JPS61212016A - Film forming method - Google Patents

Film forming method

Info

Publication number
JPS61212016A
JPS61212016A JP60052445A JP5244585A JPS61212016A JP S61212016 A JPS61212016 A JP S61212016A JP 60052445 A JP60052445 A JP 60052445A JP 5244585 A JP5244585 A JP 5244585A JP S61212016 A JPS61212016 A JP S61212016A
Authority
JP
Japan
Prior art keywords
substrate
light
cleaning
reaction chamber
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60052445A
Other languages
Japanese (ja)
Inventor
Atsushi Yamagami
山上 敦士
Masafumi Sano
政史 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60052445A priority Critical patent/JPS61212016A/en
Publication of JPS61212016A publication Critical patent/JPS61212016A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Abstract

PURPOSE:To obtain a high purity and high quality deposition film of excellent adhesivity with a substrate in an excellent reproducible manner by a method wherein, after a beam of light to be used for cleaning of a substrate is made to irradiate on the substrate provided in a reaction chamber, raw gas is introduced into the reaction chamber, and the deposition film is formed by projecting a beam of light to the raw gas. CONSTITUTION:A substrate 6 is provided in a reaction chamber 3, and the reaction chamber 3 is decompressed. After the desired quantity of oxygen or oxygen containing gas is introduced into the reaction chamber 3 as occasion demands, a beam of light 1 is made to irradiate on the substrate 6 through a light transmitting window 2, and the cleaning work is performed on the substrate 6. After the reaction chamber 3 is brought into the desired pressure, the raw gas to be used for formation of a deposition film is introduced into the reaction tube 3 from a raw gas cylinder 9. Then, the raw gas in the reaction chamber 3 is decomposed or polymerized by projecting the light of desired wavelength, and a desired film is obtained on the substrate 6. The same light or different lights may be used for cleaning of the substrate and the decomposition or polymerization of the raw gas.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光化学反応を利用して高純度薄膜などの堆積
膜を形成する膜形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a film forming method for forming a deposited film such as a high-purity thin film using a photochemical reaction.

[従来の技術] 近年、アモルファスシリコン等、種々の機能を有する堆
積膜を光化学反応の利用によって低温で形成することが
可能なことから、光化学気相成長方法(以下、光CVD
法と略称する)が注目されている。
[Prior Art] In recent years, it has become possible to form deposited films such as amorphous silicon with various functions at low temperatures by using photochemical reactions.
law) is attracting attention.

このような光CVD法に用いられる光化学気相成長装置
(以下、光CVD装置と略称する)は、一般に、反応容
器と、該反応容器内に原料ガスを導入する手段と、該ガ
スに光を照射する手段とを備えており、光化学反応を利
用して該反応容器内に設けた基体上に所望の堆積膜を形
成するものである。
A photochemical vapor deposition apparatus (hereinafter referred to as a photoCVD apparatus) used in such a photoCVD method generally includes a reaction vessel, a means for introducing a raw material gas into the reaction vessel, and a means for introducing light into the gas. A desired deposited film is formed on a substrate provided in the reaction vessel by utilizing a photochemical reaction.

従来の代表的な光CVD装置の原理構成図を第2図に示
す、ここで、■は光束、2は光透過窓、3は反応容器、
4は原料ガス導入バルブ、5は堆積膜、6は基体、7は
排気口を示す。
The principle configuration diagram of a typical conventional optical CVD apparatus is shown in FIG. 2, where ■ is a luminous flux, 2 is a light transmission window, 3 is a reaction vessel,
Reference numeral 4 indicates a raw material gas introduction valve, 5 indicates a deposited film, 6 indicates a substrate, and 7 indicates an exhaust port.

