JPS61104074A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS61104074A
JPS61104074A JP59223944A JP22394484A JPS61104074A JP S61104074 A JPS61104074 A JP S61104074A JP 59223944 A JP59223944 A JP 59223944A JP 22394484 A JP22394484 A JP 22394484A JP S61104074 A JPS61104074 A JP S61104074A
Authority
JP
Japan
Prior art keywords
target
magnetic
plasma
sputtering
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59223944A
Other languages
Japanese (ja)
Other versions
JPH0583632B2 (en
Inventor
Yutaka Saito
裕 斉藤
Yasumichi Suzuki
康道 鈴木
Hidezo Sano
秀造 佐野
Tamotsu Shimizu
保 清水
Susumu Aiuchi
進 相内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59223944A priority Critical patent/JPS61104074A/en
Priority to EP85110155A priority patent/EP0173164B1/en
Priority to DE8585110155T priority patent/DE3566194D1/en
Priority to KR1019850006013A priority patent/KR900006488B1/en
Priority to US06/769,505 priority patent/US4721553A/en
Publication of JPS61104074A publication Critical patent/JPS61104074A/en
Publication of JPH0583632B2 publication Critical patent/JPH0583632B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/357Microwaves, e.g. electron cyclotron resonance enhanced sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the titled device capable of forming a film at high speed and capable of increasing the availability of a target by providing a magnetic circuit for generating magnetic flux along the moving direction of the microwave which is introduced from an opening provided to the target and a cathode and magnetic flux to cover the target. CONSTITUTION:A voltage is impressed in a vacuum vessel 6 by an electric power source 9 between target 1 placed on a cathode 4 and an anode 7 in a sputtering device. In the device, an opening of a plasma generating chamber 11 is provided at the central part 10 between said target 1 and the cathode 4, microwave from a microwave generating source 16 is introduced from waveguides 12 and 15 connected to the opening to generate plasma 25, and sputtering is carried out. In the device, magnetic devices 17 and 18 are further furnished to generate magnetic flux 22 along the moving direction of the microwave and arcuate magnetic flux 23 to cover the target 1. Consequently, the plasma 25 can be highly densified almost over the whole surface of the target 1, and sputtering is efficiently carried out at high speed over the whole surface of the target 1.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体素子等の薄膜生成壬程におけるスパッ
タリング装置に係シ、特にスパッタ成膜速度及びターゲ
ット寿命の増大、並びに薄膜の膜厚均一化に好適なスパ
ッタ源に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a sputtering apparatus in the process of forming thin films of semiconductor devices, etc., and in particular, to increase the sputtering film forming rate and target life, and to make the thickness of thin films uniform. The present invention relates to a sputtering source suitable for.

〔発明の背景〕[Background of the invention]

スパッタ成膜は、陰極上におかれたターゲット材料に、
所定値以上のエネルギーを有するイオンを衝突させ、こ
れにより放出されるターゲット材料の構成原子又は粒子
が半導体基板上に付着堆積して薄膜i形成することによ
り行われる。
In sputtering film formation, the target material placed on the cathode is
This is carried out by colliding ions with energy greater than a predetermined value, and the constituent atoms or particles of the target material emitted by the collision adhere and deposit on the semiconductor substrate to form a thin film i.

スパッタ成膜を行う装置としては、特公昭53−193
19号公報に記載され念ものがある。この装置によれば
、陰極のターゲット材料面の裏側に磁気装置の一対の磁
極を設け、前記陰極面に沿って前記磁気装置によって生
ぜしめられる弧状の磁力線を形成する。セして陽陰電極
間に電圧を印加して発生させたプラズマの荷電粒子を、
前記磁力線によりサイクロトロン運動させて保持するこ
とにより、2極スパツタリング装置に比較して高密度の
プラズマ発生ぜしめ、高い成膜速度が得られるようにな
っていた。
As a device for sputtering film formation, the Japanese Patent Publication No. 53-193
This is mentioned in Publication No. 19 and is a reminder. According to this device, a pair of magnetic poles of a magnetic device are provided on the back side of the target material surface of the cathode, and arc-shaped lines of magnetic force are formed by the magnetic device along the cathode surface. The charged particles of the plasma generated by applying a voltage between the positive and negative electrodes are
By maintaining the cyclotron motion using the magnetic lines of force, a higher density of plasma can be generated and a higher film forming rate can be obtained than in a two-pole sputtering device.

