JPH0585632B2 - - Google Patents

Info

Publication number
JPH0585632B2
JPH0585632B2 JP60046560A JP4656085A JPH0585632B2 JP H0585632 B2 JPH0585632 B2 JP H0585632B2 JP 60046560 A JP60046560 A JP 60046560A JP 4656085 A JP4656085 A JP 4656085A JP H0585632 B2 JPH0585632 B2 JP H0585632B2
Authority
JP
Japan
Prior art keywords
magnetic pole
pole body
shaped
disc
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60046560A
Other languages
Japanese (ja)
Other versions
JPS61207575A (en
Inventor
Katsuo Abe
Hide Kobayashi
Tsuneaki Kamei
Hiroyuki Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4656085A priority Critical patent/JPS61207575A/en
Publication of JPS61207575A publication Critical patent/JPS61207575A/en
Publication of JPH0585632B2 publication Critical patent/JPH0585632B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、大きな表面積を有する円板状被成膜
基板の表裏両面に同時に薄膜を形成するのに好適
な円板状被成膜基板両面へ同時スパツタリング方
法およびその装置に関するものである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a method for forming thin films on both sides of a disc-shaped deposition substrate having a large surface area, which is suitable for simultaneously forming thin films on both the front and back surfaces of the disc-shaped deposition substrate. The present invention relates to a simultaneous sputtering method and apparatus.

〔発明の背景〕[Background of the invention]

従来、磁気デイスクのごとく大面積でしかも中
心部に空洞のあるいわゆるドーナツ状円板の表面
にスパツタ電極で薄膜を形成する方法としてはた
とえば特開昭53−141197号公報に記載されたもの
がある。然るに上記の方法ではつぎに述べるよう
な課題を含んでいる。
Conventionally, as a method of forming a thin film using a sputter electrode on the surface of a so-called donut-shaped disk having a large area and a cavity in the center, such as a magnetic disk, there is a method described in, for example, Japanese Patent Application Laid-open No. 141197/1983. . However, the above method includes the following problems.

(イ) 円板の表面積に対してシヤツタの開口面積が
その1部であるため、円板上への成膜効率が低
下する。
(a) Since the opening area of the shutter is only a fraction of the surface area of the disk, the efficiency of film formation on the disk decreases.