従来の光CVD法では、丘記例の如き装置を用い、各種
洗浄液などで洗浄した基体6を反応容器3内に設置した
後、光透過窓2を介して反応容器3内に照射される光l
を利用して該容器3内に導入された原料ガスを分解し、
基体6上に所望の堆積膜5を形成するのが一般的であっ
た0例えば、シランガスを反応容器3に導入し、エキシ
マレーザ−(excimer 1aser)等の高エネ
ルギー光を照射し、基体6上に水素化シリコン膜を形成
する例等が知られている。
In the conventional optical CVD method, a device such as the one described above is used, and after a substrate 6 cleaned with various cleaning solutions is placed in a reaction vessel 3, light is irradiated into the reaction vessel 3 through a light transmission window 2. l
decomposes the raw material gas introduced into the container 3 using
Generally, a desired deposited film 5 is formed on the substrate 60. For example, silane gas is introduced into the reaction vessel 3, and high-energy light such as an excimer laser is irradiated to form the desired deposited film 5 on the substrate 6. Examples are known in which a hydrogenated silicon film is formed.

しかしながら、このような光CVD法では、基体洗浄後
に反応容器内に基体を設置するため、洗浄された基体が
大気に晒されることが避けられず 為に大気中に浮遊し
ている油類や有機溶剤などで基体が汚染されたり、ある
いは基体設置時に用いるピンセットや基体保持治具など
の治工具類に付着している有機物質で基体が汚染されて
しまうという問題を生じる。そして、このような汚染さ
れた基体では、形成される堆積膜との付着力が・低下し
たり、膜の電気特性が劣化したり、あるいは膜品質にば
らつきを生じて再現性が低下する等と言った問題があっ
た。
However, in this type of photo-CVD method, the substrate is placed in a reaction vessel after cleaning, so it is inevitable that the cleaned substrate will be exposed to the atmosphere. Problems arise in that the substrate is contaminated by solvents or the like, or by organic substances adhering to tools such as tweezers and substrate holding jigs used when installing the substrate. In addition, such contaminated substrates may reduce the adhesion force with the deposited film that is formed, deteriorate the electrical properties of the film, or cause variations in film quality and reduce reproducibility. There was a problem as mentioned.

[発明が解決しようとする問題点] 本発明は、上述した問題点に鑑み成されたものであって
、本発明の目的とするところは、上記従来例の問題点を
解消し、基体との付着性に優れるとともに、高純度、高
品位の堆積膜を再現性良く堆積することが可能な新規な
膜形成方法を提供することにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to solve the problems of the above-mentioned conventional example and to improve the relationship between the substrate and the substrate. It is an object of the present invention to provide a novel film forming method which is capable of depositing a deposited film with excellent adhesion, high purity, and high quality with good reproducibility.

[問題点を解決するための手段] 上記目的を達成する本発明は、反応容器内に設けられた
基体に基体洗浄用の光を照射することによって基体を洗
浄した後、該洗浄された基体を反応容器内に保持したま
ま原料ガスを反応容器内に導入し、該原料ガスに光を照
射することによって、該洗浄された基体上に該原料ガス
を原料とする堆積膜を形成することを特徴とする膜形成
方法である。
[Means for Solving the Problems] The present invention achieves the above object by cleaning the substrate by irradiating the substrate provided in the reaction vessel with substrate cleaning light, and then cleaning the cleaned substrate. A deposited film using the raw material gas as a raw material is formed on the cleaned substrate by introducing the raw material gas into the reaction vessel while being held in the reaction vessel and irradiating the raw material gas with light. This is a film forming method.

[発明の実施態様] 本発明において基体洗浄のために用いられる光は、いか
なる波長の光でもよく、赤外線、可視光、紫外線の、ほ
か、それより短波長のX線、γ線などの領域に属する光
も用いることができる。これら光の発生源は特に限定さ
れるものではなく、例えば水銀ランプ、キセノンランプ
、あるいは公知の種々のレーザー光発生装置などから発
生される光が好適に用いられる。
[Embodiments of the Invention] The light used for substrate cleaning in the present invention may be light of any wavelength, including infrared, visible, and ultraviolet rays, as well as shorter wavelengths such as X-rays and γ-rays. Light belonging to the group can also be used. The source of these lights is not particularly limited, and light emitted from, for example, a mercury lamp, a xenon lamp, or various known laser light generating devices is preferably used.

