JPS62151561A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS62151561A
JPS62151561A JP29057785A JP29057785A JPS62151561A JP S62151561 A JPS62151561 A JP S62151561A JP 29057785 A JP29057785 A JP 29057785A JP 29057785 A JP29057785 A JP 29057785A JP S62151561 A JPS62151561 A JP S62151561A
Authority
JP
Japan
Prior art keywords
target
plasma
substrate
magnetic field
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29057785A
Other languages
Japanese (ja)
Other versions
JPH0621352B2 (en
Inventor
Yutaka Saito
裕 斉藤
Hidezo Sano
秀造 佐野
Yasumichi Suzuki
康道 鈴木
Susumu Aiuchi
進 相内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60290577A priority Critical patent/JPH0621352B2/en
Publication of JPS62151561A publication Critical patent/JPS62151561A/en
Publication of JPH0621352B2 publication Critical patent/JPH0621352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To provide a sputtering device which forms a film having good quality onto a substrate without taking in an atmosphere gas during the sticking and depositing of said film by utilizing the electric discharge in which microwaves and static magnetic field are combined to confine the plasma generated in a high vacuum atmosphere onto a target by a magnetic device. CONSTITUTION:The microwaves generated from a microwave generating source 15 are introduced in parallel with magnetic lines 21, 25 of force of the static magnetic field into a plasma generating chamber 11 of the above-mentioned device. The intensity of the static magnetic field is increased to the electron cyclotron resonance condition or above to generate the stable plasma in the high vacuum atmosphere of 10<-4>-10<-5>Torr order. The plasma is then transported and confined onto the target 1 by a magnetic device 16 and the transport distance thereof is made shortest to eliminate the plasma loss by the diffusion during the transfer and to form the high- density plasma on the target 1. The average free travel of the particles released from the target 1 is made larger in the high vacuum atmosphere by 1-2 digits than in the conventional method, by which these particles are stuck and deposited on the substrate 2 without allowing the particles to collide against the atmosphere gas. The film is thus formed on the substrate.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体素子等の薄膜形成工程ておいて用いられ
るスパッタリング装置にかかわり、特に高集積化素子等
の微細な溝や穴を有する素子上への成膜および膜質の向
上に好適なスパッタリング装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a sputtering apparatus used in a thin film forming process for semiconductor devices, etc., and particularly to a sputtering device used for forming thin films on devices having fine grooves and holes such as highly integrated devices. The present invention relates to a sputtering apparatus suitable for film formation and improvement of film quality.

〔発明の背景〕[Background of the invention]

スパッタ成膜は、陰極上に置かれたターゲット材料に、
所定1直(スパッタリングのしきい値)以上のエネルギ
ヲ膏するイオンを衝突させ、こnにより枚出されるター
ゲット材料の構成原子または粒子か半導体基板上に付着
4慣して薄膜を形成ずゐことにより行われる。
In sputter deposition, a target material placed on a cathode is
By bombarding ions with energy exceeding a predetermined level (threshold value for sputtering), the constituent atoms or particles of the target material that are ejected by this bombardment adhere to the semiconductor substrate to form a thin film. It will be done.

スパッタ成膜ン行う@置としては、特公昭55−193
19号公報に記載されたものかある。この装置によれば
、陰極のターゲット材料面の裏側に磁気製C4の一文、
↑の8極を設け、前記隙極面に沼って前記磁気装置によ
って生せしめられる孤−状の磁力線を形成する。そして
、陰極に電圧を印加して発生させたプラズマの荷電粒子
を前記磁力線によりサイクロトロン運動させて拘束する
ことにより、2極スパツタリング装置に比較して高密度
プラズマを生ぜしめ、高い成膜速度と10’Torr台
の低い成膜圧力が得られるようになっている。
For sputtering film formation, the
There is one described in Publication No. 19. According to this device, a line of magnetic C4 is placed on the back side of the target material surface of the cathode.
Eight poles (↑) are provided, and arc-shaped lines of magnetic force are formed by the magnetic device by penetrating the gap pole surface. By applying a voltage to the cathode to generate plasma, the charged particles are caused to move in a cyclotron and are restrained by the magnetic field lines, thereby generating a high-density plasma compared to a two-pole sputtering device, resulting in a high film-forming rate and a 'A low film forming pressure on the Torr level can be obtained.

