WO2014128976A1 - Sputtering target and manufacturing method therefor - Google Patents

Sputtering target and manufacturing method therefor Download PDF

Info

Publication number
WO2014128976A1
WO2014128976A1 PCT/JP2013/054826 JP2013054826W WO2014128976A1 WO 2014128976 A1 WO2014128976 A1 WO 2014128976A1 JP 2013054826 W JP2013054826 W JP 2013054826W WO 2014128976 A1 WO2014128976 A1 WO 2014128976A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
sputtering target
target material
bonding
sputtering
Prior art date
Application number
PCT/JP2013/054826
Other languages
French (fr)
Japanese (ja)
Inventor
貴則 眞▲崎▼
俊昭 河野
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to PCT/JP2013/054826 priority Critical patent/WO2014128976A1/en
Publication of WO2014128976A1 publication Critical patent/WO2014128976A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/80Joining the largest surface of one substrate with a smaller surface of the other substrate, e.g. butt joining or forming a T-joint

Definitions

  • the present invention relates to a sputtering target and a method for manufacturing the same, and more particularly, a sputtering target material to be bonded to a base material is composed of a plurality of ceramic divided target materials and a ceramic bonding portion for integrally bonding them, and the sputtering target. It relates to a manufacturing method.
  • the manufacturing process of a flat panel display or a solar cell generally includes a process of forming a thin film on a glass substrate by sputtering a sputtering target.
  • the sputtering target is formed by soldering a sputtering target material to a base material with a solder material.
  • the target material is a metal
  • the metal is flexible and highly ductile, so that a large target material can be manufactured relatively easily.
  • an ingot is formed by melting, sintering, or the like, and after being forged, rolled, heat treated, or the like, a metal target material having a predetermined shape is manufactured.
  • the ceramic target material is usually manufactured by a powder sintering method in which a raw material powder is formed and sintered at a high temperature.
  • a powder sintering method in which a raw material powder is formed and sintered at a high temperature.
  • the size of the sintering furnace is limited, and if the sintered body is large, warping and cracks may occur due to thermal stress during heating.
  • the size of the target that can be manufactured because it tends to occur and variation in density becomes large. For this reason, there is a limit to the area that can be formed with a single target material. When it is necessary to perform film formation in an area exceeding the limit, for example, a plurality of ceramic target materials are bonded to a base material to obtain a large target.
  • the target materials may expand due to heating during bonding or heat generated during sputtering, and thus the target material may be cracked.
  • This problem occurs mainly when heat treatment is performed at 100 ° C. or higher by using solder at the time of joining, and the difference in coefficient of thermal expansion between the target material and the substrate is 2.5 ⁇ 10 ⁇ 6 / ° C. or higher. Can become noticeable. Therefore, when joining with heat treatment is performed, a plurality of target materials are generally joined to the base material with a certain interval between adjacent target materials.
  • Patent Literature 1 discloses a sputtering target in which end surfaces of a plurality of target materials are formed obliquely with respect to a surface to be sputtered.
  • a plurality of target materials are arranged in a regular row, and a gap between the target materials is arranged along an angle between the direction of the row and a direction perpendicular thereto.
  • Patent Document 3 discloses a cylindrical target including a plurality of cylindrical target materials, having a gap between adjacent cylindrical target materials, and a step difference between the outer peripheral surfaces of the adjacent cylindrical target materials is a certain value or less.
  • a sputtering target is disclosed.
  • the substrate or the bonding material exposed in the gap may be sputtered and impurities may be mixed into the obtained thin film.
  • TAOS Transparent ⁇ Oxide Semiconductor
  • the substrate exposed in the gap is also sputtered.
  • the metal component contained in the semiconductor layer is mixed into the TAOS film and a semiconductor film mixed with a conductor is formed, so that the transistor performance is deteriorated.
  • Patent Document 4 discloses a sputtering target in which an alloy having a melting point higher than that of a bonding material is present in the clearance between a plurality of target materials.
  • Patent Document 5 discloses a sputtering target in which boundary portions of a plurality of target pieces are filled with an alloy material having a composition that is the same as the constituent elements of the target pieces.
  • the thin film obtained by sputtering has a portion having a composition significantly different from the composition of the target material. Due to the problem that it is difficult to obtain a thin film having a uniform composition, and because of the electrical resistance difference between the target material and the alloy by sandwiching the alloy between the ceramic target materials, There was a problem of being triggered. Further, it is difficult to smooth the target surface after being bonded to the base material, and the level difference at the bonded portion cannot be eliminated.