基体の洗浄は、加圧下、常圧下、減圧下のいかなる圧力
条件下にあっても、また酸素ガス等の特定のガスを含む
ガス雰囲気下にあっても行なうことができるが、減圧下
または酸素ガス含有雰囲気(もちろん、減圧下の場合も
含む)下で行なうのが好ましい。
Cleaning of the substrate can be carried out under any pressure condition, such as under pressure, normal pressure, or reduced pressure, or even in a gas atmosphere containing specific gases such as oxygen gas. It is preferable to carry out the reaction under a gas-containing atmosphere (including, of course, under reduced pressure).

以下、第1図に示した本発明の方法に用いられる実施例
装置の一例を参照しつつ、本発明の詳細な説明する。
Hereinafter, the present invention will be described in detail with reference to an example of an embodiment apparatus used in the method of the present invention shown in FIG.

第1図に於いて、1は光束、2は光透過窓、3は反応容
器、6は基体、7は不図示の排気手段(例えば、ロータ
リーポンプ等)に接続されたガス排気口、8は基体洗浄
時に用いられる酸素または酸素を含有するガスが充填さ
れているガスポンベ、9は堆積膜形成用の原料ガスが充
填されている原料ガスボンベである。
In FIG. 1, 1 is a luminous flux, 2 is a light transmission window, 3 is a reaction vessel, 6 is a substrate, 7 is a gas exhaust port connected to an exhaust means (for example, a rotary pump, etc.) not shown, and 8 is a A gas cylinder 9 is filled with oxygen or a gas containing oxygen used for cleaning the substrate, and a source gas cylinder 9 is filled with a source gas for forming a deposited film.

まず、反応容器3内に基体6を設置し、不図示の排気手
段を動作させてガス排気ロアから排気を行ない、反応容
器3を減圧にする。次に、必要に応じてガスポンベ8よ
り所望量の酸素あるいは酸素含有ガスを反応容器3内に
導入する。上記操作終了後、光lを光透過窓2を通じて
基体6に照射し、基体6の洗浄を行なう、この際、基体
材質が酸化されやすく、膜特性に悪影響を生じる場合に
は、特に酸素を導入せずに減圧下で光照射のみによる洗
浄を行なえば良い。もちろん、基体6を反応容器3内に
設置する以前に、従来と同様の洗浄液などによる基体洗
浄を行なうことは、−向にさしつかえない。
First, the substrate 6 is placed in the reaction container 3, and the exhaust means (not shown) is operated to exhaust gas from the gas exhaust lower, thereby reducing the pressure in the reaction container 3. Next, a desired amount of oxygen or oxygen-containing gas is introduced into the reaction vessel 3 from the gas pump 8 as required. After the above operation is completed, the substrate 6 is irradiated with light 1 through the light transmission window 2 to clean the substrate 6. At this time, especially if the substrate material is easily oxidized and adversely affects the film properties, oxygen is introduced. It is sufficient to perform cleaning by only light irradiation under reduced pressure. Of course, before placing the substrate 6 in the reaction vessel 3, it is possible to clean the substrate with a conventional cleaning liquid or the like.

前述の如く、反応容器内に設置される基体は大気中に浮
遊している油類や有機溶剤などで汚染され、基体上には
これらに含まれる有機物などの汚染物が付着している。
As described above, the substrate placed in the reaction vessel is contaminated with oils, organic solvents, etc. floating in the atmosphere, and contaminants such as organic substances contained in these are attached to the substrate.