(ロ) シヤツタの開口部を通じて円板の表面積全体
に成膜するため、円板もしくはシヤツタを回転
させる必要があるので、構成が複雑になる。
(b) In order to form a film over the entire surface area of the disk through the opening of the shutter, it is necessary to rotate the disk or the shutter, which makes the structure complicated.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の課題を解決す
べく、簡単な構成により大きな表面積を有する円
板状被成膜基板の表裏両面に同時にプレーナマグ
ネトロンスパツタ方式でスパツタリング成膜して
薄膜を形成して該薄膜の膜厚分布および薄膜の膜
質の均一化並びに成膜速度の向上をはかつた円板
状被膜基板両面への同時スパツタリング方法およ
びその装置を提供することにある。
An object of the present invention is to form a thin film by sputtering using a planar magnetron sputtering method simultaneously on both the front and back surfaces of a disc-shaped film-forming substrate having a large surface area using a simple structure, in order to solve the problems of the prior art described above. The object of the present invention is to provide a method and apparatus for simultaneously sputtering both surfaces of a disk-shaped coated substrate, which can uniformize the thickness distribution and quality of the thin film and improve the film formation rate.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、中心に
第1の磁極体とその周囲に環状の第2の磁極体と
を配置して第1及び第2の磁極体の後端間を磁性
体で結合させ、前記第1及び第2の磁極体上に配
置されたターゲツト表面近傍の前記第1及び第2
の磁極体の間の領域にリング状のトンネル磁界を
発生させるプレーナマグネトロンスパツタ電極の
各々を、円板状被成膜基板の両面の各々に静止対
向させて配置した状態で、各プレーナマグネトロ
ン電極の前記第1の磁極体と第2の磁極体との間
のターゲツト表面上近傍に形成されたリング状の
トンネル磁界にプラズマを発生させて各ターゲツ
ト材を前記円板状被成膜基板の両面の各々にほぼ
同時に成膜することを特徴とする円板状被成膜基
板両面への同時スパツタリング方法である。また
本発明は、中心に第1の磁極体とその周囲に環状
の第3の磁極体とその周囲に環状の第2の磁極体
とを配置して該第1及び第3及び第2の磁極体の
後端間を磁性体で結合させ、前記第1の磁極体と
第3の環状の磁極体の間に第1の電磁コイルを、
前記第3の環状の磁極体と第2の環状の磁極体と
の間に第2の電磁コイルを配置し、前記第1及び
第3及び第2の磁極体上に配置されたターゲツト
表面近傍の前記第1及び第3及び第2の磁極体の
間の領域にリング状のトンネル磁界を発生させる
プレーナマグネトロンスパツタ電極の各々を、円
板状被成膜基板の両面の各々に静止対向させて配
置した状態で、前記少なくとも第1または第2の
電磁コイルに流す電流により少なくとも第1の磁
極体と第2の磁極体との間の磁界を制御して各プ
レーナマグネトロン電極のターゲツト表面上の近
傍に形成されたリング状のトンネル磁界を制御
し、該制御された各リング状のトンネル磁界にプ
ラズマを発生させて各ターゲツト材を前記円板状
被成膜基板の両面の各々にほぼ同時に成膜するこ
とを特徴とする円板状被成膜基板両面への同時ス
パツタリング方法である。また本発明は、円板状
被成膜基板を支持する支持手段を設け、中心に第
1の磁極体とその周囲に環状の第2の磁極体とを
配置して該第1及び第2の磁極体の後端間を磁性
体で結合させ、前記第1及び第2の磁極体上に配
置されたターゲツト表面近傍の前記第1及び第2
の磁極体の間の領域にリング状のトンネル磁界を
発生させるプレーナマグネトロンスパツタ電極の
各々を、前記支持手段によつて支持された円板状
被成膜基板の両面の各々に静止対向させて配置
し、各プーナマグネトロン電極の前記第1の磁極
体と第2の磁極体との間のターゲツト表面上近傍
に形成されたリング状のトンネル磁界にプラズマ
を発生させて各ターゲツト材を前記円板状被成膜
基板の両面の各々ほぼ同時に成膜するように構成
したことを特徴とする円板状被成膜基板両面への
同時スパツタリング装置である。また本発明は、
円板状被成膜基板を支持する支持手段を設け、中
心に第1の磁極体とその周囲に環状の第3の磁極
体とその周囲に環状の第2の磁極体とを配置して
第1及び第3及び第2の磁極体の後端間を磁性体
で結合させ、前記第1の磁極体と第3の環状の磁
極体の間に第1の電磁コイルを、前記第3の環状
の磁極体と第2の環状の磁極体との間に第2の電
磁コイルを配置し、前記第1及び第3及び第2の
磁極体上に配置されたターゲツト表面近傍の前記
第1及び第3及び第2の磁極体の間の領域にリン
グ状のトンネル磁界を発生させるプレーナマグネ
トロンスパツタ電極を、前記支持手段に支持され
た円板状被成膜基板の両面の各々に静止対向させ
て配置し、前記少なくとも第1または第2の電磁
コイルに流す電流により少なくとも第1の磁極体
と第2の磁極体との間の磁界を制御して各プレー
ナマグネトロン電極のターゲツト表面上近傍に発
生したリング状のトンネル磁界を制御する制御手
段を設け、該制御手段で制御された各リング状の
トンネル磁界にプラズマを発生させて各ターゲツ
ト材を前記円板状被成膜基板の両面の各々にほぼ
同時に成膜するように構成したことを特徴とする
円板状被成膜基板両面への同時スパツタリング装
置である。また本発明は、前記円板状被成膜基板
両面への同時スパツタリング装置において、前記
支持手段は、各プレーナマグネトロン電極の中心
部を貫通させた支持軸で前記円板状被成膜基板の
中心部を挾んで支持するように構成したことを特
徴とする。また本発明は、前記円板状被成膜基板
両面への同時スパツタリング装置において、前記
各プレーナマグネトロン電極のターゲツトと前記
円板状被成膜基板との間の各距離を調整できるよ
うに構成したことを特徴とする。
In order to achieve the above object, the present invention arranges a first magnetic pole body at the center and an annular second magnetic pole body around the first magnetic pole body, and connects a magnetic body between the rear ends of the first and second magnetic pole bodies. the first and second magnetic poles near the target surface disposed on the first and second magnetic pole bodies;
Each planar magnetron sputter electrode, which generates a ring-shaped tunnel magnetic field in the region between the magnetic pole bodies, is placed stationary and facing each of both sides of the disk-shaped film-forming substrate. Plasma is generated in a ring-shaped tunnel magnetic field formed near the surface of the target between the first magnetic pole body and the second magnetic pole body, and each target material is applied to both surfaces of the disc-shaped film-forming substrate. This is a method of simultaneous sputtering on both sides of a disk-shaped substrate to be film-formed, which is characterized in that a film is formed almost simultaneously on each of the two. Further, the present invention provides a first magnetic pole body, a third magnetic pole body having an annular shape around the first magnetic pole body, and a second magnetic pole body having an annular shape around the first magnetic pole body. A first electromagnetic coil is connected between the first magnetic pole body and the third annular magnetic pole body by coupling the rear ends of the body with a magnetic material,