この方法では、■プラズマ領域がリング状となること、
■高周波又は@流電力によりプラズマの発生とイオンの
ターゲットへの衝突エネルギーを供給していること、の
、2点から、成膜速度を上げる目的で供給゛電力を増加
させると、イオンのターゲットへの衝突エネルギーが過
大となシ、ターゲット表面の温度上昇を招き、大きな温
度ストレスに帰因するターゲットの破壊が起こる。又、
この方法では、プラズマ領域がリング状となり、ターゲ
ットの侵食!域も同様の形状となるため、ターゲット材
料の一部が成膜に寄与するのみで、かつ、ターゲット寿
命が短かった。                  
    1イオン衝突エネルギーを低減する方法の1つ
として、特開昭58−75839号に示されるように、
プラズマの発生電力としてマイクロ波を用いるものがあ
る。この方法ではプラにマの荷電粒子を磁力線により保
持する陰極に、マイクロ波を供1し、そのエネルギーを
吸収させて高密虐のプラズマ奮発生させる一方で、陽陰
電極間に印加した電圧により、プラズマの荷電粒子全加
速しターゲットに衝突させ、スパッタ成膜を行う。
In this method, ■ the plasma region becomes ring-shaped;
■High-frequency or @flow power is used to generate plasma and provide energy for ion collisions to the target.Increasing the power supplied for the purpose of increasing the film formation rate increases the ion target energy. If the collision energy is too large, the temperature of the target surface will increase, resulting in destruction of the target due to large temperature stress. or,
In this method, the plasma region becomes ring-shaped and the target is eroded! Since the area also has a similar shape, only a part of the target material contributes to film formation, and the target life was short.
As one method of reducing the collision energy of one ion, as shown in Japanese Patent Application Laid-open No. 75839/1983,
Some use microwaves to generate plasma. In this method, microwaves are applied to a cathode that holds charged particles of plastic by magnetic lines of force, and the energy is absorbed to generate a high-density plasma, while a voltage is applied between positive and negative electrodes. All charged particles in the plasma are accelerated and collided with the target to form a sputter film.

この方法ではプラズマ密度が高い分だけ、ターゲv)に
衝突するイオンの数が増すため、前記装置より大きい成
膜速度が得られるが、ターゲットの侵食、温度ストレス
によるターゲットの破壊、ターゲツト材の放膜への寄与
毘の低さといった問題は解決されない。
In this method, the number of ions that collide with the target (v) increases due to the high plasma density, so a faster film formation rate can be obtained than with the above-mentioned apparatus. The problem of low contribution to the film remains unsolved.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ターゲット表面のほぼ全面に高密度プ
ラズマを発生させ、゛ターゲットの侵食領域をターゲッ
ト表面のほぼ全域とし、イオンの衝突エネルギを極端に
大きくするこ゛となくターゲツト材の温度ストレスの小
さい状態で高速成膜を可能とし゛、かつターゲットの使
用効率を増大させ、またスパッタ成膜における薄膜の膜
厚均一化の因れるスパッタ装置を提供することにある。
The purpose of the present invention is to generate high-density plasma over almost the entire surface of the target, to make the erosion region of the target almost the entire target surface, and to reduce the temperature stress of the target material without making the ion collision energy extremely large. It is an object of the present invention to provide a sputtering apparatus that enables high-speed film formation in a stable condition, increases the efficiency of target use, and makes the thickness of a thin film uniform during sputtering film formation.

〔発明の概要〕[Summary of the invention]

本発明は、プラズマ発生はマイクロ波数t’を利用し、
プラズマを高密度かつ大面積に保持するためには磁気装
置を用い、スパッタ成膜における薄膜の膜厚均一化のた
めには上記磁気装置によ)プラズマの保持形状およびプ
ラズマ密度を制御可能とする方法でスパッタ成膜するも
のである。
In the present invention, plasma generation uses microwave number t',
A magnetic device is used to hold plasma at high density and over a large area, and the magnetic device described above is used to make the thickness of a thin film uniform in sputtering film formation.) The plasma holding shape and plasma density can be controlled. This method is used to form a film by sputtering.

すなわち本発明は、プラズマ発生部の靜磁界(ミラー磁
場)と平行々いし静磁場に沿う方向にマイクロ波を入射
し、この静磁界の強度t’tt子サイクサイクロトロン
共鳴条件クロ波周波数2−45GEz  では磁界強度
875ガウス)以上とし、このミラー磁場を発生させる
磁気装置の−itターゲット面上でプラズマを拘束する
ための磁界発生に用いることで、プラズマ輸送距離全最
短とし、プラズマの拡散を小さくすると共に、この磁気
装置全複数個の磁気回路で構成することによりタ−ゲル
ト上での磁力線の強度分布、形状等を制御可能とする構
成としたものである。
That is, in the present invention, microwaves are incident in a direction parallel to or along the static magnetic field of the plasma generation part, and the intensity of the static magnetic field is set to 2-45 GEz under the cyclotron resonance condition. In this case, the magnetic field strength is 875 gauss or more, and by using it to generate a magnetic field to restrain the plasma on the target surface of the magnetic device that generates this mirror magnetic field, the plasma transport distance is minimized and the diffusion of the plasma is reduced. In addition, by configuring this magnetic device with a plurality of magnetic circuits, it is possible to control the intensity distribution, shape, etc. of the magnetic lines of force on the tagelt.

次にプラズマの発生及び密度について説明を補足する。Next, a supplementary explanation will be given regarding the generation and density of plasma.

マイクロ波によるプラズマの発生においては、マイクロ
波がいかに有効にプラズマ発生に寄与するかが重要で、
これによりプラズマ密度が決定される。
When generating plasma using microwaves, it is important how effectively the microwaves contribute to plasma generation.
This determines the plasma density.