しかしながら、この方法では、基板上に付着堆積して形
成する薄膜の膜厚分布を均一にする目的からターゲット
と基板との距離は6011mから70鵡程度離しておく
ため、イオンの衝突によりターゲットから放出された原
子または粒子は、雰囲気ガス(一般的にはAr等の不活
性ガス)分子と5回から6回程度衝突して基板上へ到達
する。そのため、基板上に付着堆積した膜中には雰囲気
ガスが混入し、膜質を悪いものにしていた。また、ター
ゲットから放出された原子または粒子の基板への入射角
度(基板法線と入射原子・入射粒子の入射方向となす角
度)も雰囲気ガス分子との衝突により大きな角度となり
、微細な溝等が基板の下地にあると、入射粒子はこれら
溝の入口角部へ付着堆べ責しく一没にオーバハングと呼
ばれる)、溝幅が微細(実験によれば1.0μm以下)
になると、溝入口角部への付着のために、溝内部が入射
粒子で完全に埋まる前に入口部の両角部に付着堆積した
膜が互いに接合し、溝内部に空洞が生ずるといった問題
があった。
However, in this method, the distance between the target and the substrate is set at a distance of about 6011 m to 70 m in order to make the thickness distribution of the thin film formed by adhering and depositing on the substrate uniform, so ions are emitted from the target by collision. The atoms or particles thus produced collide with molecules of an atmospheric gas (generally an inert gas such as Ar) about five to six times before reaching the substrate. Therefore, atmospheric gas is mixed into the film deposited on the substrate, resulting in poor film quality. In addition, the angle of incidence of atoms or particles emitted from the target onto the substrate (the angle between the substrate normal and the direction of incidence of the incident atoms/particles) becomes large due to collisions with atmospheric gas molecules, resulting in the formation of fine grooves, etc. If the particles are located underneath the substrate, the incident particles will adhere to the entrance corners of these grooves (this is called an overhang), and the groove width will be small (1.0 μm or less according to experiments).
In this case, due to the adhesion to the corners of the groove entrance, there is a problem in that the films deposited at both corners of the entrance join together before the inside of the groove is completely filled with incident particles, creating a cavity inside the groove. Ta.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高真空の雰囲気下でプラズマを安定し
て発生させ、10 ’〜10−’ Torrでもターゲ
ット上を高密度プラズマ化し、成膜速度を低下させるこ
となく、基板上に付着堆積する膜中に雰囲気ガスを取り
込むことな(、かつ微細な溝を下地にもつ基板の溝内部
に空洞を作ることなく成膜が行えるスパッタリングat
を提供することにある。
The purpose of the present invention is to stably generate plasma in a high vacuum atmosphere, turn the target into high-density plasma even at 10' to 10-' Torr, and deposit the film onto the substrate without reducing the film formation rate. A sputtering method that allows film formation without introducing atmospheric gas into the film (and without creating cavities inside the grooves of a substrate with fine grooves as the base).
Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明は、プラズマ発生はマイクロ波と靜磁界とを組み
合わせた放電を利用して高真空雰囲気下で安定したプラ
ズマ発生を行わせるとともに、このプラズマを上記プラ
ズマ発生用磁気装置によりターゲット上に閉じ込め、高
真空下でもターゲット上を高密度プラズマ化することを
骨子とする。
In the present invention, stable plasma generation is performed in a high vacuum atmosphere using a discharge that combines microwaves and a quiet magnetic field, and the plasma is confined on a target by the above-mentioned plasma generation magnetic device. The main idea is to turn the target into high-density plasma even under high vacuum.