A second electromagnetic coil is disposed between the third annular magnetic pole body and the second annular magnetic pole body, and a second electromagnetic coil is arranged between the third annular magnetic pole body and the second annular magnetic pole body, and Each of planar magnetron sputter electrodes that generate a ring-shaped tunnel magnetic field in a region between the first, third, and second magnetic pole bodies are stationary opposed to each of both surfaces of the disc-shaped deposition substrate. In the arranged state, the magnetic field between at least the first magnetic pole body and the second magnetic pole body is controlled by a current flowing through the at least first or second electromagnetic coil, so that the magnetic field near the target surface of each planar magnetron electrode is controlled. controlling the ring-shaped tunnel magnetic fields formed in the ring-shaped tunnel magnetic fields, and generating plasma in the controlled ring-shaped tunnel magnetic fields to deposit each target material almost simultaneously on each of both sides of the disc-shaped film-forming substrate. This is a method for simultaneous sputtering on both sides of a disc-shaped film-forming substrate. Further, the present invention provides a support means for supporting a disk-shaped substrate to be film-formed, and arranges a first magnetic pole body in the center and an annular second magnetic pole body around the first magnetic pole body, and The rear ends of the magnetic pole bodies are coupled by a magnetic material, and the first and second
planar magnetron sputter electrodes that generate a ring-shaped tunnel magnetic field in the region between the magnetic pole bodies of the planar magnetron sputter electrodes are stationary opposed to each of both sides of the disc-shaped film-forming substrate supported by the supporting means; Plasma is generated in a ring-shaped tunnel magnetic field formed near the target surface between the first magnetic pole body and the second magnetic pole body of each Poona magnetron electrode, and each target material is attached to the disc. This is a simultaneous sputtering apparatus for simultaneously sputtering both surfaces of a disc-shaped film-forming substrate, characterized in that it is configured to form a film on both surfaces of the disc-shaped film-forming substrate substantially simultaneously. Further, the present invention
A support means for supporting a disk-shaped substrate to be film-formed is provided, and a first magnetic pole body is arranged at the center, a ring-shaped third magnetic pole body is arranged around the first magnetic pole body, and a ring-shaped second magnetic pole body is arranged around the first magnetic pole body. The rear ends of the first, third, and second magnetic pole bodies are coupled with a magnetic material, and a first electromagnetic coil is connected between the first magnetic pole body and the third annular magnetic pole body, and the first electromagnetic coil is connected to the third annular magnetic pole body. a second electromagnetic coil is disposed between the magnetic pole body and the second annular magnetic pole body, and A planar magnetron sputter electrode that generates a ring-shaped tunnel magnetic field in a region between the third and second magnetic pole bodies is stationary and opposed to each of both surfaces of the disc-shaped deposition substrate supported by the supporting means. and generate a magnetic field near the target surface of each planar magnetron electrode by controlling a magnetic field between at least the first magnetic pole body and the second magnetic pole body by a current flowing through the at least first or second electromagnetic coil. A control means for controlling the ring-shaped tunnel magnetic field is provided, and plasma is generated in each ring-shaped tunnel magnetic field controlled by the control means to approximately apply each target material to each of both surfaces of the disc-shaped film-forming substrate. This is a simultaneous sputtering apparatus for simultaneously forming films on both sides of a disc-shaped film-forming substrate. Further, in the present invention, in the simultaneous sputtering apparatus for both sides of the disc-shaped film-forming substrate, the supporting means is provided at the center of the disc-shaped film-forming film-forming substrate with a support shaft passing through the center of each planar magnetron electrode. It is characterized by being configured to sandwich and support the parts. Further, the present invention provides an apparatus for simultaneous sputtering on both sides of the disc-shaped film-forming substrate, wherein each distance between the target of each of the planar magnetron electrodes and the disc-shaped film-forming substrate can be adjusted. It is characterized by