このような基体上の汚染物に光を照射すると、光のエネ
ルギーによってこれら汚染物中のC−N結合や0−0結
合などが切断され、これら汚染物が揮発性のものに変質
して基体から除去され、基体の浄化が行なわれる。照射
する光のエネルギーが、C−N結合(結合エネルギー;
約87.9 Kcal/mat )や0−0結合(結合
エネルギー;約33.2 Kcal/got )を切断
するに十分なものであるためには、照射する光の波長は
365n■以下であることがより好ましい。3f15n
mよりも波長の小さな光は更に大きなエネルギーを有し
ており、このようなエネルギーの大きい光を用いること
によって、 C−C結合、C−H結合、C=O結合、N
−H結合など更に多種の結合を切断することが可能であ
り、基体の清浄度をより向上させることができる。
When such contaminants on a substrate are irradiated with light, the C-N bonds and 0-0 bonds in these contaminants are broken by the energy of the light, and these contaminants change into volatile substances and are absorbed by the substrate. and cleaning of the substrate is performed. The energy of the irradiating light is the C-N bond (bond energy;
The wavelength of the irradiated light must be 365 nm or less in order to be sufficient to break the 0-0 bond (bonding energy; approximately 33.2 Kcal/got) and the 0-0 bond (about 87.9 Kcal/mat). is more preferable. 3f15n
Light with a wavelength smaller than m has even greater energy, and by using such high-energy light, we can form C-C bonds, C-H bonds, C=O bonds, N
It is possible to cut more types of bonds such as -H bonds, and the cleanliness of the substrate can be further improved.

また、酸素含有雰囲気下に240nm以下の光を照射す
ると、下記の反応によって反応容器内に03が生成する
Furthermore, when light of 240 nm or less is irradiated in an oxygen-containing atmosphere, 03 is generated in the reaction vessel by the following reaction.

hν 0□ −→0+0 02 + 0 → 03 このようにして生成する03には強力な酸化作用があり
、優れた洗浄力を有することは同知の通りである。この
ような03発生条件下で基体洗n1を行なうことにより
、基体の清浄度を更に向丘させることが可能であり、本
発明をより有効なものとすることができる。
hv 0□ −→0+0 02 + 0 → 03 It is well known that 03 produced in this way has a strong oxidizing effect and has excellent detergency. By performing substrate cleaning n1 under such 03 generation conditions, it is possible to further improve the cleanliness of the substrate, and the present invention can be made more effective.

上記の如くにして洗浄処理を終了した基体6を反応容器
3内に保持したまま、基体6上に所望の堆積膜を形成す
る。膜形成は、従来法と特に異なることなく行なうこと
ができる。すなわち、上記洗浄処理を終了した基体6を
反応容器3内に保持したまま該容器3内を所望の圧力に
した後、原料ガスポンベ9から堆積膜形成用の原料ガス
を反応容器3内に導入する0次いで、所望の波長の光を
11(1射して反応容器3内の原料ガスを分解または重
合し、基体6上に所望の堆積膜を得る。
A desired deposited film is formed on the substrate 6 while the substrate 6 having undergone the cleaning process as described above is held in the reaction vessel 3. Film formation can be performed without any particular difference from conventional methods. That is, after the substrate 6 that has undergone the cleaning process is held in the reaction vessel 3 and the pressure inside the vessel 3 is brought to a desired level, a raw material gas for forming a deposited film is introduced into the reaction vessel 3 from the raw material gas pump 9. Next, a light beam of a desired wavelength (11) is emitted to decompose or polymerize the raw material gas in the reaction vessel 3, thereby obtaining a desired deposited film on the substrate 6.

本発明において、基体洗浄用に用いる光と原料ガスを分
解または重合するために用いる光とは同じものであって
も、異なるものであってもどちらでもよい。
In the present invention, the light used for cleaning the substrate and the light used for decomposing or polymerizing the source gas may be the same or different.

[発明の効果] このような本発明の方法によれば、洗浄された基体を大
気に晒すことなく膜形成を行なうことが可能であり、子
分に洗浄された基体上に堆積膜を形成することができる
ので、基体との付着力に優れた、高純度、高品位の堆積
膜を再現性良く堆積することが可能である。
[Effects of the Invention] According to the method of the present invention, it is possible to form a film without exposing the cleaned substrate to the atmosphere, and the deposited film can be formed on the cleaned substrate by the henchmen. Therefore, it is possible to deposit a high-purity, high-quality deposited film with excellent adhesion to the substrate with good reproducibility.

[実施例] 以下に、実施例を示す。[Example] Examples are shown below.