  • the present invention provides a sputtering target in which a plurality of ceramic target materials are bonded to a base material, and a method of manufacturing the sputtering target in which the above-mentioned problems such as abnormal discharge caused by gaps between the target materials are unlikely to occur. With the goal.
  • a ceramic sputtering target material comprising a plurality of ceramic divided sputtering target materials and a ceramic bonding portion for integrally bonding the plurality of ceramic divided sputtering target materials is bonded to a substrate. It is a sputtering target characterized by comprising.
  • the ceramic sputtering target material has substantially no step between the ceramic split sputtering target material and the ceramic joint on the sputtering surface, It is preferable that the composition of the ceramic joint is substantially the same as the composition of the ceramic split sputtering target material.
  • the ceramic sputtering target material can have a flat plate shape.
  • the area of the sputtering surface of the ceramic sputtering target material can be 300,000 mm 2 or more.
  • the ceramic sputtering target material can be formed into a cylindrical shape, and in this case, the length in the axial direction can be set to 1,000 mm or more.
  • the ceramic sputtering target material is preferably solder-bonded to the base material at a temperature of 100 ° C. or higher,
  • the difference in thermal expansion coefficient between the ceramic split sputtering target material and the substrate is preferably 2.5 ⁇ 10 ⁇ 6 / ° C. or more.
  • Another invention is a ceramic sputtering target material comprising a plurality of ceramic divided sputtering target materials and a ceramic bonding portion for integrally bonding the plurality of ceramic divided sputtering target materials.
  • a ceramic material for bonding is sandwiched between side surfaces of a plurality of ceramic divided sputtering target materials, and the ceramic divided sputtering target material and the ceramic material for bonding are heat treated.
  • a sputtering target manufacturing method characterized in that a divided sputtering target material is integrally bonded to produce a ceramic sputtering target material, and the ceramic sputtering target material is bonded to a substrate.
  • Still another invention is a method of sandwiching a ceramic material for bonding between side surfaces of a plurality of ceramic divided sputtering target materials, and heat-treating the ceramic divided sputtering target material and the bonding ceramic material.
  • the split sputtering target material is integrally joined to produce a ceramic sputtering target material, and after smoothing at least the sputtering surface of the surface of the ceramic sputtering target material, the ceramic sputtering target material is used as a base material.
  • the bonding ceramic material may be in the form of a sheet, or may be in the form of a slurry or a paste.
  • the sputtering target of the present invention even if a plurality of ceramic divided target materials are provided, there are ceramic joints between adjacent ceramic divided target materials, and there are no gaps. An abnormal discharge (arcing) occurs between the edges of the substrate, the bonding material adheres to the side wall of the divided target material, particles due to the bonding material existing at the bottom of the gap are generated, or the base material or bonding material exposed in the gap As a result, it is possible to reduce a possibility that impurities are mixed into the formed thin film.
  • the sputtering target of the present invention when the composition of the ceramic divided target material and the composition of the ceramic joint are substantially the same, the thin film obtained by sputtering the sputtering target of the present invention is used. Does not cause a site that is largely different from the composition derived from the ceramic divided target material.
  • the sputtering target can be produced efficiently, and a large-sized sputtering target material consisting of a single sintered body produced by a powder sintering method cannot be realized.
  • a sputtering target can be manufactured.
  • FIG. 1A is a plan view of the sputtering target 10
  • FIG. 1B is a side view of the sputtering target 10.
  • FIG. 2A is a side view of the sputtering target 20
  • FIG. 2B is a front view of the sputtering target 20.
  • the sputtering target of the present invention is formed by bonding a ceramic sputtering target material comprising a plurality of ceramic divided sputtering target materials and a ceramic bonding portion for integrally bonding the plurality of ceramic divided sputtering target materials to a base material.
  • each of the ceramic split sputtering target materials is arranged with the adjacent ceramic split sputtering target materials facing each side surface, and the ceramic joints are the plurality of the plurality of split sputtering target materials. It is formed between the side surfaces of the ceramic split sputtering target material.