〔発明の実施例〕 以下本発明の実施例を示す第1図および第2図
について説明する。第1図は本発明の円板状被成
膜基板両面への同時スパツタリング装置の一実施
例を示す断面図、第2図は第1図に示すスパツタ
電極と異なる実施例を示すスパツタ電極の断面図
である。第1図において1および1′は2個のス
パツタ電極にして間隔をおいて対称的に形成され
ている。2は両面に薄膜を成膜する円板(円板状
被成膜基板)にして、上記2個のスパツタ電極
1,1′間に介挿されている。3は支持軸にして、
上記2個のスパツタ電極1,1′の中心部に形成
された貫通穴1a,,1a′内を貫通し、中央部に
2個のセンタハブ4にて上記円板2の表裏両面を
介挿する如く支持している。上記2個のスパツタ
電極1,1′は互いに対称的につぎに述べる構成
をしている。5は陰極にして円筒形状に形成さ
れ、その中心部に上記支持軸3の軸心方向に貫通
する貫通穴1a,1a′を形成し、上記円板2の対
向面に開口するリング状の空洞6を形成してい
る。7は内側シールにして、上記貫通穴1a,1
aと支持軸3との間に介挿された軸部7aと、こ
の軸部7aの円板2側端部に後述のターゲツトの
内周部と、上記円板2との間に介挿される如く固
定された内側シール部7bと他端部に本発明装置
全体を挿入密閉容器(図示せず)に保持するため
のフランジ部7cを固定している。8は磁束発生
機構にして、上記空洞6内に挿入支持され平板を
リング状に形成したヨーク9とリング状の軟性材
料にて形成され上記ヨーク9の内周部に対接する
第1の磁極体10と、リンク状の永久磁石にて形
成され、上記ヨーク9の外周部に対接する第2の
磁極体11とから形成され、ターゲツト12の円
板2の対向面の空間にトンネル状の磁力線の分布
(図示せず)を発生させる如くしている。12は
ターゲツトにして、Al−2%Si(純度99・99%)
の平板材をリング状に形成し、上記陰極5の円板
対向面1b,1bに支持されている。13は外側
シールにして、上記ターゲツト12の外周部と円
板2との間に介挿される如く、上記陰極5に絶縁
材層板(図示せず)を介して支持されている。1
4は導水管にして、上記陰極5およびヨーク9に
軸心方向に貫通支持され、その先端部を上記ター
ゲツト12の第1,第2磁極体10,11側に向
つて開口し、該導水管14の開口部より空洞6内
へ噴出させる水によつて上記ターゲツト12を冷
却する如くしている。上記の構成であるから、陰
極5に形成された空洞6内に、第1および第2の
磁極体10,11とヨーク9とで構成された磁束
発生機構8を取付け、貫通穴1a,1a′内に内側
シール7を、円板2の対向面1b,1b′にターゲ
ツト12を取付け、その外周部に外側シール13
を取付けて2個のスパツタ電極1,1′を組立て
る。ついで、組立後の2個のスパツタ電極1,
1′をそのターゲツト12が互いに対向するよう
に間隔をおいて配置したのち、上記貫通穴1a,
1a′内に支持軸3を貫通させて、これら2個のス
パツタ電極1,1′間中央位置に配置されるよう
に円板2を2個のセンタハブ4にて支持軸3に支
持させる。ついで、2個のスパツタ電極1,1′
を支持軸3にそうて移動してそのターゲツト12
と、円板2との距離を調整すれば、2個のスパツ
タ電極1,1′と円板2との中心位置を位置決め
し、かつターゲツト12と円板2との距離を調整
することができる。次に円板2の両面に同時にプ
レーナマグネトロンスパツタ電極構造体1,1′
により薄膜を成膜する動作について、説明する。
まず、各スパツタ電極1,1′において、第1の
磁極体10と第2の磁極体11によつて円板2の
各面に対向するターゲツト12の表面上の空間
(領域)にリング状のトンネル磁界分布を発生さ
せ、陽極13と上記陰極5との間に印加される高
電圧によつて電子が上記リング状のトンネル磁界
により加速されてプラズマが発生し、該プラズマ
状のイオンがターゲツト12に衝突し、ターゲツ
ト12を形成する材料の構成原子または粒子がは
じき出て円板2の各面に同時に付着堆積してター
ゲツト材の薄膜を形成する。
[Embodiments of the Invention] Below, FIGS. 1 and 2 showing embodiments of the present invention will be described. FIG. 1 is a cross-sectional view showing an embodiment of an apparatus for simultaneous sputtering on both sides of a disc-shaped film-forming substrate according to the present invention, and FIG. 2 is a cross-sectional view of a sputter electrode showing an embodiment different from the sputter electrode shown in FIG. It is a diagram. In FIG. 1, 1 and 1' are two sputter electrodes which are symmetrically formed with an interval between them. Reference numeral 2 denotes a disk (disk-shaped film-forming substrate) on which a thin film is to be formed on both sides, and is inserted between the two sputter electrodes 1 and 1'. 3 is the support shaft,
It passes through the through holes 1a, 1a' formed in the center of the two sputter electrodes 1, 1', and inserts both the front and back sides of the disc 2 with two center hubs 4 in the center. I support it as much as possible. The two sputter electrodes 1, 1' are symmetrical to each other and have the configuration described below. 5 is a cathode formed in a cylindrical shape, with through holes 1a and 1a' formed in the center thereof passing through in the axial direction of the support shaft 3, and a ring-shaped cavity opening on the opposing surface of the disc 2; 6 is formed. 7 is an inner seal, and the through holes 1a, 1 are sealed.
A shaft portion 7a is inserted between the shaft portion a and the support shaft 3, and a shaft portion 7a is inserted between the inner circumferential portion of a target to be described later and the disk 2 at the end of the shaft portion 7a on the disk 2 side. A flange portion 7c for inserting the entire device of the present invention and holding it in a closed container (not shown) is fixed to the inner seal portion 7b and the other end. Reference numeral 8 denotes a magnetic flux generating mechanism including a yoke 9 which is inserted and supported in the cavity 6 and formed from a flat plate into a ring shape, and a first magnetic pole body which is formed of a ring-shaped soft material and is in contact with the inner circumference of the yoke 9. 10 and a second magnetic pole body 11 made of a link-shaped permanent magnet and opposed to the outer circumferential portion of the yoke 9, which creates a tunnel-shaped line of magnetic force in the space on the opposing surface of the disk 2 of the target 12. A distribution (not shown) is generated. 12 is the target, Al-2%Si (purity 99.99%)
A flat plate material is formed into a ring shape, and is supported by the disk facing surfaces 1b, 1b of the cathode 5. An outer seal 13 is supported by the cathode 5 through an insulating layer plate (not shown) so as to be inserted between the outer circumference of the target 12 and the disc 2. 1
Reference numeral 4 designates a water conduit, which is supported by passing through the cathode 5 and yoke 9 in the axial direction, and has its tip opened toward the first and second magnetic pole bodies 10 and 11 of the target 12. The target 12 is cooled by water jetted into the cavity 6 from the opening of the target 14. With the above configuration, the magnetic flux generating mechanism 8 composed of the first and second magnetic pole bodies 10, 11 and the yoke 9 is installed in the cavity 6 formed in the cathode 5, and the through holes 1a, 1a' The target 12 is attached to the opposing surfaces 1b and 1b' of the disc 2, and the outer seal 13 is attached to the outer periphery of the target 12.
and assemble the two sputter electrodes 1, 1'. Next, the two sputter electrodes 1 after assembly,
1' are arranged at intervals so that their targets 12 face each other, and then the through holes 1a,
A support shaft 3 is passed through 1a', and the disk 2 is supported by two center hubs 4 on the support shaft 3 so as to be placed in the center between these two sputter electrodes 1, 1'. Next, two sputter electrodes 1, 1'
on the support shaft 3 and move it to the target 12.
By adjusting the distance between the two sputter electrodes 1 and 1' and the disk 2, the center positions of the two sputter electrodes 1 and 1' and the disk 2 can be determined, and the distance between the target 12 and the disk 2 can be adjusted. . Next, planar magnetron sputter electrode structures 1, 1' are placed on both sides of the disk 2 at the same time.
The operation of forming a thin film will be explained below.
First, in each sputter electrode 1, 1', a ring-shaped space (region) is formed on the surface of the target 12 facing each surface of the disk 2 by the first magnetic pole body 10 and the second magnetic pole body 11. A tunnel magnetic field distribution is generated, and by the high voltage applied between the anode 13 and the cathode 5, electrons are accelerated by the ring-shaped tunnel magnetic field to generate plasma, and the plasma-like ions reach the target 12. Upon impact, constituent atoms or particles of the material forming the target 12 are ejected and deposited simultaneously on each surface of the disk 2, forming a thin film of target material.