すなわち、本発明では、プラズマ発生部には靜磁界の磁
力線と平行にマイ、クロ波を導入し、コノ静磁界の強度
を電子サイクロトロン共鳴条件(マイクロ波周波数2.
45GHzでは種湯強度875ガウス)以上として、1
o−4から10−’ Torr台の高真空雰囲気下で安
定したプラズマの発生を可能とし、ここで発生したプラ
ズマは、プラズマ発生に利用した磁気装置によりターゲ
ット上に輸送し閉じ込めることによって、プラズマ輸送
距離を最短とし輸送中の拡散によるプラズマ損失をなく
してターゲット上を高密度プラズマとする。そして、上
記高真空雰囲気でスパッタリング成膜を行い、ターゲッ
トから放出され5、た粒子の平均自由行程を従来法と比
較して1〜、ノ。−桁大きくす7)C,!:、えより工
1.わ、ヮエヵ84囲気ガスと衝突することなく基板上
に付着堆積するスパッタリングを可能とする構成とした
ものである。
That is, in the present invention, microwave and microwave waves are introduced into the plasma generation part in parallel with the magnetic field lines of the static magnetic field, and the strength of the static magnetic field is controlled under electron cyclotron resonance conditions (microwave frequency 2.
At 45GHz, the seed water strength is 875 Gauss) or higher, and 1
It is possible to generate stable plasma in a high vacuum atmosphere on the o-4 to 10-' Torr level, and the plasma generated here is transported onto the target and confined by the magnetic device used for plasma generation, resulting in plasma transport. By minimizing the distance and eliminating plasma loss due to diffusion during transportation, high-density plasma is created on the target. Then, sputtering film formation was performed in the above-mentioned high vacuum atmosphere, and the mean free path of the particles released from the target was compared with that of the conventional method. - Increase the digit 7) C,! :, Eyori Ku 1. Wow, Eka 84 has a structure that allows sputtering to be deposited on the substrate without colliding with the surrounding gas.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図および第2図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は、該実施例のスパッタリング装置のスパッタ成
膜部の構造を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing the structure of the sputter film forming section of the sputtering apparatus of this embodiment.

同図において、ターゲット1と基板2とは平面対間して
おり、該ターゲット1は裏面にバッキングプレート3を
介してI極4に密接して設置され、該陰極4は絶縁物5
を介してフランジ6に設!11され、該7ランジ6は真
空槽7に設置されている。前g己ターゲット1、バッキ
ングプレート3および陰極4の周囲には、絶縁リング8
を介してアースシールド9が真・空槽7内に設置されて
いる。ここでターゲット1の中央部10は空洞となって
おり、この部分にプラズマ発生室11が設置すれており
、該プラズマ発生室11の外周には導波管12が、プラ
ズマ発生室11を保持するようにフランジ6に設置しで
ある。前記導波管12にはフランジ13により別の導波
管14が取り付けられ、該導波管14の他端にはマイク
ロ波発生源覆うが設置されている。さらに前記プラズマ
発生室11の外周でかつ導波管12の外周には磁気装置
16が設置され、該磁気装置16の外周とマイクロ波発
生源覆う mllにはヨーク17が設置されている。
In the figure, a target 1 and a substrate 2 are in a plane pair, the target 1 is placed in close contact with an I-pole 4 through a backing plate 3 on its back surface, and the cathode 4 is connected to an insulator 5.
Installed on flange 6 through! 11, and the seven lunges 6 are installed in a vacuum chamber 7. An insulating ring 8 is placed around the front target 1, backing plate 3, and cathode 4.
An earth shield 9 is installed in the vacuum/empty tank 7 via the earth shield 9 . Here, the center part 10 of the target 1 is hollow, and a plasma generation chamber 11 is installed in this part, and a waveguide 12 is provided around the outer periphery of the plasma generation chamber 11 to hold the plasma generation chamber 11. It is installed on the flange 6 as shown. Another waveguide 14 is attached to the waveguide 12 by a flange 13, and a microwave source cover is installed at the other end of the waveguide 14. Furthermore, a magnetic device 16 is installed on the outer periphery of the plasma generation chamber 11 and on the outer periphery of the waveguide 12, and a yoke 17 is installed on the outer periphery of the magnetic device 16 and the ml that covers the microwave generation source.