  • the ceramic divided sputtering target material is specifically a single sintered body produced by a powder sintering method. That is, the sputtering target of the present invention is not formed by bonding a ceramic sputtering target material made of one sintered body to a base material, but a plurality of sintered bodies (ceramic divided sputtering target material) and a ceramic product. A ceramic sputtering target material composed of a bonding portion is bonded to a base material.
  • the sputtering target of the present invention can be a large sputtering target that cannot be a sputtering target formed from a sputtering target material made of a single sintered body.
  • the area of the sputtering surface of the sputtering target of the present invention is 300,000Mm 2 or more, more 600,000Mm 2 or more, further it can be a 900,000Mm 2 or more. If an attempt is made to form such a large target material with a single sintered body, the temperature unevenness inside the molded body increases during firing. Since a warp or a crack is likely to occur due to thermal stress at the time, a target material that can withstand practical use cannot be obtained.
  • a thin film having a large area that could not be formed by a single sputtering operation with a sputtering target formed of a sputtering target material made of a single sintered body. Can be realized by a single sputtering operation.
  • the joint portion in which a plurality of ceramic divided sputtering target materials are integrally joined to form a ceramic sputtering target material is made of ceramics. That is, the material of the joint is ceramic, not metal, alloy or the like.
  • the joint portion is sputtered together with the split sputtering target material portion.
  • the portion having the composition derived from the joint portion is also included.
  • the joint in the present invention is made of ceramics like the ceramic split sputtering target material
  • the thin film obtained by sputtering the sputtering target of the present invention has a part having a composition derived from the ceramic split sputtering target material, and There is no occurrence of sites with greatly different oxygen contents.
  • the composition of the ceramic joint is preferably substantially the same as the composition of the ceramic split sputtering target material.
  • the thin film obtained by sputtering the sputtering target of the present invention has substantially no site having a composition different from the composition derived from the ceramic split sputtering target material, and has a uniform composition. Can be obtained.
  • substantially the same does not mean that inclusion of inevitable impurities is not allowed. Any difference in composition that does not impair the effects of the present invention is acceptable and does not require complete identity.
  • the shape of the ceramic sputtering target material is not particularly limited, and examples of the shape include a flat plate shape and a cylindrical shape.
  • the shapes of the ceramic split sputtering target material and the ceramic joint are also appropriately determined according to the shape of the ceramic sputtering target material.
  • the sputtering target of the present invention is obtained by bonding the sputtering target material to a flat plate-shaped substrate.
  • the sputtering target of the present invention can be obtained by inserting a cylindrical base material into the hollow portion of the sputtering target material and bonding them together.
  • FIG. 1 shows a sputtering target 10 which is a specific example of a sputtering target formed by bonding a flat plate-shaped ceramic sputtering target material to a substrate.
  • FIG. 1A is a plan view of the sputtering target 10
  • FIG. 1B is a side view of the sputtering target 10.
  • the sputtering target 10 includes a flat plate-shaped ceramic sputtering target material 11, a flat plate-shaped base material 14, and a bonding material layer 15 for bonding them.
  • the ceramic sputtering target material 11 is formed between the three ceramic divided sputtering target materials 12 arranged in a line and having a rectangular planar shape and the two adjacent ceramic divided sputtering target materials 12 without a gap.
  • the total area of the ceramic sputtering target material 11, that is, the area of the three ceramic divided sputtering target materials 12 and the two ceramic joints 13 shown in FIG. The area of the surface.
  • the ceramic divided sputtering target material constituting the flat plate shape has a flat plate shape, and there is no particular limitation on the planar shape, size, number of sheets, arrangement method, and the like.
  • a ceramic divided sputtering target material having a rectangular planar shape may be arranged in a line as shown in FIG. 1, or arranged in two or more lines. Also good.
  • the ceramic sputtering target material When the ceramic split sputtering target material having a rectangular planar shape is arranged in two or more rows, the ceramic sputtering target material includes a plurality of ceramic split sputtering target materials arranged in the vertical and horizontal directions, and And one ceramic joint formed between the ceramic split sputtering target materials.
  • the size of the ceramic sputtering target material having a plate shape is not, for example, the area of the sputtering surface 300,000Mm 2 or more, more 600,000Mm 2 or more, further to 900,000Mm 2 or more be able to.
  • FIG. 2 shows a sputtering target 20 which is a specific example of a sputtering target formed by bonding a ceramic sputtering target material having a cylindrical shape to a base material.