次に第1図に示すスパツタ電極と異なるスパツ
タ電極の場合について第2図に基づいて説明す
る。即ち、19は磁束発生機構にして、ヨーク1
4と、このヨーク14の端面内周部に対接するリ
ング状の軟磁性材料4からなる第1の磁極体15
と、上記ヨーク14の端面外周部に対接するリン
グ状の軟磁性材料4からなる第2の磁極体16
と、これら第1の磁極体15および第2の磁極体
16間に配置されたリング状の軟磁性材料からな
る第3の磁極体17とを互いに同一中心位置にな
るように位置決めし、これらの磁極体15,1
6,17間にこれらに励磁するためのコイル18
a,18bを設けている。上記以外は第1図と同
一であるから、第1図と同一符号をもつて示す。
本実施例においては、上記構成により、前記コイ
ル18a,18bに流す電流を制御することによ
り少なくとも第1の磁極体10と第2の磁極体1
6による磁束(第1の磁極体10と第2の磁極体
16との間の磁界)を同時に制御して各プレーナ
マグネトロン電極1,1′のターゲツト12の表
面上近傍に発生したリング状のトンネル磁界を同
時に制御することができ、円板2の表裏両面に同
時に薄膜をプレーナマグネトロンスパツタ方式で
スパツタリング成膜して薄膜の膜厚分布、薄膜の
膜質の均一化および成膜速度の向上を一層はかる
ことができる。なお、プラズマ発生に至る過程は
前記第1図に示す実施例と同様である。
Next, the case of a sputter electrode different from the sputter electrode shown in FIG. 1 will be explained based on FIG. 2. That is, 19 is a magnetic flux generation mechanism, and yoke 1
4, and a first magnetic pole body 15 made of a ring-shaped soft magnetic material 4 that is in contact with the inner circumference of the end surface of the yoke 14.
and a second magnetic pole body 16 made of a ring-shaped soft magnetic material 4 that is in contact with the outer periphery of the end surface of the yoke 14.
and a third magnetic pole body 17 made of a ring-shaped soft magnetic material arranged between the first magnetic pole body 15 and the second magnetic pole body 16 are positioned so that they are in the same center position with each other. Magnetic pole body 15,1
A coil 18 for exciting these between 6 and 17
a and 18b are provided. Since the parts other than the above are the same as those in FIG. 1, they are indicated by the same reference numerals as in FIG. 1.
In this embodiment, with the above configuration, by controlling the current flowing through the coils 18a and 18b, at least the first magnetic pole body 10 and the second magnetic pole body 1
A ring-shaped tunnel is generated near the surface of the target 12 of each planar magnetron electrode 1, 1' by simultaneously controlling the magnetic flux (magnetic field between the first magnetic pole body 10 and the second magnetic pole body 16) caused by 6. The magnetic field can be controlled simultaneously, and a thin film is sputtered on both the front and back sides of the disk 2 simultaneously using a planar magnetron sputtering method, further improving the uniformity of the thickness distribution and quality of the thin film and the speed of film formation. It can be measured. Note that the process leading to plasma generation is the same as the embodiment shown in FIG. 1 above.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、簡単な構成により大きな表面
積を有する円板状被成膜基板の表裏両面に同時に
プレーナマグネトロンスパツタ方式でスパツタリ
ング成膜して薄膜を形成して各ターゲツトの表面
上近傍に発生したリング状のトンネル磁界により
薄膜の膜厚分布の均一化をはかると共に膜応力の
均一化により薄膜の膜質の均一化をはかり、しか
も成膜速度の向上をはかることができる効果を奏
する。また本発明によれば、少なくとも第1また
は第2の電磁コイルに流す電流により少なくとも
第1の磁極体と第2の磁極体との間の磁界を制御
して各プレーナマグネトロン電極のターゲツト表
面上の近傍に形成されたリング状のトンネル磁界
を制御することにより、大きな表面積を有する円
板状被成膜基板の両面に対してより一層の薄膜の
膜厚分布および薄膜の膜質の均一化をはかること
ができる効果を奏する。また本発明によれば、各
プレーナマグネトロン電極のターゲツトと円板状
被成膜基板との間の各距離を調整できるように構
成することにより、大きさの異なる円板状被成膜
基板に対して薄膜の膜厚分布および薄膜の膜質の
均一化をより一層促進することができる。また本
発明によれば、支持手段を、各プレーナマグネト
ロン電極の中心部を貫通させた支持軸で円板状被
成膜基板の中心部を挾んで支持するように構成す
ることにより、円板状被成膜基板の中心と各プレ
ーナマグネトロン電極の中心とを位置を合わせて
容易に円板被成膜基板を支持することができる。
According to the present invention, with a simple configuration, a thin film is formed by sputtering simultaneously on both the front and back surfaces of a disc-shaped deposition substrate having a large surface area using a planar magnetron sputtering method, and a thin film is formed near the surface of each target. The ring-shaped tunnel magnetic field makes it possible to make the film thickness distribution of the thin film uniform, and by making the film stress uniform, the film quality of the thin film is made uniform, and the film formation rate can be improved. Further, according to the present invention, the magnetic field between at least the first magnetic pole body and the second magnetic pole body is controlled by a current flowing through at least the first or second electromagnetic coil, so that the magnetic field on the target surface of each planar magnetron electrode is controlled. By controlling a ring-shaped tunnel magnetic field formed nearby, the thickness distribution and quality of the thin film can be made more uniform on both sides of a disk-shaped substrate with a large surface area. It produces the effect that can be achieved. Further, according to the present invention, by configuring the device so that each distance between the target of each planar magnetron electrode and the disc-shaped deposition substrate can be adjusted, it is possible to adjust the distance between the target of each planar magnetron electrode and the disc-shaped deposition substrate. This can further promote uniformity of the thickness distribution and quality of the thin film. Further, according to the present invention, the support means is configured to sandwich and support the center portion of the disk-shaped film-forming substrate with the support shaft penetrating the center portion of each planar magnetron electrode. By aligning the center of the deposition target substrate with the center of each planar magnetron electrode, it is possible to easily support the disk deposition target substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の円板状被成膜基板両面への同
時スパツタリング装置の一実施例を示す断面図、
第2図は第1図に示すスパツタ電極と異なる実施
例を示すスパツタ電極の断面図である。 1,1′……スパツタ電極、2……円板、3…
…支持軸、4……センタハブ、5……陰極、6…
…空洞、7……内側シール、8,13……磁束発
生機構、9,14……ヨーク、10,15……第
1の磁極体、11,16……第2の磁極体、12
……ターゲツト、13……外側シール、14′…
…導水管、17……第3の磁極体、18a,18
b……コイル。
FIG. 1 is a sectional view showing an embodiment of an apparatus for simultaneous sputtering on both sides of a disc-shaped film-forming substrate according to the present invention;
FIG. 2 is a sectional view of a sputter electrode showing a different embodiment from the sputter electrode shown in FIG. 1, 1'... Sputter electrode, 2... Disc, 3...
...Support shaft, 4...Center hub, 5...Cathode, 6...
...Cavity, 7...Inner seal, 8, 13...Magnetic flux generation mechanism, 9, 14...Yoke, 10, 15...First magnetic pole body, 11, 16...Second magnetic pole body, 12
...Target, 13...Outer seal, 14'...
...Water pipe, 17...Third magnetic pole body, 18a, 18
b...Coil.