また基板2は基板ホルダ18上にdtf&され、該基板
ホルダ18は軸19により真を槽7の真空を保持しうる
状態で設置童されている。ざらに陰極4には庇源20が
接@されている。
Further, the substrate 2 is dtf&ed on a substrate holder 18, and the substrate holder 18 is installed with a shaft 19 in such a manner that the vacuum of the tank 7 can be maintained. Roughly, an eaves source 20 is connected to the cathode 4.

第2図に示すように、矛1図の構成における磁気装置1
6は、磁力線21がヨーク17の端部22から出てプラ
ズマ発生室11へ入り、プラズマ発生室11の軸と同一
方向となり、ここからターゲット1上へ拡がってゆき、
ターゲット1の外周部でターゲット1を通過してヨーク
17の他端23へ入り込むように構成しておく。ここで
、スノ(ツタ成膜室24は、雰囲気ガス(例えばアルゴ
ンガスなどの不活性ガス)の所定の真空状態(10″゛
から10−’ Torr) Icしておく。
As shown in FIG. 2, a magnetic device 1 having the configuration shown in FIG.
6, the magnetic field lines 21 exit from the end 22 of the yoke 17, enter the plasma generation chamber 11, become in the same direction as the axis of the plasma generation chamber 11, and spread from there onto the target 1,
It is configured to pass through the target 1 at the outer circumference of the target 1 and enter the other end 23 of the yoke 17. Here, the film forming chamber 24 is kept in a predetermined vacuum state (10'' to 10'' Torr) of atmospheric gas (for example, an inert gas such as argon gas).

さてマイクロ波発生源覆うからマイクロ波を発振すると
、マイクロ波は導波管14により導かれ、・導波′u1
2へ送られ、さらにプラズマ発生室11を通Iaする。
Now, when the microwave source is covered and the microwave is oscillated, the microwave is guided by the waveguide 14, and the waveguide 'u1
2, and further passes through the plasma generation chamber 11 to Ia.

このとき磁気装置16により作られる静磁界によって、
該マイクロ波はプラズマ発生室11内の10→から10
’Torr台の雰囲気ガス71粍離し、プラズマ状態に
する。このプラズマは、磁力線21に浴ってターゲット
1上へ輸送され、ターゲット10表面上にプラズマを発
生する。
At this time, due to the static magnetic field created by the magnetic device 16,
The microwave is transmitted from 10 to 10 in the plasma generation chamber 11.
'The atmospheric gas on the Torr table is separated by 71 mm to create a plasma state. This plasma is transported onto the target 1 by the magnetic lines of force 21 and generates plasma on the surface of the target 10.

ここで、プラズマ発生室11内のプラズマについて゛述
べると、そこでは靜出界を有しかつ出力線21がマイク
ロ波の進行方向に沿う方向であへまた磁場強度が電子サ
イクロトロン共鳴条件(マイクロ波周波数2.45 G
Hzで磁4T強度875ガウス)以上のMi磁場強度す
ることにより、10−4から1O−6Torr台の高真
空雰囲気でも安定してプラズマを発生させることかでさ
る。
Here, regarding the plasma in the plasma generation chamber 11, it has a stray field, the output line 21 is along the direction of microwave propagation, and the magnetic field strength is set to electron cyclotron resonance conditions (microwave frequency 2.45G
By increasing the Mi magnetic field strength to a magnetic 4T strength of 875 Gauss (at Hz) or higher, plasma can be stably generated even in a high vacuum atmosphere of 10-4 to 10-6 Torr.

またターゲット1表面上の出力線25が、ターゲツト1
辰面の広範囲においてほぼ平行であるため、陰極4に印
加された電圧により生ずるターゲット1表面上の電界に
よって、プラズマ中の荷電粒子は磁力$25に沿ってサ
イクロトロン運動しながらターゲット10円周方回にド
リフトし、ターゲット1表面に閉じ込められるため、タ
ーゲット1表面のプラズマを高密度化する。
Also, the output line 25 on the surface of target 1
Since the radial planes are substantially parallel over a wide range, the electric field on the surface of the target 1 generated by the voltage applied to the cathode 4 causes the charged particles in the plasma to move in a cyclotron manner along the magnetic force $25, causing them to rotate around the target 10. Since the plasma drifts and is confined to the surface of the target 1, the plasma on the surface of the target 1 becomes denser.

さらに前記陰極4に1源20による電力を印加すること
でターゲット1表面に発生する負の電場は、前記ターゲ
ット1表面上のプラズマ中のイオンを加速し、これをタ
ーゲット1表面に衝突させろっこ°の衝突によりターゲ
ット1表面からはじき出された原子または粒子が基板2
の表面上に付着堆積し、薄膜を形成する。
Furthermore, a negative electric field generated on the surface of the target 1 by applying power from the source 20 to the cathode 4 accelerates ions in the plasma on the surface of the target 1, causing them to collide with the surface of the target 1. The atoms or particles ejected from the surface of the target 1 by the collision with the substrate 2
deposits on the surface of the material to form a thin film.

上述の成膜において、ターゲット1表面からはじき出さ
れた原子または粒子が基板20表面に到達するまでの間
に雰囲気ガス分子と衝突するかどうかは、分子の平均自
由行程によりわかる。平均自由行程λは、分子の直径、
温度お上び雰囲気圧力により定まり、次式で表わされる
In the above-described film formation, whether atoms or particles ejected from the surface of the target 1 collide with atmospheric gas molecules before reaching the surface of the substrate 20 can be determined from the mean free path of the molecules. The mean free path λ is the diameter of the molecule,
It is determined by the temperature increase and atmospheric pressure, and is expressed by the following formula.

λ−2,331X 10−” T/Pδ宜ここで、Tは
分子温度(0K)、Pは圧力(To r r )。
λ-2,331X 10-'' T/Pδ where T is the molecular temperature (0K) and P is the pressure (To r r ).

δは分子直径(m)である。アルゴンガスでは、覆う°
G、760Torrで平均自由行程λ=6.66X10
−’ mであり、雰囲気圧力をI X 10−’ To
rrとすると、λ= 5.06 X 10−’ m、す
なわちアルゴンガスでは衝突なしに約500 M移動す
ることがわかる。
δ is the molecular diameter (m). Cover with argon gas °
G, mean free path λ = 6.66X10 at 760 Torr
-' m, and the atmospheric pressure is I X 10-' To
If rr, then λ = 5.06 x 10-' m, that is, it can be seen that in argon gas it moves about 500 M without collision.

一万、ターゲット1表面からはじき出された粒子が雰囲
気ガスと衝突することなく移動しうる距離は、ターゲッ
ト1の材質すなわちターゲット1を構成する分子の直往
により異なるか、雰囲気圧力I X 10 ’ Tor
rでは、100N程度はあると考えられる。
The distance that particles ejected from the surface of the target 1 can travel without colliding with the atmospheric gas varies depending on the material of the target 1, that is, the movement of the molecules that make up the target 1, or the atmospheric pressure I x 10' Tor
r, it is thought to be about 100N.

従って本実施例によれば、ターゲットからはじき出され
た粒子は、はとんどが雰囲気ガス分子と衝突することな
しに基板に到達するため、基板へのスパッタ粒子の入射
角度(基板法線と粒子入射方向とのな丁角度)も小さな
角度となリ、基板上の微細な溝についても溝内へのスパ
ッタ粒子の入り込みがよ(なる。また、基板表面に付着
堆積した薄膜中への雰囲気ガス分子の取り込みも少tc
 (なる。
Therefore, according to this embodiment, most of the particles ejected from the target reach the substrate without colliding with atmospheric gas molecules. The angle between the incident direction and the incident direction is also small, making it easier for sputtered particles to enter the fine grooves on the substrate. The uptake of molecules is also small.
(Become.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、マイクロ波と磁場とを組み合わせてプ
ラズマ乞発生させ、これを短い距離にてターゲット表面
に輸送するとともにプラズマ発生用磁場によって荷成粒
子を閉じ込めるため、10−4から10’Torr台の
雰囲気圧力で安定してX’lE度のプラズマが発生でき
るので、ターゲットからはじき出される粒子が雰囲気ガ
ス分子と衝突することなしに基板上に付着堆積し、基板
へのスパッタ粒子の入射角度が小さく、溝部を有する基
板への成膜性能が向上するとともに、基板上に付層堆積
した薄膜中への雰囲気ガスの取り込みが少な(膜質が向
上するという効果が得られる。
According to the present invention, in order to generate plasma using a combination of microwaves and a magnetic field, transport this to the target surface over a short distance, and confine charge particles by the magnetic field for plasma generation, Since a plasma of X'1E degrees can be generated stably under the atmospheric pressure of the table, the particles ejected from the target are deposited on the substrate without colliding with atmospheric gas molecules, and the incident angle of the sputtered particles on the substrate is adjusted. The performance of forming a film on a substrate having small grooves is improved, and there is an effect that less atmospheric gas is taken into the thin film deposited on the substrate (the film quality is improved).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のスパッタリング装置の成膜
部の構造を示すi、径断面図、第2図は第1図の成膜部
での磁力線を表わした縦断面図である。 1・・・ターゲット、2・・・基板、4・・・陰極、7
・・・真空槽、11・・・プラズマ発生室、12i4−
・・導波管、覆う・・・マイクロ波発生源、16・・・
磁気装置、17・・・ヨーク、21.25・・・磁力線
、24・・・スパクタ成j臭室。 躬 1 固 4P↑祢       73 7,9.−7  !!2
Jf         /7   ヨークと  !#色
未収り 〉り°’         ls   基J反
ホルブ゛第2 口 1 ターケ°゛・ント           I7  
 ヨー7?基択        2+、25慮力職II
   プラス゛マ明らzV           24
    スl\0゛ツクに芝nH乙12、 /4  導
成管 覆う マイクロ波条ヱ違隈 lb  石広入秋l
FIG. 1 is a radial sectional view showing the structure of a film forming section of a sputtering apparatus according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view showing lines of magnetic force in the film forming section of FIG. 1...Target, 2...Substrate, 4...Cathode, 7
...Vacuum chamber, 11...Plasma generation chamber, 12i4-
...Waveguide, cover...Microwave source, 16...
Magnetic device, 17...Yoke, 21.25...Magnetic field lines, 24...Spactor formation odor chamber.躬 1 solid 4P↑ne 73 7,9. -7! ! 2
Jf/7 York and! #Color unaccounted for 〉ri°' ls group
Yo 7? Base selection 2+, 25 Career II
Plus Ma Akira ZV 24
Sl\0゛tsuku ni Shiba nH Otsu 12, /4 Covering the conductor tube Microwave ヱ wrong area lb Ishihiro Iriaki l

Claims (1)

【特許請求の範囲】 1、試料基板の堆積面に対向したスパッタ物質からなる
ターゲットと、該ターゲットを載置する陰極と、該陰極
に電力を印加する電源とを有するスパッタリング装置に
おいて、 マイクロ波発生源を有し、前記ターゲット および前記陰極に該マイクロ波発生源によるマイクロ波
プラズマを導入する開口部を設け、該開口部にてマイク
ロ波の進行方向に沿いかつ前記ターゲットを覆う孤状の
磁力線を発生させる磁気コイルとからなる磁気装置を具
備することを特徴とするスパッタリング装置。 2、特許請求の範囲第1項に記載のスパッタリング装置
において、 前記磁気装置による磁力線の強度を、マイ クロ波発生源によるマイクロ波の周波数に応じた電子サ
イクロトロン共鳴条件を満たす磁場強度以上とすること
を特徴とするスパッタリング装置。
[Claims] 1. A sputtering apparatus having a target made of a sputtered material facing the deposition surface of a sample substrate, a cathode on which the target is placed, and a power source for applying power to the cathode, comprising: an opening for introducing microwave plasma from the microwave generation source into the target and the cathode, and arcuate lines of magnetic force are formed at the opening along the direction of propagation of the microwave and covering the target. 1. A sputtering device comprising a magnetic device including a magnetic coil for generating electricity. 2. In the sputtering apparatus according to claim 1, the strength of the magnetic field lines by the magnetic device is set to be equal to or higher than the magnetic field strength that satisfies an electron cyclotron resonance condition according to the frequency of the microwave from the microwave generation source. Characteristic sputtering equipment.
JP60290577A 1985-12-25 1985-12-25 Sputtering device Expired - Lifetime JPH0621352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60290577A JPH0621352B2 (en) 1985-12-25 1985-12-25 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60290577A JPH0621352B2 (en) 1985-12-25 1985-12-25 Sputtering device

Publications (2)

Publication Number Publication Date
JPS62151561A true JPS62151561A (en) 1987-07-06
JPH0621352B2 JPH0621352B2 (en) 1994-03-23

Family

ID=17757821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60290577A Expired - Lifetime JPH0621352B2 (en) 1985-12-25 1985-12-25 Sputtering device

Country Status (1)

Country Link
JP (1) JPH0621352B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283371A (en) * 1988-05-10 1989-11-14 Matsushita Electric Ind Co Ltd Sputtering device
NL9301480A (en) * 1992-09-10 1994-04-05 Leybold Ag Device for generating a plasma by means of sputtering and microwave irradiation.
JP2006163253A (en) * 2004-12-10 2006-06-22 Sharp Corp Image forming apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875839A (en) * 1981-10-30 1983-05-07 Fujitsu Ltd Sputtering device
JPS58161774A (en) * 1982-03-17 1983-09-26 Fujitsu Ltd Sputtering method
JPS6050167A (en) * 1983-08-26 1985-03-19 Nippon Telegr & Teleph Corp <Ntt> Plasma sticking device
JPS61104074A (en) * 1984-10-26 1986-05-22 Hitachi Ltd Sputtering device
JPS61194174A (en) * 1985-02-22 1986-08-28 Hitachi Ltd Sputtering device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875839A (en) * 1981-10-30 1983-05-07 Fujitsu Ltd Sputtering device
JPS58161774A (en) * 1982-03-17 1983-09-26 Fujitsu Ltd Sputtering method
JPS6050167A (en) * 1983-08-26 1985-03-19 Nippon Telegr & Teleph Corp <Ntt> Plasma sticking device
JPS61104074A (en) * 1984-10-26 1986-05-22 Hitachi Ltd Sputtering device
JPS61194174A (en) * 1985-02-22 1986-08-28 Hitachi Ltd Sputtering device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283371A (en) * 1988-05-10 1989-11-14 Matsushita Electric Ind Co Ltd Sputtering device
NL9301480A (en) * 1992-09-10 1994-04-05 Leybold Ag Device for generating a plasma by means of sputtering and microwave irradiation.
JP2006163253A (en) * 2004-12-10 2006-06-22 Sharp Corp Image forming apparatus

Also Published As

Publication number Publication date
JPH0621352B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
US4885070A (en) Method and apparatus for the application of materials
KR900006488B1 (en) Method and apparatus for microwave assising sputering
JPS60135573A (en) Method and device for sputtering
JP2002069636A (en) Coaxial electromagnet in magnetron sputtering reactor
JPH0353065A (en) Sputtering device
JPH05507963A (en) Equipment for depositing material into high aspect ratio holes
US5053244A (en) Process for depositing silicon oxide on a substrate
US5378341A (en) Conical magnetron sputter source
AU605631B2 (en) Apparatus for the application of materials
KR100273326B1 (en) High frequency sputtering apparatus
JPS62151561A (en) Sputtering device
JPS61194174A (en) Sputtering device
JPS5947728A (en) Method and apparatus for plasma coating
JPS6372875A (en) Sputtering device
JP2674995B2 (en) Substrate processing method and apparatus
JPH066786B2 (en) Thin film forming equipment
JPH0583632B2 (en)
JPS59229480A (en) Sputtering device
JPS5585671A (en) Sputtering apparatus
EP0778608A2 (en) Plasma generators and methods of generating plasmas
JP2621728B2 (en) Sputtering method and apparatus
JP2735836B2 (en) Thin film formation method
JP2502948B2 (en) Plasma deposition method
JP2570594Y2 (en) Thin film forming equipment
JPS63247365A (en) Device for sputtering film formation