磁界のないプラズマ中での電磁波は1.波数ベクトルに
で表現すると1 、=!ゴ妃 Cズ 但し、ω:入射電磁波周波数 咋:プラズマ周波数 で与えられ、ωく鮨ではにが負となシ、電磁波はプラズ
マ中には伝搬し得ない。換言すれば、例えば、’1.4
5011z  のマイクロ波ではプラズマ密度が7.4
X1 o10/cdを越えるプラズマ中には伝搬し得な
い。すなわち2.45GHz  のマイクロ波で生成す
るプラズマは磁場がない状態ではプラズマ密度は7.4
X101°/cd以上にはならないことがわかる。
Electromagnetic waves in plasma without a magnetic field are 1. Expressed as a wave number vector, it is 1, =! However, ω is the incident electromagnetic wave frequency, which is given by the plasma frequency, and when ω is negative, electromagnetic waves cannot propagate into the plasma. In other words, for example, '1.4
In the microwave of 5011z, the plasma density is 7.4
It cannot propagate into plasma exceeding X1 o10/cd. In other words, plasma generated by 2.45 GHz microwave has a plasma density of 7.4 in the absence of a magnetic field.
It can be seen that it does not exceed X101°/cd.

一方、静磁界のあるプラズマ中での電磁波は、その電磁
波の進行方向と磁界とのなす角度により伝搬状態が異な
る。特に磁界と平行になるように電磁波をプラズマ中に
入射した場合は、右回υ円偏波の分散式は。
On the other hand, the propagation state of electromagnetic waves in a plasma with a static magnetic field differs depending on the angle between the traveling direction of the electromagnetic waves and the magnetic field. In particular, when electromagnetic waves are introduced into the plasma parallel to the magnetic field, the dispersion formula for right-handed circularly polarized waves is:

但し、                ・  3・パ
ω。:電子サイクロトロン周波数     −ωc龜:
イオンサイクロトロン周波数 で与えられ、0くωくω、となる周波数の電磁波はプラ
ズマ密度に関係なくプラズマ中を伝搬する。
However, ・3・Paω. :Electron cyclotron frequency -ωc :
An electromagnetic wave with a frequency given by the ion cyclotron frequency, 0 × ω × ω, propagates in the plasma regardless of the plasma density.

すなわち静磁界を設け、かつ、この靜磁界と平行にマイ
クロ波を入射することができれば、この静磁界の強度を
電子サイクロトロン共鳴(245GHz  では875
G  )以上とすることにより、右円偏波はプラズマ中
を伝搬し、マイクロ波電力をプラズマに供給するため、
プラズマ周波数ω2は、ω2〉ωとな9、プラズマ密度
は7.axlo”/ctlよりはるかに大きな値(1o
t2/、1  以上)になることが知られている。
In other words, if a static magnetic field is provided and a microwave is incident parallel to this static magnetic field, the strength of this static magnetic field can be reduced to electron cyclotron resonance (875 GHz at 245 GHz).
G) By doing the above, the right-handed circularly polarized wave propagates in the plasma and supplies microwave power to the plasma, so
The plasma frequency ω2 is ω2>ω9, and the plasma density is 7. axlo”/ctl (1o
t2/, 1 or more).

上記の様にして発生させたプラズマは、磁気装置により
拘束する必要がある。こうしないとプラズマは発散して
しまい、高密度とならず、マイクロ波電力の損失が大き
くなる。またプラズマは発生後、速やかにターゲット付
近まで輸送されねばならない。輸送途中で拡散によりプ
ラズマ密度が低下するからである。
The plasma generated as described above needs to be restrained by a magnetic device. If this is not done, the plasma will diverge and will not be dense, resulting in large microwave power losses. Furthermore, after the plasma is generated, it must be quickly transported to the vicinity of the target. This is because the plasma density decreases due to diffusion during transportation.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を第1図から第4図により説明する
Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.

第1図、第2図は、第1の実施例のスパッタリング装置
のスパッタ成膜部の構造を示す断面図である。ターゲッ
ト1と基板2は平面対向しており、ターゲット1は裏面
にバッキングプレート3を介して陰極41C密接して設
置され、該陰極4は絶縁物5を介して真空槽6に設置さ
れている。着た、前記陰極4の絶縁物5を介して陽極7
が設置され、該陽極7は絶縁板8を介して真空槽6に設
置されている。この陽陰電極間に電源9が設置される。
1 and 2 are cross-sectional views showing the structure of a sputter film forming section of a sputtering apparatus according to a first embodiment. The target 1 and the substrate 2 face each other in a plane, and the target 1 is placed in close contact with a cathode 41C on its back surface with a backing plate 3 in between, and the cathode 4 is placed in a vacuum chamber 6 with an insulator 5 in between. The anode 7 is connected to the anode 7 through the insulator 5 of the cathode 4.
is installed, and the anode 7 is installed in the vacuum chamber 6 via an insulating plate 8. A power source 9 is installed between the positive and negative electrodes.

ここでターゲット1の中央部10は空洞となってシシ、
この部分にプラズマ発生室11が配設されており、該プ
ラズマ発生室11の外周には導波管12が絶縁物13を
介して陰極4に設置しである。前記導波管12にはフラ
ンジ14により別の導波管15が取付けられ、該導波管
15の他端にはマイクロ波発生$15が・設置されてい
る。更に、前記導波管15の7ランジ14の外周に磁気
゛装置17が設置され、もう1つの磁気装置18が前記
陰極4の裏面に設置されている。
Here, the center part 10 of the target 1 becomes hollow,
A plasma generation chamber 11 is disposed in this portion, and a waveguide 12 is installed on the outer periphery of the plasma generation chamber 11 via an insulator 13 to the cathode 4. Another waveguide 15 is attached to the waveguide 12 by a flange 14, and a microwave generator 15 is installed at the other end of the waveguide 15. Further, a magnetic device 17 is installed on the outer periphery of the seven flange 14 of the waveguide 15, and another magnetic device 18 is installed on the back surface of the cathode 4.

ここで該磁気装置18は、複数個の磁気コイル18α、
 18b、 18Cより構成され、それぞれ独立に磁界
強度が制御可能となっている。
Here, the magnetic device 18 includes a plurality of magnetic coils 18α,
It is composed of 18b and 18C, and the magnetic field strength of each can be controlled independently.

前記プラズマ発生室11は、マイクロ波は通過するが真
空は保持する材料(例えば石英、アルミナ磁器など)よ
り成〕、真空槽へは真空を保持しうるように設置される
The plasma generation chamber 11 is made of a material (for example, quartz, alumina porcelain, etc.) that allows microwaves to pass through but maintains a vacuum, and is installed in the vacuum chamber so as to maintain a vacuum.

また基板2は、基板ホルダ19上に載置され、該基板ホ
ルダ19は、軸20により絶縁物21を介して電気的に
絶縁されかつJE2を保持しうる状態で設置される。
Further, the substrate 2 is placed on a substrate holder 19, and the substrate holder 19 is installed in a state in which it is electrically insulated by a shaft 20 via an insulator 21 and can hold JE2.

以上の構成において、磁気装置17 、18はミラー磁
場を構成し、磁力線は第2図に示すように、磁気装置1
7の磁力線22は、磁気装置18との中間で磁束密度が
小さくなシ広がって磁気装置18の中心でまた紋り込ま
れ、さらにターゲット1上で磁力線23は、ターゲット
1の空洞部1oから出て、ターゲット1上でほぼターゲ
ット1表面と平行となり、ターゲット1端で陰極4内へ
はいゃ込む磁気装置構成としておく。ここでスパッタ成
膜室24は雰囲気ガス(例えばアルゴンガスなど)の所
定の真空状u(10−”から10−’ Tarr程度)
に排気しておく。
In the above configuration, the magnetic devices 17 and 18 constitute a mirror magnetic field, and the magnetic lines of force are as shown in FIG.
The lines of magnetic force 22 of No. 7 spread out at the center of the magnetic device 18, where the magnetic flux density is small, and become embedded again at the center of the magnetic device 18, and furthermore, the lines of magnetic force 23 on the target 1 emerge from the cavity 1o of the target 1. The magnetic device is configured so that it is approximately parallel to the surface of the target 1 on the target 1 and plunges into the cathode 4 at the end of the target 1. Here, the sputtering film forming chamber 24 is kept in a predetermined vacuum state u (about 10-'' to 10-' Tarr) of atmospheric gas (for example, argon gas, etc.).
Exhaust the air.

マイクロ波発生源16よ)マイクロ波を発振すると、マ
イクロ波は導波管15にょシ導びかれ、導波管12へ送
られ、さらにプラズマ発生室11を通過する。この際、
磁気装置17 、18により作られる靜磁界によ1て蟲
該マイクロ波はプラズマ発生室11内の雰囲気ガスを電
離しプラズマ状態にする。
When the microwave generation source 16 generates microwaves, the microwaves are guided through the waveguide 15, sent to the waveguide 12, and further passed through the plasma generation chamber 11. On this occasion,
Due to the silent magnetic field created by the magnetic devices 17 and 18, the microwave ionizes the atmospheric gas in the plasma generation chamber 11 and turns it into a plasma state.

ここで、磁気装置17の中心磁界強度を磁気装置18の
中心磁界強度より大きくすることにより、プラズマは磁
力線22に沿って、ターゲット1の空洞部10に送られ
、さらに磁力線23に沿ってターゲット1の表面全面に
輸送され、ターゲット1表面上にプラズマ25が発生す
る。ここで、プラズマ発生室11内のプラズマは、静磁
界を有しかつ磁力線22がマイクロ波の進行方向に沿う
方向であるため高密度のプラズマ(プラズマ密度ル。
Here, by making the center magnetic field strength of the magnetic device 17 larger than the center magnetic field strength of the magnetic device 18, the plasma is sent to the cavity 10 of the target 1 along the lines of magnetic force 22, and further along the lines of magnetic force 23 to the target 1. is transported to the entire surface of the target 1, and a plasma 25 is generated on the surface of the target 1. Here, since the plasma in the plasma generation chamber 11 has a static magnetic field and the lines of magnetic force 22 are along the direction of propagation of the microwave, it is a high-density plasma (plasma density le).

==1011/−以上)状態となる。このプラズマ発生
室11とターゲラ810表面が近いことかつ陰極4に電
力を印加することにより、荷電粒子は磁力線25に沿っ
てサイクロトロン運動し、ターゲット1の円周方向にド
リフトしながら回転するため、ターゲット1表面のプラ
ズマ25も高密度プラズマ状態となる。
==1011/- or more). Due to the proximity of the plasma generation chamber 11 to the surface of the target laser 810 and the application of electric power to the cathode 4, the charged particles undergo cyclotron motion along the magnetic lines of force 25 and rotate while drifting in the circumferential direction of the target 1. The plasma 25 on one surface also becomes a high-density plasma state.

陽陰電極間に電源9によυ電力を印加するこ   、。Applying υ power from the power source 9 between the positive and negative electrodes.

とでターゲット1表面に負の電界が発生し、これにより
プラズマ中のイオンが加速されターゲット1表面に衝突
する。その結果ターゲット1表面からはじき出された原
子又は粒子が基板2の表面上に付着堆積して薄膜を形成
する。
A negative electric field is generated on the surface of the target 1, and ions in the plasma are accelerated and collide with the surface of the target 1. As a result, atoms or particles ejected from the surface of the target 1 adhere and deposit on the surface of the substrate 2 to form a thin film.

ターゲット1面上のプラズマ25は密度が高いため、プ
ラズマ中のイオンの数が多く、電源9により印加する電
圧は低くて足りる。この結果、ターゲット1表面の負の
電界が過度に強まることがなく、またプラズマ25は、
はぼターゲット全面にわたるため、ターゲット1の侵食
領域も大きくターゲラ)IK与える温度ストレスは小さ
いものとまる。
Since the plasma 25 on the surface of the target 1 has a high density, the number of ions in the plasma is large, and a low voltage is sufficient to be applied by the power source 9. As a result, the negative electric field on the surface of the target 1 does not become excessively strong, and the plasma 25
Since the erosion area covers the entire surface of the target, the eroded area of the target 1 is also large and the temperature stress applied to the IK remains small.

またターゲットは中央が空洞となっているため、従来見
られた中央部からの卵子又は粒子の飛来がなく、ターゲ
ット全面が侵食領域になりでも基板2表面に付着堆積す
る薄膜の膜厚も均一性が向上し、ターゲット径を極端に
大きくしなくてすみ、ターゲット1からはじき出された
原子又は粒子が基板2に付着堆積する割合が大きくスパ
ッタ成膜の効鹿が良い。
In addition, since the target is hollow in the center, there is no ova or particles flying from the center as seen in the past, and even if the entire surface of the target becomes an erosion area, the thickness of the thin film deposited on the surface of the substrate 2 is uniform. It is not necessary to make the target diameter extremely large, and the rate at which atoms or particles ejected from the target 1 adhere to and deposit on the substrate 2 is high, and the effectiveness of sputtering film formation is improved.

磁気装置18の複数個の磁気コイル1f3a 、 18
A 。
A plurality of magnetic coils 1f3a, 18 of the magnetic device 18
A.

18Cをそれぞれ独立に制御することが可能である。こ
のためターゲットの半径方向にシける、ターゲット1と
平行な磁界の強度を制御でき、これによってプラズマ2
5の半径方向密度分布を制御可能としている。この結果
、プラズマ密度の高いところほどターゲット、1からは
じき出される原子又は粒子の数が多いこととなシ、基板
2上に付着堆積する基板の半径方向での膜厚を制御でき
る。
It is possible to control each 18C independently. Therefore, it is possible to control the strength of the magnetic field parallel to the target 1, which is shunted in the radial direction of the target, and thereby the plasma 2
The radial density distribution of 5 can be controlled. As a result, the higher the plasma density, the greater the number of atoms or particles ejected from the target 1, and the thickness of the film deposited on the substrate 2 in the radial direction can be controlled.

次に本発明の第2の実施例を第5図、第4図によ)説明
する。本実施例のスパッタリング装置のスパッタ成膜部
の構成は、第1の実施例と同様であるが、ターゲット1
′は円錐形をしてお夛、該ターゲット1′の外周面にバ
ッキングプレート3′が設置されさらにその外周面に陰
極4−が密接して設置されている。該陰極4′は絶縁物
5′を介して真空槽6FC設置され、該陰極4′にはま
た前記絶縁物5′を介して陽極7′が絶縁板8を介して
真空ia6に設置されている。この陽陰電極間に電源9
を設置する。ターゲット1′の中央部10′は第1の実
施例と同様に空洞となっておシ、ことにマイクロ波は通
し真空は保持する材料より成るプラズマ発生室11、導
波管12が絶縁物1fを介して陰極4′に設置され、導
波管12にはフランジ14で別の導波管15が取付られ
、該導波管15の他端にはマイクロ波発生源16が設置
される。
Next, a second embodiment of the present invention will be described (see FIGS. 5 and 4). The configuration of the sputter film forming section of the sputtering apparatus of this embodiment is the same as that of the first embodiment, but the target 1
A backing plate 3' is installed on the outer peripheral surface of the target 1', and a cathode 4- is installed in close contact with the outer peripheral surface of the backing plate 3'. The cathode 4' is installed in a vacuum chamber 6FC via an insulator 5', and an anode 7' is also installed in a vacuum IA6 via an insulating plate 8 on the cathode 4' via the insulator 5'. . Power supply 9 between these positive and negative electrodes
Set up. The central part 10' of the target 1' is hollow as in the first embodiment, and the plasma generation chamber 11 is made of a material that allows microwaves to pass through and maintains a vacuum, and the waveguide 12 is made of an insulator 1f. Another waveguide 15 is attached to the waveguide 12 by a flange 14, and a microwave generation source 16 is installed at the other end of the waveguide 15.

前記導波管12.15の7ランジ14の外周に磁気装置
17が設置され、さらに前記陰極4′の円錐状外周面に
もう1つの磁気装置18が複数個の磁気コイル18α、
 18b、 18Cより構成され、それぞれが前記陰極
47にそうように設置される。基板2は第1の実施例と
同様である。また磁気装置17゜18の構成も第1の実
施例と同様でミラー磁場を構成し、プラズマ発生室11
内では磁力線は22′となシ、ターゲット1′の中央部
10′の空洞を通シ磁力線は23′のようにな)ターゲ
ット1′の外周部で陰極4′内へはいり込む。
A magnetic device 17 is installed on the outer periphery of the seven flange 14 of the waveguide 12.15, and another magnetic device 18 is installed on the conical outer peripheral surface of the cathode 4', and a plurality of magnetic coils 18α,
18b and 18C, each of which is installed on the cathode 47 in the same way. The substrate 2 is the same as in the first embodiment. Furthermore, the structure of the magnetic devices 17 and 18 is the same as that of the first embodiment, and forms a mirror magnetic field.
Inside, the lines of magnetic force (22') pass through the cavity in the central portion 10' of the target 1', and the lines of magnetic force (23') enter the cathode 4' at the outer periphery of the target 1'.

以上の構成において、第1の実施例と同様マイクロ波放
電によりプラズマ25′を発生させ、スパッタ成膜する
In the above configuration, plasma 25' is generated by microwave discharge and sputtering is performed as in the first embodiment.

本実施例においては、第1の実施例の特徴に加えさらに
、ターゲット1′が円錐状をしておシ、これらの面が基
板をかこむように傾斜している。
In this embodiment, in addition to the features of the first embodiment, the target 1' has a conical shape, and these surfaces are inclined so as to surround the substrate.

この結果、基板2表面への付着堆積する高が向上し、同
一電力を供給し、ターゲットから同一のターゲット原子
又は粒子をはじき出した場合でも基板への薄膜の付着堆
積速度が増大する。
As a result, the height of deposition on the surface of the substrate 2 is increased, and the rate of deposition of the thin film on the substrate is increased even when the same power is supplied and the same target atoms or particles are repelled from the target.

ターゲツト1′表面からはじき出され゛た原子又は粒子
の飛翔方向と量とについてco出g’則が成)立つこと
が、実験結果から知られている(例えば、東京大学出版
会、金原粂著[スパッタリング現象J、19134年3
月発行)。
It is known from experimental results that the co-outerg' law holds regarding the flight direction and amount of atoms or particles ejected from the surface of the target 1' (for example, the University of Tokyo Press, Kami Kanehara [ Sputtering phenomenon J, 19134, 3
(published monthly).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、マイクロ波と早場を組合せ高密度プラ
ズマ゛(プラズマ密度5l=10”/c++を以上)を
発生させ、これを短い距離にてターゲツト1′に輸送す
ると共にプラズマ発生用磁場とター′ゲ、ト印加電力に
より荷電粒子を閉込め、ターゲット表面上のほぼ全域に
わたり高密度プラズマ状態とできる。この結果、プラズ
マ中のイオンの数が増大するため、陽陰電極間へ大電力
を印加しても、電流の増加により電圧を低く抑制でき、
従ってイオンの衝突エネルギを低くおさえられ、ターゲ
ットへの熱衝撃の少ないスパッターを行うことができる
。さらにイオンによるターゲットの侵食領域を増大でき
るため、ターゲットからはじき出される原子又は粒子の
数が増大しスパッタ成膜の高速化が行えるばかりでなく
、ターゲット侵食領域を増大するためターゲットの利用
高を大幅に向上できる。
According to the present invention, a high-density plasma (plasma density of 5l = 10''/c++ or more) is generated by combining microwaves and a fast field, and this is transported over a short distance to the target 1' and a magnetic field for plasma generation is generated. By applying electric power to the target and the target, charged particles can be confined and almost the entire area on the target surface can be in a high-density plasma state.As a result, the number of ions in the plasma increases, so a large amount of electric power is applied between the positive and negative electrodes. Even if a voltage is applied, the voltage can be suppressed to a low level by increasing the current.
Therefore, the collision energy of ions can be kept low, and sputtering can be performed with less thermal shock to the target. Furthermore, since the eroded area of the target by ions can be increased, the number of atoms or particles ejected from the target increases, which not only speeds up sputtering film formation, but also increases the target eroded area, which greatly reduces the usage height of the target. You can improve.