Claims (1)

【特許請求の範囲】 1 中心に第1の磁極体とその周囲に環状の第2
の磁極体とを配置して第1及び第2の磁極体の後
端間を磁性体で結合させ、前記第1及び第2の磁
極体上に配置されたターゲツト表面近傍の前記第
1及び第2の磁極体の間の領域にリング状のトン
ネル磁界を発生させるプレーナマグネトロンスパ
ツタ電極の各々を、円板状被成膜基板の両面の
各々に静止対向させて配置した状態で、各プレー
ナマグネトロン電極の前記第1の磁極体と第2の
磁極体との間のターゲツト表面上近傍に形成され
たリング状のトンネル磁界にプラズマを発生させ
て各ターゲツト材を前記円板状被成膜基板の両面
の各々にほぼ同時に成膜することを特徴とする円
板状被成膜基板両面への同時スパツタリング方
法。 2 中心に第1の磁極体とその周囲に環状の第3
の磁極体とその周囲に環状の第2の磁極体とを配
置して該第1及び第3及び第2の磁極体の後端間
を磁性体で結合させ、前記第1の磁極体と第3の
環状の磁極体の間に第1の電磁コイルを、前記第
3の環状の磁極体と第2の環状の磁極体との間に
第2の電磁コイルを配置し、前記第1及び第3及
び第2の磁極体上に配置されたターゲツト表面近
傍の前記第1及び第3及び第2の磁極体の間の領
域にリング状のトンネル磁界を発生させるプレー
ナマグネトロンスパツタ電極の各々を、円板状被
成膜基板の両面の各々に静止対向させて配置した
状態で、前記少なくとも第1または第2の電磁コ
イルに流す電流により少なくとも第1の磁極体と
第2の磁極体との間の磁界を制御して各プレーナ
マグネトロン電極のターゲツト表面上の近傍に形
成されたリング状のトンネル磁界を制御し、該制
御された各リング状のトンネル磁界にプラズマを
発生させて各ターゲツト材を前記円板状被成膜基
板の両面の各々にほぼ同時に成膜することを特徴
とする円板状被成膜基板両面への同時スパツタリ
ング方法。 3 円板状被成膜基板を支持する支持手段を設
け、中心に第1の磁極体とその周囲に環状の第2
の磁極体とを配置して該第1及び第2の磁極体の
後端間を磁性体で結合させ、前記第1及び第2の
磁極体上に配置されたターゲツト表面近傍の前記
第1及び第2の磁極体の間の領域にリング状のト
ンネル磁界を発生させるプレーナマグネトロンス
パツタ電極の各々を、前記支持手段によつて支持
された円板状被成膜基板の両面の各々の静止対向
させて配置し、各プレーナマグネトロン電極の前
記第1の磁極体と第2の磁極体との間のターゲツ
ト表面上近傍に形成されたリング状のトンネル磁
界にプラズマを発生させて各ターゲツト材を前記
円板状被成膜基板の両面の各々にほぼ同時に成膜
するように構成したことを特徴とする円板状被成
膜基板両面への同時スパツタリング装置。 4 前記支持手段は、各プレーナマグネトロン電
極の中心部を貫通させた支持軸で前記円板状被成
膜基板の中心部を挾んで支持するように構成した
ことを特徴とする特許請求の範囲第3項記載の円
板状被成膜基板両面への同時スパツタリング装
置。 5 前記各プレーナマグネトロン電極のターゲツ
トと前記円板状被成膜基板との間の各距離を調整
できるように構成したことを特徴とする特許請求
の範囲第3項記載の円板状被成膜基板両面への同
時スパツタリング装置。 6 円板状被成膜基板を支持する支持手段を設
け、中心に第1の磁極体とその周囲に環状の第3
の磁極体とその周囲に環状の第2の磁極体とを配
置して第1及び第3及び第2の磁極体の後端間を
磁性体で結合させ、前記第1の磁極体と第3の環
状の磁極体の間に第1の電磁コイルを、前記第3
の環状の磁極体と第2の環状の磁極体との間に第
2の電磁コイルを配置し、前記第1及び第3及び
第2の磁極体上に配置されたターゲツト表面近傍
の前記第1及び第3及び第2の磁極体の間の領域
にリング状のトンネル磁界を発生させるプレーナ
マグネトロンスパツタ電極を、前記支持手段に支
持された円板状被成膜基板の両面の各々に静止対
向させて配置し、前記少なくとも第1または第2
の電磁コイルに流す電流により少なくとも第1の
磁極体と第2の磁極体との間の磁界を制御して各
プレーナマグネトロン電極のターゲツト表面上近
傍に発生したリング状のトンネル磁界を制御する
制御手段を設け、該制御手段で制御された各リン
グ状のトンネル磁界にプラズマを発生させて各タ
ーゲツト材を前記円板状被成膜基板の両面の各々
にほぼ同時に成膜するように構成したことを特徴
する円板状被成膜基板両面への同時スパツタリン
グ装置。 7 前記支持手段は、各プレーナマグネトロン電
極の中心部を貫通させた支持軸で前記円板状被成
膜基板の中心部を挾んで支持するように構成した
ことを特徴とする特許請求の範囲第6項記載の円
板状被成膜基板両面への同時スパツタリング装
置。 8 前記各プレーナマグネトロン電極のターゲツ
トと前記円板状被成膜基板との間の各距離を調整
できるように構成したことを特徴とする特許請求
の範囲第6項記載の円板状被成膜基板両面への同
時スパツタリング装置。
[Claims] 1. A first magnetic pole body at the center and an annular second magnetic pole body around the first magnetic pole body.
and the rear ends of the first and second magnetic pole bodies are coupled by a magnetic material, and the first and second magnetic pole bodies are arranged near the target surfaces disposed on the first and second magnetic pole bodies. Each planar magnetron sputter electrode, which generates a ring-shaped tunnel magnetic field in the region between the two magnetic pole bodies, is placed stationary and facing each of both surfaces of the disk-shaped film-forming substrate. Plasma is generated in a ring-shaped tunnel magnetic field formed near the target surface between the first magnetic pole body and the second magnetic pole body of the electrode, and each target material is transferred to the disc-shaped film-forming substrate. A method for simultaneous sputtering on both sides of a disk-shaped substrate to be coated, characterized by forming a film on each side almost simultaneously. 2 The first magnetic pole body in the center and the annular third pole body around it.
A magnetic pole body and an annular second magnetic pole body are arranged around the magnetic pole body, and the rear ends of the first, third and second magnetic pole bodies are coupled with a magnetic material, and the first magnetic pole body and the second magnetic pole body are connected to each other. A first electromagnetic coil is arranged between the third annular magnetic pole body and a second electromagnetic coil between the third annular magnetic pole body and the second annular magnetic pole body, each of planar magnetron sputter electrodes that generate a ring-shaped tunnel magnetic field in a region between the first, third, and second magnetic pole bodies near the target surface disposed on the third and second magnetic pole bodies; The gap between at least the first magnetic pole body and the second magnetic pole body is caused by a current flowing through the at least first or second electromagnetic coil when the disc-shaped substrate is statically opposed to each other on both surfaces. The ring-shaped tunnel magnetic field formed near the target surface of each planar magnetron electrode is controlled by controlling the magnetic field of the target material, and plasma is generated in each controlled ring-shaped tunnel magnetic field to cause each target material 1. A method for simultaneous sputtering on both sides of a disc-shaped deposition target substrate, characterized in that a film is deposited almost simultaneously on both sides of the disc-shaped deposition target substrate. 3 A support means for supporting a disk-shaped substrate to be film-formed is provided, and a first magnetic pole body is provided at the center and an annular second pole body is provided around the first magnetic pole body.
