-04 1985-09-04

Publications (2)

Publication Number Publication Date
JPS6244435U JPS6244435U (en) 1987-03-17
JPH058670Y2 true JPH058670Y2 (en) 1993-03-04

Family

ID=31037276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13526185U Expired - Lifetime JPH058670Y2 (en) 1985-09-04 1985-09-04

Country Status (1)

Country Link
JP (1) JPH058670Y2 (en)

Also Published As

Publication number Publication date
JPS6244435U (en) 1987-03-17

Similar Documents

Publication Publication Date Title
JP2634245B2 (en) Method and apparatus for removing surface contaminants by irradiation from a high energy source
JPH0752718B2 (en) Thin film formation method
JPH058670Y2 (en)
CA1181719A (en) Photochemical vapor deposition apparatus and method
JPS58119336A (en) Apparatus for vapor deposition by photochemical reaction
JP2874241B2 (en) Dry cleaning method for semiconductor device
KR101438789B1 (en) Method of fabricating Pellicle frame with diamond like carbon coating layer
JPS61216318A (en) Photo chemical vapor deposition device
JPH0632677Y2 (en) Optical CVD device
JPH0689455B2 (en) Thin film formation method
JPS61196526A (en) Photochemical vapor deposition process and apparatus thereof
JPH0830272B2 (en) Thin film formation method
JPS61190943A (en) Cleaning of interior of reaction-treatment device, purification of gas-phase substance for treatment and reaction-treatment device
JPS6064426A (en) Method and device for forming vapor-phase reaction thin- film
Bhatnagar et al. Direct UV photoenhanced chemical vapour deposition of a-Si: H from disilane using a deuterium lamp
JPH0342038Y2 (en)
JPS61212016A (en) Film forming method
JPS6161665B2 (en)
JPS60236215A (en) Laser cvd method
JPH01116080A (en) Photoexcited vapor growth device equipped with cleaning chamber
JPH0210834A (en) Optical pumping process device
JP3460855B2 (en) Cleaning method and cleaning device
JPS61196528A (en) Thin film forming apparatus
JPS61196527A (en) Thin film forming apparatus
JPS61196529A (en) Thin film forming apparatus