  • FIG. 2A is a side view of the sputtering target 20, and
  • FIG. 2B is a front view of the sputtering target 20.
  • the sputtering target 20 includes a cylindrical ceramic sputtering target material 21, a cylindrical base material 24, and a bonding material layer 25 for bonding them.
  • the ceramic sputtering target material 21 has a gap between three cylindrical ceramic divided sputtering target materials 22 and the two adjacent ceramic divided sputtering target materials 22 arranged with their respective axes aligned.
  • the total area of the outer peripheral surface of the ceramic sputtering target material 21, that is, the outer peripheral surfaces of the three ceramic divided sputtering target materials 22 and the two ceramic joint portions 23 is the area of the sputtering surface.
  • the shape of the ceramic divided sputtering target material constituting the cylindrical sputtering target material is a cylindrical shape, and the size, the number, etc. thereof are not particularly limited.
  • the size of the ceramic sputtering target material having a cylindrical shape is not particularly limited.
  • the length in the axial direction may be 1,000 mm or more, further 2,000 mm or more, and further 3,000 mm or more. it can.
  • the material of the ceramic sputtering target material is not particularly limited, and may be the same material as the ceramic sputtering target material made of a single sintered body that has been conventionally used.
  • Examples of the material include ZnO as well as indium oxide-tin oxide material (ITO), aluminum oxide-zinc oxide material (AZO), and indium oxide-gallium oxide-zinc oxide material (IGZO). it can.
  • the content of In in the ceramic sputtering target material is usually 99 to 90% by mass in terms of In 2 O 3 and the content of Sn is usually 1 to 10% in terms of SnO 2. %.
  • the content of Al in the ceramic sputtering target material is usually 0.1 to 5% by mass in terms of the amount of Al 2 O 3 and the content of Zn is usually 99.9 in terms of the amount of ZnO. ⁇ 95% by mass.
  • the content of In in the ceramic sputtering target material is usually 40 to 60 mass% in terms of In 2 O 3
  • the content of Ga is usually 20 to 20 in terms of Ga 2 O 3.
  • 40% by mass and the Zn content is usually 10-30% by mass in terms of ZnO.
  • the material for the ceramic joint is not particularly limited as long as it can join a ceramic split sputtering target material.
  • the composition of the ceramic joint is substantially the same as the composition of the ceramic split sputtering target material. That is, for example, when the material of the ceramic split sputtering target material is ITO, AZO, or IGZO, the material of the ceramic joint is preferably ITOAZO or IGZO, respectively, and the ratio of the metal and oxygen of the ceramic joint, etc. It is preferable that the composition of is substantially the same as the composition of the ceramic split sputtering target material.
  • the ceramic means a sintered body obtained by heat treatment at a high temperature whose basic component is a metal oxide.
  • the thickness of the ceramic joint that is, the distance between the two ceramic split sputtering target materials joined by the ceramic joint is determined by joining a plurality of ceramic split sputtering target materials to be used. It is sufficient that the thickness is such that the target material can be formed, and the thickness should be as thin as possible so that the ceramic sputtering target material can be formed.
  • the thickness of the ceramic joint is appropriately determined according to the material, size and number of the ceramic split sputtering target material, the material of the ceramic joint, etc., but in the present invention, the thickness is 40 to 400 ⁇ m. It is assumed that
  • the volume ratio of the ceramic split sputtering target material to the ceramic joint in the ceramic sputtering target material is not particular limitation, but the ratio of the ceramic split sputtering target material that is the original target of sputtering is as high as possible, It is preferable to make the ratio of the ceramic joints as low as possible.
  • the ratio of the ceramic joints it is preferable that individual ceramic divided sputtering target materials are made as large as possible, and these are joined by as few ceramic joints as possible.
  • the base material is not particularly limited, and can be appropriately selected from conventionally used base materials according to the type of the sputtering target material.
  • Examples of the base material include copper, copper alloy, stainless steel, and titanium.
  • the type of the bonding material for bonding the ceramic sputtering target material to the base material there is no particular limitation on the type of the bonding material for bonding the ceramic sputtering target material to the base material, and it can be used by appropriately selecting from conventionally used bonding materials according to the type of the sputtering target material.
  • the bonding material include solder mainly composed of indium and Sn—Ag solder.
  • the ceramic sputtering target material has substantially no step between the ceramic split sputtering target material and the ceramic joint on the sputtering surface. More specifically, the step is preferably 0.1 mm or less. If it has become like this, there exists an advantage that a possibility that abnormal discharge resulting from a level difference part may occur during sputtering can be made small. For example, in the sputtering target 10 having a flat plate shape, a line representing the upper surface (sputtering surface) of the ceramic sputtering target material 11 shown in FIG. 1B, that is, the upper surface of the three ceramic divided sputtering target materials 12.
  • the lines representing the upper surfaces of the two ceramic joints 13 are substantially aligned on one straight line.
  • the outer peripheral surface (sputtering surface) of the ceramic sputtering target material 21 shown in FIG. 2A that is, three ceramic divided sputtering target materials 22 and two ceramic bonding members.
  • the upper line and the lower line are substantially aligned on a single straight line.
  • each divided target material is preferably arranged so that the central axes thereof coincide with each other, and the deviation of the central axis of each divided target material is preferably 0.1 mm or less.
  • the present invention is preferably applied when a ceramic sputtering target material is solder-bonded to a substrate at a temperature of 100 ° C. or higher, particularly 150 ° C. or higher.
  • a ceramic sputtering target material is solder-bonded to a substrate at a temperature of 100 ° C. or higher, particularly 150 ° C. or higher.
  • the present invention is susceptible to thermal expansion such that the difference in coefficient of thermal expansion between the target material and the substrate is 2.5 ⁇ 10 ⁇ 6 / ° C. or higher, particularly 8 ⁇ 10 ⁇ 6 / ° C. or higher. It is preferably applied in the case of a combination of a target material and a base material.
  • ⁇ Manufacturing method of sputtering target> In the sputtering target manufacturing method of the present invention, a bonding ceramic material is sandwiched between side surfaces of a plurality of ceramic divided sputtering target materials, and the ceramic divided sputtering target material and the bonding ceramic material are heat-treated.
  • the ceramic split sputtering target material is integrally joined to produce a ceramic sputtering target material, and the ceramic sputtering target material is joined to a substrate.
  • the sputtering target of the present invention can be produced.
  • the ceramic divided sputtering target material is sandwiched between side surfaces of a plurality of ceramic divided sputtering target materials, and the ceramic divided sputtering target material and the bonding ceramic material are heat-treated to heat-treat the ceramic divided sputtering target material.
  • the ceramic divided sputtering target material and the bonding ceramic material are heat-treated to heat-treat the ceramic divided sputtering target material.
  • the ceramic split sputtering target material can be manufactured by a powder sintering method or the like.
  • the material, shape, size, number, and the like may be appropriately determined according to the ceramic sputtering target material to be produced.
  • the bonding ceramic material is a material for bonding a plurality of ceramic divided sputtering target materials to each other, and is subjected to heat treatment, that is, fired by the operation described later, to become the ceramic bonding portion. Therefore, a material that becomes the ceramic joint by heat treatment is used as the ceramic material for joining.
  • the ceramic material for bonding usually contains a ceramic raw material powder, a dispersion medium, a binder, and may further contain a dispersant, a plasticizer, and the like.
  • a ceramic raw material powder for example, when forming a ceramic joint made of ITO, a mixed powder of In 2 O 3 powder and SnO 2 powder can be used, and ITO powder can also be used.
  • the specific surface area of the ceramic raw material powder measured by the BET (Brunauer-Emmett-Teller) method is usually 1 to 40 m 2 / g.
  • the ceramic raw material powder is mixed in such a ratio that a desired ITO composition can be obtained.
  • the blending ratio of the ceramic raw material powder in the ceramic material for bonding so that the composition of the ceramic bonding portion is substantially the same as the composition of the ceramic split sputtering target material.
  • the powder can be mixed, for example, by putting each powder and zirconia balls in a pot and mixing them with a ball mill.
  • dispersion medium water or the like is usually used.
  • the binder examples include a binder that is usually used when a molded body is obtained by a known powder sintering method.
  • a binder that is usually used when a molded body is obtained by a known powder sintering method.
  • PVA polyvinyl alcohol
  • the ceramic material for bonding can be produced by mixing the ceramic raw material powder, a dispersion medium, a binder, and the like.
  • the mixing method is not particularly limited.
  • the bonding ceramic material can be in the form of a sheet, slurry, or paste.
  • the ceramic material for sheet-like bonding is prepared by mixing 0.1 to 10% by mass of the dispersion medium and 0.1 to 30% by mass of the binder with respect to the amount of the ceramic raw material powder.
  • seat produced with the doctor blade is used after drying normally.
  • the drying temperature is preferably 100 ° C. or lower.
  • the thickness of the sheet-like bonding ceramic material is preferably 50 to 500 ⁇ m. Such a thickness has the advantage that the target materials can be joined together without any gaps.
  • the slurry-like ceramic material for bonding can be prepared by mixing and mixing 0.1 to 10% by mass of the dispersion medium and usually 0.1 to 30% by mass of the binder with respect to the amount of the ceramic raw material powder.
  • the paste-like ceramic material for bonding can be prepared by mixing and mixing 0.1 to 10% by mass of the dispersion medium and usually 0.1 to 30% by mass of the binder with respect to the amount of the ceramic raw material powder. .
  • the sandwiched ceramic material is sandwiched between the side surfaces of a plurality of ceramic divided sputtering target materials.
  • This operation is performed when, for example, the bonding ceramic material is a sheet, the sheet bonding ceramic material having a shape suitable for the shape of the side surface is attached to the side surface of the first ceramic split sputtering target material.
  • the side surface of the second ceramic divided sputtering target material can be pressed against the sheet-like bonding ceramic material from the opposite side of the first ceramic divided sputtering target material. Two or more sheets of the sheet-like bonding ceramic material may be sandwiched as necessary.
  • the bonding ceramic material is in the form of a slurry or paste
  • the bonding ceramic material is applied to both side surfaces of two ceramic divided sputtering target materials, and the applied bonding ceramic materials are combined.
  • it can carry out by facing the said 2 ceramics division
  • the bonding ceramic material is in the form of a slurry or paste and the ceramic divided sputtering target material is a flat plate shape, for example, two ceramic divided sputtering target materials are separated from each other at a predetermined distance. It can also be carried out by placing on the substrate so as to face each other, injecting a bonding ceramic material into the gap between the side surfaces, and filling the gap with the bonding ceramic material.
  • the bonding ceramic material protruding from the gap between the two ceramic split sputtering target materials may be scraped off as appropriate.
  • the thickness of the bonding ceramic material sandwiched between the side surfaces of the plurality of ceramic divided sputtering target materials is not particularly limited as long as the ceramic divided sputtering target materials can be bonded.
  • the thickness of the ceramic joint is determined according to the thickness of the bonding ceramic material.
  • the above operation is repeated to sandwich a ceramic material for bonding between a predetermined number of ceramic divided sputtering target materials. For example, when three ceramic divided sputtering target materials are arranged in a line, the first ceramic divided sputtering target material, the first bonding ceramic material, the second ceramic divided sputtering target material, The bonding ceramic material and the third ceramic divided sputtering target material are arranged in this order.
  • the bonding ceramic material sandwiched between the ceramic split sputtering target materials may be degreased.
  • Degreasing is performed by heating a ceramic material and a ceramic divided sputtering target material sandwiching the ceramic material.
  • the degreasing temperature is usually 600 to 800 ° C., preferably 700 to 800 ° C.
  • the degreasing time is usually 3 to 10 hours, preferably 5 to 10 hours.
  • the ceramic divided sputtering target material and the bonding ceramic material thus formed are heat-treated.
  • the firing furnace used for this heat treatment is not particularly limited, and a firing furnace conventionally used for manufacturing ceramic sputtering target materials can be used. Moreover, even when the ceramic split sputtering target material and the bonding ceramic material formed as a whole cannot enter the firing furnace, only the periphery of the bonding ceramic material portion can be locally heated.
  • the firing temperature is usually 1450 to 1700 ° C., preferably 1500 to 1650 ° C., more preferably 1500 to 1600 ° C. when the ceramic contained in the bonding ceramic material is ITO.
  • the temperature is usually 1250 to 1550 ° C., preferably 1300 to 1500 ° C., more preferably 1350 to 1450 ° C.
  • Calcination time is usually 3 to 30 hours, preferably 5 to 10 hours, more preferably 5 to 8 hours.
  • the heating rate is usually 100 to 500 ° C./h.
  • the temperature lowering rate is usually 10 to 100 ° C./h, preferably 10 to 50 ° C./h, more preferably 10 to 30 ° C./h.