and the rear ends of the first and second magnetic pole bodies are coupled with a magnetic material, and the first and second magnetic pole bodies are arranged near the target surfaces disposed on the first and second magnetic pole bodies. Each of the planar magnetron sputter electrodes that generate a ring-shaped tunnel magnetic field in the region between the second magnetic pole bodies is placed on each stationary opposing surface of both surfaces of the disc-shaped deposition substrate supported by the supporting means. Plasma is generated in a ring-shaped tunnel magnetic field formed near the target surface between the first magnetic pole body and the second magnetic pole body of each planar magnetron electrode, and each target material is 1. An apparatus for simultaneous sputtering on both sides of a disc-shaped film-forming substrate, characterized in that it is configured to form a film on both sides of the disc-shaped film-forming substrate almost simultaneously. 4. The supporting means is configured to sandwich and support the center portion of the disc-shaped film-forming substrate with a support shaft passing through the center portion of each planar magnetron electrode. An apparatus for simultaneous sputtering on both sides of the disc-shaped film-forming substrate according to item 3. 5. The disc-shaped film-forming substrate according to claim 3, characterized in that each distance between the target of each of the planar magnetron electrodes and the disc-shaped film-forming substrate can be adjusted. Simultaneous sputtering equipment for both sides of the substrate. 6 A support means for supporting a disk-shaped substrate to be film-formed is provided, with a first magnetic pole body in the center and an annular third pole body around the first magnetic pole body.
A magnetic pole body and an annular second magnetic pole body are arranged around the magnetic pole body, and the rear ends of the first, third, and second magnetic pole bodies are coupled with a magnetic material, and the first magnetic pole body and the third magnetic pole body are connected to each other. a first electromagnetic coil between the annular magnetic pole bodies;
A second electromagnetic coil is arranged between the annular magnetic pole body and the second annular magnetic pole body, and a planar magnetron sputter electrode that generates a ring-shaped tunnel magnetic field in the region between the third and second magnetic pole bodies, stationary and facing each of both sides of the disc-shaped deposition substrate supported by the support means. the at least first or second
control means for controlling a ring-shaped tunnel magnetic field generated near the target surface of each planar magnetron electrode by controlling the magnetic field between at least the first magnetic pole body and the second magnetic pole body by a current flowing through the electromagnetic coil; is provided, and plasma is generated in each ring-shaped tunnel magnetic field controlled by the control means, so that each target material is deposited almost simultaneously on each of both surfaces of the disc-shaped deposition target substrate. A unique sputtering device for simultaneous sputtering on both sides of a disk-shaped substrate. 7. The supporting means is configured to sandwich and support the center portion of the disk-shaped film-forming substrate with a support shaft passing through the center portion of each planar magnetron electrode. An apparatus for simultaneous sputtering on both sides of the disc-shaped film-forming substrate according to item 6. 8. The disc-shaped film-forming substrate according to claim 6, characterized in that each distance between the target of each of the planar magnetron electrodes and the disc-shaped film-forming substrate can be adjusted. Simultaneous sputtering equipment for both sides of the substrate.
JP4656085A 1985-03-11 1985-03-11 Sputtering device Granted JPS61207575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4656085A JPS61207575A (en) 1985-03-11 1985-03-11 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4656085A JPS61207575A (en) 1985-03-11 1985-03-11 Sputtering device