〔実施例1〕 第1図の装置を用い、平板状ガラス基板に水素化アモル
ファスシリコン膜(以下、a−9i:H膜)を形成した
[Example 1] Using the apparatus shown in FIG. 1, a hydrogenated amorphous silicon film (hereinafter referred to as a-9i:H film) was formed on a flat glass substrate.

まず、中性洗剤、純水(洗浄液)を用いてガラス基板を
十分に洗浄した後、ビンセットを用いて該基板を反応容
器内に設置した0次に、ガラス基板を設置した反応容器
を1O−7Torrの減圧にした後、波長3e5nmの
光を20分間照射して基板を洗浄した。
First, after thoroughly cleaning the glass substrate using a neutral detergent and pure water (cleaning solution), the substrate was placed in a reaction vessel using a bottle set.Next, the reaction vessel in which the glass substrate was installed was After reducing the pressure to −7 Torr, the substrate was cleaned by irradiating light with a wavelength of 3e5 nm for 20 minutes.

上記洗浄終了後、反応容器内に基板を保持したまま該容
器内を0.5 Tartの圧力に保ち、 Si2H6:
H2= 80Vol$ : 20Vol$(7)原料ガ
スを0.5 t /wr:n(1)流入速度で反応容器
内に導入した後、波長185 nmの光を照射して基板
上に膜厚0.5 pのa−3i:H膜を形成した。この
ような操作を繰返すことによってa−3i:HIII2
の形成された50枚のガラス基板を得た。
After the above cleaning is completed, the pressure inside the reaction container is maintained at 0.5 Tart while the substrate is held in the reaction container, and Si2H6:
H2 = 80 Vol$: 20 Vol$ (7) After introducing the raw material gas into the reaction vessel at an inflow rate of 0.5 t/wr:n (1), light with a wavelength of 185 nm is irradiated to form a film on the substrate with a thickness of 0. A .5p a-3i:H film was formed. By repeating such operations, a-3i:HIII2
50 glass substrates were obtained.

〔実施例2〕 反応容器内におけるガラス基板洗浄時の光の波長を15
0nmとする以外は実施例1と同様にして。
[Example 2] The wavelength of light during cleaning of the glass substrate in the reaction vessel was set to 15
Same as Example 1 except that the thickness was 0 nm.

a−Si:H膜の形成された50枚のガラス基板を得た
Fifty glass substrates on which a-Si:H films were formed were obtained.

〔比較例〕[Comparative example]

光によるガラス基板の洗浄を行なわない以外は実施例1
と同様にして、a−9i:H膜の形成された50枚のガ
ラス基板を得た。
Example 1 except that the glass substrate was not cleaned with light
In the same manner as above, 50 glass substrates on which a-9i:H films were formed were obtained.

このようにして作成した実施例1〜2および比較例のガ
ラス基板のそれぞれについて、基板とa−Si:HlQ
の付着力をせん断応力を測定することによって評価した
ところ、比較例におけるa−3i:H膜のガラス基板へ
の付着力は0.2X 10” dyn/crn’ 〜+
、ox to’°dyn/cm’ノ範囲にあった。これ
に対して実施例1〜2におけるa−9i:H膜のガラス
基板への付着力は 1.2X to” dyn/ctn
” 〜1.flX 10”dyn/crry’の範囲に
あり、極めて優れたものであることが分った。
For each of the glass substrates of Examples 1 to 2 and Comparative Example created in this way, the substrate and a-Si:HlQ
When the adhesion force of the a-3i:H film in the comparative example was evaluated by measuring the shear stress, the adhesion force to the glass substrate was 0.2X 10"dyn/crn' ~ +
, ox to'°dyn/cm'. On the other hand, the adhesion force of the a-9i:H film to the glass substrate in Examples 1 and 2 was 1.2X to" dyn/ctn
'' to 1.flX 10''dyn/crry', which was found to be extremely excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法に用いられる実施例装置の概要
を説明する図、第2図は従来の光CVD装置の概要を説
明する図である。 ■−−−光束      2−m−光透過窓3−−−反
応容器 5−m=堆積膜 6−m=基体       7一−−排気口第  1 
 図 第 2  図
FIG. 1 is a diagram illustrating an outline of an example apparatus used in the method of the present invention, and FIG. 2 is a diagram illustrating an outline of a conventional optical CVD apparatus. ■---Light flux 2-m-light transmission window 3--reaction container 5-m=deposited film 6-m=substrate 7--exhaust port 1
Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)反応容器内に設けられた基体に基体洗浄用の光を
照射することによって基体を洗浄した後、該洗浄された
基体を反応容器内に保持したまま原料ガスを反応容器内
に導入し、該原料ガスに光を照射することによって、該
洗浄された基体上に該原料ガスを原料とする堆積膜を形
成することを特徴とする膜形成方法。
(1) After cleaning the substrate by irradiating the substrate provided in the reaction vessel with substrate cleaning light, the raw material gas is introduced into the reaction vessel while the cleaned substrate is held in the reaction vessel. . A film forming method, comprising: irradiating the source gas with light to form a deposited film using the source gas as a raw material on the cleaned substrate.
(2)基体洗浄用の光が、波長365nm以下の光であ
ることを特徴とする特許請求の範囲第1項に記載の膜形
成方法。
(2) The film forming method according to claim 1, wherein the light for cleaning the substrate is light having a wavelength of 365 nm or less.
(3)前記洗浄を、酸素含有雰囲気下で行なうことを特
徴とする特許請求の範囲第1項に記載の膜形成方法。
(3) The film forming method according to claim 1, wherein the cleaning is performed in an oxygen-containing atmosphere.
JP60052445A 1985-03-18 1985-03-18 Film forming method Pending JPS61212016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60052445A JPS61212016A (en) 1985-03-18 1985-03-18 Film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60052445A JPS61212016A (en) 1985-03-18 1985-03-18 Film forming method

Publications (1)

Publication Number Publication Date
JPS61212016A true JPS61212016A (en) 1986-09-20

Family

ID=12914926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60052445A Pending JPS61212016A (en) 1985-03-18 1985-03-18 Film forming method

Country Status (1)

Country Link
JP (1) JPS61212016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241936A (en) * 1987-03-28 1988-10-07 Ulvac Corp Oxidation and cvd furnace
JPH02258979A (en) * 1989-02-21 1990-10-19 Anelva Corp Method and device for normal-pressure cvd

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241936A (en) * 1987-03-28 1988-10-07 Ulvac Corp Oxidation and cvd furnace
JPH02258979A (en) * 1989-02-21 1990-10-19 Anelva Corp Method and device for normal-pressure cvd

Similar Documents

Publication Publication Date Title
JPH0691014B2 (en) Semiconductor device manufacturing equipment
JPS61212016A (en) Film forming method
JPH036653B2 (en)
Taguchi et al. Enhancement of film deposition rate due to the production of Si2H6 as an intermediate in the photodecomposition of SiH4 using an ArF excimer laser
JPS6187338A (en) Method of dry cleaning silicon surface irradiated with multiple beams
JPH0697075A (en) Plasma cleaning of thin film deposition chamber
JPS63317675A (en) Plasma vapor growth device
JPH0429220B2 (en)
JPS61119028A (en) Photo-chemical vapor deposition equipment
JPS61216318A (en) Photo chemical vapor deposition device
JPS6128443A (en) Photochemical gaseous phase growing apparatus
JP2997849B2 (en) Method for forming silicon oxide film
JPS6075327A (en) Ultraviolet ray generating device and material treating device using it
JPS6167920A (en) Photochemical reaction device
JPH01101625A (en) Manufacture of semiconductor device
JPH0246669B2 (en)
JPS5961122A (en) Manufacture of semiconductor device
JPS6161665B2 (en)
JPH03271372A (en) Method for forming oxide thin film using excimer laser
JP3460855B2 (en) Cleaning method and cleaning device
JPH0294430A (en) Photo-assisted cvd apparatus
JPS60182127A (en) Photoexcitation reactor
JPS61146791A (en) Formation of diamond film or diamond-like carbon film
JPH02228024A (en) Method for forming amorphous silicon film
JPS6118122A (en) Semiconductor manufacturing apparatus