また、原子又は粒子の飛翔方向及び量を考慮しターゲッ
トを修斜させることによりターゲットからはじき出され
た原子又は粒子の基板への付着j[する割合を増大でき
る。さらに、プラズマ発生はマイクロ波を用い、イオン
のターゲ・トへの衝突エネルギは別電源i使用するため
、ターゲットへの衝突イオンの数とそのエネルギを個別
制御できターゲツト材質にあったスパッタリング条件の
設定が可能となるので、生産効率及び材料使用効率及び
使用電力効率の向上の効果がある。
Furthermore, by adjusting the tilt of the target in consideration of the flight direction and amount of atoms or particles, it is possible to increase the rate at which atoms or particles ejected from the target adhere to the substrate. Furthermore, since microwaves are used to generate plasma and a separate power source is used to generate the energy of ions colliding with the target, the number of ions colliding with the target and their energy can be individually controlled and sputtering conditions can be set to match the target material. This makes it possible to improve production efficiency, material usage efficiency, and power usage efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1の実施例のスパッタリング装置
の成膜部の構造を示す断面図、第2図は第1図の成膜部
での磁力線及びプラズマを表わす断面図、第3図は本発
明の第2の実施例のスパッタリング装置の成膜部の構造
を示す断面図、第4図は第3図の成膜部での磁力線及び
プラズマを表わす断面図である。 1.1′・・・ターゲット   2・・・基板4.4′
・・・陰極    、   7.7’・・・陽極11・
・・プラズマ発生室  i4,15・・・導波管16・
・・マイクロ波発生源 9・・・電源17.18・・・
磁気装置   6・・・真空槽22.22’ 、25.
25’・・・磁力線25.2ダ・・・プラズマ 嶌 1 呪 塞 2 目 嶌 E 口 罵 4−■
1 is a sectional view showing the structure of a film forming section of a sputtering apparatus according to a first embodiment of the present invention, FIG. 2 is a sectional view showing magnetic lines of force and plasma in the film forming section of FIG. 1, and FIG. This figure is a sectional view showing the structure of the film forming section of a sputtering apparatus according to the second embodiment of the present invention, and FIG. 4 is a sectional view showing magnetic lines of force and plasma in the film forming section of FIG. 1.1'...Target 2...Substrate 4.4'
...Cathode, 7.7'...Anode 11.
...Plasma generation chamber i4,15...Waveguide 16.
...Microwave source 9...Power supply 17.18...
Magnetic device 6... Vacuum chamber 22, 22', 25.
25'...Magnetic field line 25.2 da...Plasma island 1 Curse 2 Mejima E verbal abuse 4-■

Claims (1)

【特許請求の範囲】 1、試料基板の堆積面に対向しスパッタ物質から成るタ
ーゲットと、該ターゲットを載置する陰極と、該陰極に
電力を印加する電源とを有するスパッタリング装置にお
いて、 前記ターゲット及び前記陰極にマイクロ波 を導入する開口部を設け、該マイクロ波の進行方向に沿
わせた磁力線を発生させる磁気回路と、前記ターゲット
を覆う弧状の磁力線を発生させる磁気回路とを有するス
パッタリング装置。 2、特許請求の範囲第1項記載のスパッタリング装置に
おいて、 前記マイクロ波を導入する開口部は前記試 料基板の堆積面に対向して設置され、かつ、その寸法を
該マイクロ波の遮断寸法以下としたことを特徴とするス
パッタリング装置。 3、特許請求の範囲第1項記載のスパッタリング装置に
おいて、 前記マイクロ波の進行方向に沿わせた磁力 線を発生させる磁気回路を一対の磁気回路とし、前記タ
ーゲット側の磁気回路による磁力を、マイクロ波進入側
の磁気回路による磁力より弱くすることを特徴とするス
パッタリング装置。 4、特許請求の範囲第1項記載のスパッタリング装置に
おいて、 前記ターゲットを覆う弧状の磁力線を発生 させる磁気回路を複数とし、個別に磁力線を発生させる
ことを特徴とするスパッタリング装置。 5、特許請求の範囲第1項記載のスパッタリング装置に
おいて、 前記磁力線の強度を、前記マイクロ波の周 波数に応じた電子サイクロトロン共鳴条件を満たす臨界
磁場強度以上とすることを特徴とするスパッタリング装
置。
[Claims] 1. A sputtering apparatus comprising a target made of a sputtering material and facing a deposition surface of a sample substrate, a cathode on which the target is placed, and a power source that applies electric power to the cathode, comprising: A sputtering apparatus comprising: an opening for introducing microwaves into the cathode; a magnetic circuit that generates magnetic lines of force along the direction of propagation of the microwaves; and a magnetic circuit that generates arcuate lines of magnetic force that cover the target. 2. In the sputtering apparatus according to claim 1, the opening for introducing the microwave is installed to face the deposition surface of the sample substrate, and its dimensions are equal to or smaller than the microwave blocking dimension. A sputtering device characterized by: 3. In the sputtering apparatus according to claim 1, the magnetic circuits that generate lines of magnetic force along the direction of propagation of the microwaves are a pair of magnetic circuits, and the magnetic force by the magnetic circuits on the target side is applied to the microwaves. A sputtering device characterized by making the magnetic force weaker than that of the magnetic circuit on the entrance side. 4. The sputtering apparatus according to claim 1, wherein a plurality of magnetic circuits are provided to generate arcuate lines of magnetic force covering the target, and lines of magnetic force are generated individually. 5. The sputtering apparatus according to claim 1, wherein the strength of the magnetic lines of force is set to be equal to or higher than a critical magnetic field strength that satisfies an electron cyclotron resonance condition according to the frequency of the microwave.
JP59223944A 1984-08-31 1984-10-26 Sputtering device Granted JPS61104074A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59223944A JPS61104074A (en) 1984-10-26 1984-10-26 Sputtering device
EP85110155A EP0173164B1 (en) 1984-08-31 1985-08-13 Microwave assisting sputtering
DE8585110155T DE3566194D1 (en) 1984-08-31 1985-08-13 Microwave assisting sputtering
KR1019850006013A KR900006488B1 (en) 1984-08-31 1985-08-21 Method and apparatus for microwave assising sputering
US06/769,505 US4721553A (en) 1984-08-31 1985-08-23 Method and apparatus for microwave assisting sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59223944A JPS61104074A (en) 1984-10-26 1984-10-26 Sputtering device

Publications (2)

Publication Number Publication Date
JPS61104074A true JPS61104074A (en) 1986-05-22
JPH0583632B2 JPH0583632B2 (en) 1993-11-26

Family

ID=16806146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59223944A Granted JPS61104074A (en) 1984-08-31 1984-10-26 Sputtering device

Country Status (1)

Country Link
JP (1) JPS61104074A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151561A (en) * 1985-12-25 1987-07-06 Hitachi Ltd Sputtering device
JPS62222064A (en) * 1986-03-24 1987-09-30 Nippon Telegr & Teleph Corp <Ntt> Thin film forming device
JPH01283371A (en) * 1988-05-10 1989-11-14 Matsushita Electric Ind Co Ltd Sputtering device
JPH11288799A (en) * 1998-01-26 1999-10-19 Commiss Energ Atom Linear microwave plasma generating device using permanent magnet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6344437B2 (en) * 2016-07-27 2018-06-20 トヨタ自動車株式会社 High frequency supply structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875839A (en) * 1981-10-30 1983-05-07 Fujitsu Ltd Sputtering device
JPS58161774A (en) * 1982-03-17 1983-09-26 Fujitsu Ltd Sputtering method
JPS6050167A (en) * 1983-08-26 1985-03-19 Nippon Telegr & Teleph Corp <Ntt> Plasma sticking device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875839A (en) * 1981-10-30 1983-05-07 Fujitsu Ltd Sputtering device
JPS58161774A (en) * 1982-03-17 1983-09-26 Fujitsu Ltd Sputtering method
JPS6050167A (en) * 1983-08-26 1985-03-19 Nippon Telegr & Teleph Corp <Ntt> Plasma sticking device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151561A (en) * 1985-12-25 1987-07-06 Hitachi Ltd Sputtering device
JPS62222064A (en) * 1986-03-24 1987-09-30 Nippon Telegr & Teleph Corp <Ntt> Thin film forming device
JPH01283371A (en) * 1988-05-10 1989-11-14 Matsushita Electric Ind Co Ltd Sputtering device
JPH11288799A (en) * 1998-01-26 1999-10-19 Commiss Energ Atom Linear microwave plasma generating device using permanent magnet

Also Published As

Publication number Publication date
JPH0583632B2 (en) 1993-11-26

Similar Documents

Publication Publication Date Title
KR900006488B1 (en) Method and apparatus for microwave assising sputering
JPS60135573A (en) Method and device for sputtering
JP2011521107A (en) Rotating PVD using microwaves
JP2005036250A (en) Sputtering apparatus
JPH0713295B2 (en) Sputtering device
JPS61104074A (en) Sputtering device
JPS6187869A (en) Sputter device
WO2022064810A1 (en) Target and film forming device
JPS6270569A (en) Sputtering device
JP2621728B2 (en) Sputtering method and apparatus
JP4384295B2 (en) Plasma processing equipment
JPS61272372A (en) Sputtering device
JPH05171435A (en) Thin film forming device
JPH0621352B2 (en) Sputtering device
JPH06116724A (en) Thin film forming device
JPH0585633B2 (en)
JPH0831443B2 (en) Plasma processing device
WO2022230857A1 (en) Sputtering device
JP2725327B2 (en) Plasma deposition equipment
JPH0221296B2 (en)
JPS6160881A (en) Spattering method and its device
JP2502948B2 (en) Plasma deposition method
JPH0660392B2 (en) Thin film forming equipment
JP3100242B2 (en) Plasma processing equipment
JPH0578849A (en) High magnetic field microwave plasma treating device