Publications (2)

Publication Number Publication Date
JPS61207575A JPS61207575A (en) 1986-09-13
JPH0585632B2 true JPH0585632B2 (en) 1993-12-08

Family

ID=12750704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4656085A Granted JPS61207575A (en) 1985-03-11 1985-03-11 Sputtering device

Country Status (1)

Country Link
JP (1) JPS61207575A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131973A (en) * 2004-11-08 2006-05-25 Shincron:Kk Thin-film-forming method and thin-film-forming apparatus
US9111566B2 (en) 2009-05-22 2015-08-18 Showa Denko HD Singapore Pte. Ltd. Carbon film forming method, magnetic-recording-medium manufacturing method, and carbon film forming apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569256A (en) * 1978-11-14 1980-05-24 Anelva Corp Sputtering unit
JPS60255974A (en) * 1984-05-17 1985-12-17 バリアン・アソシエイツ・インコーポレイテツド Sputter coating source with plural target rings

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569256A (en) * 1978-11-14 1980-05-24 Anelva Corp Sputtering unit
JPS60255974A (en) * 1984-05-17 1985-12-17 バリアン・アソシエイツ・インコーポレイテツド Sputter coating source with plural target rings

Also Published As

Publication number Publication date
JPS61207575A (en) 1986-09-13

Similar Documents

Publication Publication Date Title
KR0165860B1 (en) Magnetron sputtering device
US5865961A (en) Magnetron sputtering apparatus and method
JPH10152774A (en) Sputtering system
JPS5816068A (en) Target electrode structure for planer magnetron system spattering device
JPH0585632B2 (en)
JP3411312B2 (en) Magnetron sputter cathode and method of adjusting film thickness distribution
JPS5887270A (en) Structural body of sputtering target of planar magnetron type
JPH02111878A (en) Sputtering device
JPS59173265A (en) Sputtering device
JP4056112B2 (en) Magnetron sputtering equipment
JPS63223173A (en) Method and apparatus for forming sputtered film
JP2789251B2 (en) Sputtering equipment using dipole ring type magnetic circuit
JP2002069631A (en) Sputtering method and equipment therefor
JPS59229480A (en) Sputtering device
JP2789252B2 (en) Sputtering equipment using dipole ring type magnetic circuit
JPH01116068A (en) Bias sputtering device
JPH04329875A (en) Sputter deposition apparatus
JPS61270366A (en) Tripolar sputtering source
JP2000038663A (en) Magnetron sputtering device
JPS5813622B2 (en) Magnetron type sputtering equipment
JPS62149867A (en) Magnetron sputtering device
JPH0625845A (en) Sputtering device
JPH0411624B2 (en)
JPH11323547A (en) Sputter film forming method and device therefor
JPH0428867A (en) Method and device for bias sputtering

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees