JPH058532B2 - - Google Patents

Info

Publication number
JPH058532B2
JPH058532B2 JP59176645A JP17664584A JPH058532B2 JP H058532 B2 JPH058532 B2 JP H058532B2 JP 59176645 A JP59176645 A JP 59176645A JP 17664584 A JP17664584 A JP 17664584A JP H058532 B2 JPH058532 B2 JP H058532B2
Authority
JP
Japan
Prior art keywords
target
density
transparent conductive
conductive film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59176645A
Other languages
Japanese (ja)
Other versions
JPS6155811A (en
Inventor
Takaaki Kumochi
Saburo Nobutoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17664584A priority Critical patent/JPS6155811A/en
Publication of JPS6155811A publication Critical patent/JPS6155811A/en
Publication of JPH058532B2 publication Critical patent/JPH058532B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、撮像管等に使用する透明導電膜の形
成に用いるIn2O3を主成分とするスパツタリング
ターゲツトに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a sputtering target containing In 2 O 3 as a main component and used for forming a transparent conductive film used in an image pickup tube or the like.

〔発明の背景〕[Background of the invention]

撮像管、特に光導電形撮像管の光電交換部は、
透明ガラス基板上に透明導電膜を介して光導電膜
が形成された構造を有する。このような光電交換
部は、有効面内にわずかな電気的ないし光学的欠
陥があつても撮像再生画面に輝点状欠陥、いわゆ
る白きずや黒点状欠陥、いわゆる黒きずをひきお
こるために、欠陥の存在が極度に忌避されること
は言うまでもない。そして、程度の差はあれいか
なる撮像管にも言えることではあるが、特に透明
導電膜と光導電膜との界面に整流性接触を有する
阻止形のものでは、透明導電膜の欠陥が整流性の
破壊を意味する場合が多く、白きずがきわめて顕
著に表われしまうことから、透明導電膜の形成に
は細心の注意を払う必要があつた。出願人は、先
に、欠陥の少ない透明導電膜を形成する方法とし
てターゲツト材料の密度、すなわち構成材料の純
比重に対する見掛け比重の割合を80%以上とする
ことを提案しているが(特開昭56−54702)、スパ
ツタリングターゲツトとしては、生成膜の欠陥が
少ないととともに、膜生成の効率が良いことが望
まれる。
The photoelectric exchange part of an image pickup tube, especially a photoconductive type image pickup tube, is
It has a structure in which a photoconductive film is formed on a transparent glass substrate via a transparent conductive film. In such a photoelectric exchange unit, even if there is a slight electrical or optical defect within the effective surface, it will cause bright spot defects, so-called white flaws, and black dot defects, so-called black flaws, on the image capture and playback screen. Needless to say, the existence of defects is highly avoided. Although this is true for all image pickup tubes to varying degrees, defects in the transparent conductive film can cause defects in the rectifying film, especially in blocking types that have rectifying contact at the interface between the transparent conductive film and the photoconductive film. Since this often means destruction and the white flaws are very noticeable, it was necessary to pay close attention to the formation of the transparent conductive film. The applicant has previously proposed that the density of the target material, that is, the ratio of the apparent specific gravity to the pure specific gravity of the constituent materials, be 80% or more as a method for forming a transparent conductive film with few defects. As a sputtering target, it is desired that the produced film has few defects and that the film production efficiency is high.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に鑑みてなされたもの
で、その目的は、欠陥の少ない透明導電膜を生産
性良く形成することが可能な透明導電膜形成用ス
パツタリングターゲツトを提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a sputtering target for forming a transparent conductive film that can form a transparent conductive film with few defects with high productivity. .

〔発明の概要〕[Summary of the invention]

このような目的を達成するために本発明は、密
度を80%以上にするとともに、それぞれが300cm2
以下の表面積を有する単位ターゲツトを主表面に
対して30ないし60度の傾斜側面で相互に重なるよ
うに整合配置して電極板に貼り合せた構造とした
ものである。
In order to achieve this purpose, the present invention has a density of 80% or more, and each 300 cm 2
It has a structure in which unit targets having the following surface areas are aligned and bonded to an electrode plate so that they overlap each other with side surfaces inclined at 30 to 60 degrees with respect to the main surface.

〔発明の実施例〕[Embodiments of the invention]

以下、具体的データを用いて本発明を詳細に説
明する。
Hereinafter, the present invention will be explained in detail using specific data.

一般に、In2O3を主成分とするターゲツトを用
いたスパツタリングによる透明導電膜の形成は、
具体的にはIn2O3、SnO2、CdO等の酸化物の粉粒
体を焼結した焼結体をターゲツト体とし、Arま
たは場合によつてこれにさらにH2、O2、H2O等
を添加した雰囲気で行なわれるが、この方法にお
いて問題とされる透明導電膜の欠陥の成分を分析
したところ、少なからざる比率で焼結ターゲツト
体より崩落飛散したと推定される粒状体が発見さ
れた。
Generally, the formation of a transparent conductive film by sputtering using a target mainly composed of In 2 O 3 is as follows:
Specifically, a sintered body made of sintered powder of oxides such as In 2 O 3 , SnO 2 , CdO, etc. is used as a target body, and Ar or, in some cases, H 2 , O 2 , H 2 This process is carried out in an atmosphere containing oxygen, etc., and when we analyzed the components of the defects in the transparent conductive film that are a problem with this method, we found a considerable proportion of granules that were presumed to have collapsed and scattered from the sintered target body. It was done.

焼結ターゲツトは、材料粉粒の製造条件、粒度
分布調整、成形条件および方法ならびに焼結条件
および方法によつて焼結密度を変化させることが
できるが、その密度がある程度大きいほど上述し
た粒子崩落が抑えられる傾向があることが推定さ
れ、その見地からターゲツト体の密度と透明導電
膜1cm2当りの異物個数との関係を調べたところ、
第1図に曲線イで示すようにターゲツト体の密度
が大となると、形成した透明導電膜表面の欠陥が
激減することが認められた。
The sintered density of the sintered target can be changed by changing the manufacturing conditions of the material powder, particle size distribution adjustment, molding conditions and methods, and sintering conditions and methods, but the higher the density is to a certain extent, the more likely the particles will collapse as described above. It is presumed that there is a tendency to suppress this, and from this point of view, we investigated the relationship between the density of the target body and the number of foreign particles per 1 cm 2 of transparent conductive film.
As shown by curve A in FIG. 1, it was found that as the density of the target body increased, the number of defects on the surface of the formed transparent conductive film was drastically reduced.

一方、ターゲツトとして好ましい性能として、
上述したように粒子崩落がないことと並んで、作
業性が良好なことが挙げられるが、この作業性に
関連して、ターゲツト体よりのガス湧出特性に関
しても、密度との関連がみられた。すなわち、第
1図の曲線ロは、ガス湧出特性を示す尺度とし
て、ターゲツト体をスパツタリング装置に装着し
排気を開始してからスパツタリング作業に着手で
きるような5×10-6Torrの真空度になるまでの
排気時間を測定したものである。ターゲツト製作
後第1回目のスパツタリング作業を行うときは多
少とも吸着ガスの影響で排気時間が長くなる傾向
を有するためその影響を除いて示してあるが、同
図から明らかなように、70%に至らない程度の低
密度ターゲツトと80%を越えないような高密度タ
ーゲツトでは真空度上昇が早いのに対し、75%前
後の中間領域ではきわめて遅い。これは例えば次
のような機構によつて説明され得る。すなわち、
焼結したターゲツト表面を走査形電子顕微鏡で観
察すると、低密度ターゲツトでは大小の構成微粒
子が積み重なり、粒子間の空隙は大小さまざまな
迷宮構造を有しているとみなされる。密度上昇と
ともに、まず大形の空隙が消減してくるが、空隙
の数自体には特に変化は認められない。
On the other hand, as a desirable performance as a target,
As mentioned above, in addition to the absence of particle collapse, the workability is also good, and in relation to this workability, the gas gushing characteristics from the target body were also found to be related to the density. . In other words, curve B in Figure 1 is a measure of the gas gushing characteristics, and indicates a vacuum level of 5 x 10 -6 Torr, which allows sputtering work to begin after the target body is attached to the sputtering device and exhaust is started. This is the measurement of the evacuation time. When performing the first sputtering operation after target fabrication, the evacuation time tends to be longer due to the influence of adsorbed gas, so this influence is excluded, but as is clear from the figure, 70% The degree of vacuum rises quickly for low-density targets and high-density targets that do not exceed 80%, but is extremely slow in the intermediate region of around 75%. This can be explained, for example, by the following mechanism. That is,
When observing the surface of a sintered target with a scanning electron microscope, it can be seen that in a low-density target, constituent fine particles of various sizes are piled up, and the voids between the particles are considered to have a labyrinth structure of various sizes. As the density increases, large voids first disappear, but no particular change is observed in the number of voids themselves.

さらに密度が高くなると、このような空隙の数
が顕著に減少しだす。その結果、ターゲツト内の
空隙に吸蔵されていたとみられる気体が、真空ポ
ンプの排気速度が追いつけないほどに多量に、か
つゆつくりと湧出する。このために、真空度上昇
が遅くなるものと推定される。そして、さらに密
度が高くなり80%以上になると、空隙の数は極端
に減少しだす。この状態のターゲツト表面を電子
顕微鏡で観察すると、ターゲツト構成時の粉末粒
子は互いに融着し合つて低密度時に観察されたよ
うな粒塊は見られず、わずかな空隙は、粒子融着
による微細、緻密な網目構造の中のピンホール状
に形成されている。このような空隙の激減と上記
網目状構造によつて、高密度ターゲツトで真空度
が向上するものと推定される。
As the density increases further, the number of such voids begins to decrease significantly. As a result, the gas that is believed to have been occluded in the voids within the target oozes out in such a large amount and so slowly that the pumping speed of the vacuum pump cannot keep up. It is presumed that for this reason, the degree of vacuum increases slowly. As the density increases further to 80% or more, the number of voids begins to decrease dramatically. When the target surface in this state is observed with an electron microscope, the powder particles in the target structure are fused together, and there are no grain agglomerates like those observed when the density is low, and the few voids are fine particles due to particle fusion. , formed like a pinhole in a dense network structure. It is presumed that the degree of vacuum is improved in a high-density target due to such a drastic reduction in voids and the network structure.

その他、ターゲツト体密度が大きくなるに従つ
て、焼成結法にもよるが、ターゲツト体の色調が
明るい黄緑色から緑褐黒色に移行する傾向をもつ
ており、これは構成酸化物の一部の還元によるも
のではないかと推定されるが、これらのターゲツ
ト体により形成された透明導電膜の電気光学特性
にはほとんど差異が認められず、また被膜の粒状
性、結晶性にも変化の傾向は認められなかつた。
Additionally, as the target density increases, the color tone of the target tends to shift from bright yellow-green to greenish-brown black, depending on the sintering method. Although it is presumed that this is due to reduction, there is almost no difference in the electro-optical properties of the transparent conductive films formed with these target bodies, and no tendency for changes in the granularity and crystallinity of the films has been observed. I couldn't help it.

この結果、撮像素子に用いられるようなきわめ
て微細な異物の存在をも許さない透明同電膜の形
成には密度80%以上のターゲツトを使用すること
が好適であることがわかる。
As a result, it is found that it is suitable to use a target with a density of 80% or more to form a transparent isoelectric film that does not allow even the presence of extremely fine foreign substances, such as those used in image pickup devices.

ところがでここで、一般にスパツタリングによ
つて透明導電膜を形成する場合には、被膜形成基
板に生産性良く形成するために、ターゲツトサイ
ズを大きくして真空装置内を拡大することが望ま
しく、例えば5″×15″×1/4″(厚さ)等のものが
使用される例が多い。しかし、上述したような高
密度ターゲツトについては、In2O3、SnO2の粉末
材料を高温高圧圧搾して板状成形体を作製するた
めに、単位面積当りの圧搾量が数千キログラムな
いし1トンときわめて大きな値となり、しかも
10000℃以上の高温中で行なう必要があるため、
300cm2以下の程度の比較的小さな表面積の板状タ
ーゲツトなら、製造条件を適正化することにより
製造可能であるが、上述したような大面積のター
ゲツトを一体形で形成することは困難である。
However, when a transparent conductive film is generally formed by sputtering, it is desirable to enlarge the target size and enlarge the inside of the vacuum apparatus in order to form the film on the film formation substrate with good productivity. In many cases, materials such as ``x 15'' x 1/4'' (thickness) are used. However, for high-density targets such as those mentioned above, powder materials such as In 2 O 3 and SnO 2 are pressed at high temperature and high pressure. In order to produce plate-shaped compacts, the amount of compression per unit area is extremely large, ranging from several thousand kilograms to one ton.
Because it is necessary to carry out the process at a high temperature of 10,000℃ or more,
A plate-shaped target with a relatively small surface area of 300 cm 2 or less can be manufactured by optimizing the manufacturing conditions, but it is difficult to form a large-area target as described above in one piece.

そこで、本発明では、第2図に示すように300
cm2以下の小形サイズの高密度ターゲツト1を複数
作り、切断整形し、スパツタリング電極板2に、
整合配置し有機接着剤や低融点金属材を用いてボ
ンデイングした貼り合せ構造とし、目的の面積と
することでこの問題を解決した。この場合、貼り
合せた単位ターゲツト間に隙間ができないように
する必要がある。これは、もし隙間があると、ス
パツタリングによる被膜形成時によるボンデイン
グ材3や電極板2(これは通常は熱伝導性の良好
な無酸素銅板で形成される)がスパツタされ、良
好な特性の透明導電膜が得られなくなるためであ
るが、この隙間をなくすために、本発明では図示
のように各単位ターゲツト1が相互に接合する切
断側面に傾斜をつけて、各ターゲツトが部分的に
重なるようにしている。このとき、切断面を複雑
な形状で嵌合させるようにすると、In2O3を主成
分とする高密度ターゲツトは固くもろいため、切
断時に割れたり、ボンデイング時に割れやひび割
れが発生したりしやすいが、これは、図示のよう
に接合する切断側面の主表面に対する角度θを30
〜60度にすることにより防ぐことができる。また
このとき切断側面の接合部を隙間なく密接させる
と、エツジ部が破損する場合があるが、上述した
ような構造とすれば、接合面に0.05〜0.8mmの隙
間をもたせても、生成膜特性を及ぼさない利点を
有する。しかし、ターゲツトは繰返し使用するた
め、ターゲツトの消耗が起こり、消耗時での接合
面のボンデイング材料が生成膜特性に影響を及ぼ
すことが考えられる。発明者らによる実験の結果
接合面の上述の内容を考慮した好ましい隙間は
0.05〜0.5mmであつた。
Therefore, in the present invention, as shown in FIG.
A plurality of high-density targets 1 with a small size of cm 2 or less are made, cut and shaped, and sputtered into an electrode plate 2.
This problem was solved by creating a bonded structure with aligned alignment and bonding using an organic adhesive or a low-melting metal material to achieve the desired area. In this case, it is necessary to prevent gaps from forming between the bonded unit targets. This is because if there is a gap, the bonding material 3 and electrode plate 2 (usually made of an oxygen-free copper plate with good thermal conductivity) will be sputtered during film formation by sputtering, resulting in a transparent film with good properties. This is because a conductive film cannot be obtained, but in order to eliminate this gap, in the present invention, as shown in the figure, the cut side surfaces where each unit target 1 joins each other are sloped so that each target partially overlaps. I have to. At this time, if the cut surfaces are made to fit together in a complicated shape, the high-density target, which is mainly composed of In 2 O 3 , is hard and brittle, so it is likely to break during cutting or cause cracks or cracks during bonding. However, as shown in the figure, the angle θ to the main surface of the cut side to be joined is set to 30
This can be prevented by keeping the temperature at ~60 degrees. At this time, if the joints on the cut sides are brought close together without any gaps, the edges may be damaged, but if the structure is as described above, even if there is a gap of 0.05 to 0.8 mm between the joint surfaces, the formed film will be It has the advantage of not having any characteristics. However, since the target is used repeatedly, the target wears out, and the bonding material on the bonding surface during wear may affect the properties of the produced film. As a result of experiments conducted by the inventors, the preferred gap for the joint surface considering the above-mentioned details is
It was 0.05-0.5mm.

貼り合せて用いる単位ターゲツト1の数はより
多数とすることも可能であるが、ボンデイングの
しやすさ、スパツタによるターゲツト消耗時の割
れやすさ等を考慮すると、8枚以内程度が望まし
い。
The number of unit targets 1 to be bonded together can be greater, but in consideration of ease of bonding, susceptibility to breakage when targets are worn out by spatter, etc., it is desirable that the number be within eight.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のスパツタリング
ターゲツトによれば、密度を80%以上にするとと
もに、それぞれ300cm2以下の単位ターゲツトを主
表面に対して30ないし60度の傾斜側面で相互に重
なるように電極板に貼り合せた構造としたことに
より、欠陥の少ない透明導電膜を生産性良く形成
することが可能となる。
As explained above, according to the sputtering target of the present invention, the density is set to 80% or more, and unit targets of 300 cm 2 or less are overlapped with each other with side surfaces inclined at 30 to 60 degrees with respect to the main surface. By adopting a structure in which the film is bonded to an electrode plate in this manner, it becomes possible to form a transparent conductive film with few defects with high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はターゲツト密度と生成膜の異物個数お
よび排気時間との関係を示す図、第2図は本発明
の一実施例を示す断面図である。 1……単位ターゲツト、2……電極板、3……
ボンデイング材。
FIG. 1 is a diagram showing the relationship between the target density, the number of foreign particles in the produced film, and the evacuation time, and FIG. 2 is a sectional view showing an embodiment of the present invention. 1... Unit target, 2... Electrode plate, 3...
bonding material.

Claims (1)

【特許請求の範囲】[Claims] 1 In2O3を主成分とする透明導電膜形成用スパ
ツタリングターゲツトにおいて、構成材料純比重
に対する見掛け比重の割合を80%以上とし、かつ
それぞれ300cm2以下の表面積を有する単位ターゲ
ツトを主表面に対して30ないし60度の角度を有す
る傾斜側面で相互に重なるように整合配置して電
極板に貼り合せた構造としたことを特徴とする透
明導電膜形成用スパツタリングターゲツト。
1. In a sputtering target for forming a transparent conductive film containing In 2 O 3 as the main component, the main surface is a unit target whose ratio of apparent specific gravity to the pure specific gravity of the constituent materials is 80% or more and each has a surface area of 300 cm 2 or less. 1. A sputtering target for forming a transparent conductive film, characterized by having a structure in which inclined side surfaces having an angle of 30 to 60 degrees with respect to the target are aligned and bonded to an electrode plate so as to overlap with each other.
JP17664584A 1984-08-27 1984-08-27 Sputtering target for forming transparent conductive film Granted JPS6155811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17664584A JPS6155811A (en) 1984-08-27 1984-08-27 Sputtering target for forming transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17664584A JPS6155811A (en) 1984-08-27 1984-08-27 Sputtering target for forming transparent conductive film

Publications (2)

Publication Number Publication Date
JPS6155811A JPS6155811A (en) 1986-03-20
JPH058532B2 true JPH058532B2 (en) 1993-02-02

Family

ID=16017200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17664584A Granted JPS6155811A (en) 1984-08-27 1984-08-27 Sputtering target for forming transparent conductive film

Country Status (1)

Country Link
JP (1) JPS6155811A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143258A (en) * 1986-12-05 1988-06-15 Mitsubishi Metal Corp Sputtering target
JPS63230870A (en) * 1987-03-20 1988-09-27 Mitsubishi Metal Corp Sputtering target
JPH0759747B2 (en) * 1988-03-09 1995-06-28 日本真空技術株式会社 Method for producing transparent conductive film
JP4967202B2 (en) * 2001-07-23 2012-07-04 大日本印刷株式会社 Sputtering target
KR100777718B1 (en) * 2001-09-14 2007-11-19 삼성에스디아이 주식회사 Target for functional films and method of manufacturing functional films using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558370A (en) * 1978-10-20 1980-05-01 Nippon Hoso Kyokai <Nhk> Electrode for sputtering target
JPS5654702A (en) * 1979-10-11 1981-05-14 Hitachi Ltd Method of manufactuping transparent conductive film
JPS56169773A (en) * 1980-05-30 1981-12-26 Sharp Corp Target for spattering by plenar magnetron
JPS58197607A (en) * 1982-05-12 1983-11-17 株式会社日立製作所 Method of forming transparent conductive film
JPS5918511A (en) * 1982-07-21 1984-01-30 日本板硝子株式会社 Method of forming transparent conductive film on substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558370A (en) * 1978-10-20 1980-05-01 Nippon Hoso Kyokai <Nhk> Electrode for sputtering target
JPS5654702A (en) * 1979-10-11 1981-05-14 Hitachi Ltd Method of manufactuping transparent conductive film
JPS56169773A (en) * 1980-05-30 1981-12-26 Sharp Corp Target for spattering by plenar magnetron
JPS58197607A (en) * 1982-05-12 1983-11-17 株式会社日立製作所 Method of forming transparent conductive film
JPS5918511A (en) * 1982-07-21 1984-01-30 日本板硝子株式会社 Method of forming transparent conductive film on substrate

Also Published As

Publication number Publication date
JPS6155811A (en) 1986-03-20

Similar Documents

Publication Publication Date Title
CN105305995B (en) A kind of SMD quartz crystal resonator and imposite encapsulation process technique thereof
JPH058532B2 (en)
JP2815881B2 (en) Method of manufacturing X-ray image tube
JPS5920470A (en) Target for sputtering
JPH0995782A (en) Magnetron sputtering method using split target
JP5410545B2 (en) ITO sputtering target
TWI223827B (en) Structure, fabrication, and corrective test of electron-emitting device having electrode configured to reduce cross-over capacitance and/or facilitate short-circuit repair
JP2000119847A (en) Oxide sintered compact sputtering target assembly
JPH1161395A (en) Ito sputtering target
JPH02254164A (en) Divided sputtering target
US4039116A (en) Photodetector-to-substrate bonds
JPH07278791A (en) Low resistance transparent conductive film
JPH02209476A (en) Sputtering method
JPH0419650B2 (en)
JP3603693B2 (en) ITO sputtering target
JP2001335925A (en) Method for producing ito thin film
JPS6155205B2 (en)
JPS60250543A (en) Vidicon target
JP3636014B2 (en) ITO sputtering target
JPH09104973A (en) Sputtering target and its production
CN218831195U (en) Display panel and display device
JP2011100584A (en) Photoconductive element and imaging device using this, and manufacturing method of substrate with conductive film
WO2014128976A1 (en) Sputtering target and manufacturing method therefor
JP2000345325A (en) Ito sputtering target
JPH04318164A (en) Thin film forming method