  • the firing atmosphere is not particularly limited, and is usually an air atmosphere or an oxygen atmosphere.
  • a plurality of ceramic divided sputtering target materials are integrally joined by this heat treatment to form a ceramic sputtering target material. Further, by this heat treatment, the bonding ceramic material is sintered to become the ceramic bonding portion.
  • At least the surface to be the sputtering surface is as flat as possible in the case of a flat target material It is preferable to line up, and in the case of a cylindrical target material, it is preferable that the center axis of each target material is coincident, and the deviation of the center axis of each target material is preferably 0.1 mm or less. .
  • the ceramic sputtering target material is solder-bonded to the substrate after smoothing at least the sputtering surface of the surface.
  • solder bonding is performed after the smoothing treatment, there is an advantage that the possibility of occurrence of abnormal discharge due to the stepped portion during sputtering can be reduced.
  • the smoothing process can be performed, for example, by processing the target material with a processing machine such as a plane research machine.
  • the surface roughness by the arithmetic mean of the smoothed surface is usually 5 ⁇ m or less, preferably 1 ⁇ m or less.
  • the ceramic sputtering target material produced in this way is bonded to the base material.
  • the sputtering target of this invention is manufactured.
  • the method for bonding the ceramic sputtering target material to the base material is the same as the method for bonding the target material made of one ordinary sintered body to the base material.
  • the method for manufacturing a sputtering target of the present invention is a method in which a plurality of divided target materials are integrated with a bonding material to produce a target material, and then this target material is bonded to a base material. After joining the target material to the base material, it is not a method of integrating the divided target material by filling a bonding material between the divided target materials.
  • the base material for example, a typical Cu base material, melts due to heat applied when the filled ceramic material for bonding is fired and solidified. Even if a base material made of a material that can withstand high temperatures is used, the bonding ceramic material shrinks when sintered, and thus there is a high possibility that the target material will crack.
  • the sputtering target manufacturing method of the present invention does not cause such a problem.

Abstract

The present invention is a sputtering target characterized in being obtained by bonding a ceramic sputtering target material to a substrate, the ceramic sputtering target material being obtained from multiple ceramic sputtering target material segments and ceramic bonding parts for bonding the multiple ceramic sputtering target material segments into a unit. With this sputtering target, because there are no gaps between adjacent ceramic target material segments even when multiple ceramic target material segments are provided, there is no danger of problems such as abnormal discharge between the edges of the target material segments occurring. Moreover, by making the composition of the ceramic target material segments and the composition of the ceramic bonding parts to be substantially the same, areas with compositions that differ significantly from the composition derived from the ceramic target material segments do not occur in the film obtained from the sputtering.

Description

スパッタリングターゲットおよびその製造方法Sputtering target and manufacturing method thereof
 本発明はスパッタリングターゲットおよびその製造方法に関し、詳しくは、基材に接合されるスパッタリングターゲット材が、複数のセラミックス製分割ターゲット材とこれらを一体に接合するセラミックス製接合部とからなるスパッタリングターゲットおよびその製造方法に関する。 The present invention relates to a sputtering target and a method for manufacturing the same, and more particularly, a sputtering target material to be bonded to a base material is composed of a plurality of ceramic divided target materials and a ceramic bonding portion for integrally bonding them, and the sputtering target. It relates to a manufacturing method.
 フラットパネルディスプレイや太陽電池の製造工程には、一般に、スパッタリングターゲットをスパッタすることによりガラス基板に薄膜を形成する工程が含まれる。スパッタリングターゲットは、スパッタリングターゲット材を基材に半田材により半田接合して形成される。近年、フラットパネルディスプレイや太陽電池で使用されるガラス基板が大型化されているため、この大型の基板上に薄膜を形成できる大型のスパッタリングターゲット材が必要になってきている。 The manufacturing process of a flat panel display or a solar cell generally includes a process of forming a thin film on a glass substrate by sputtering a sputtering target. The sputtering target is formed by soldering a sputtering target material to a base material with a solder material. In recent years, since a glass substrate used in a flat panel display or a solar cell has been enlarged, a large sputtering target material capable of forming a thin film on the large substrate has become necessary.
 ターゲット材の材料が金属である場合、金属は柔軟で延性が高いため、比較的容易に大型のターゲット材を製造することが可能である。一般には、溶解、焼結等によりインゴットが形成され、鍛造、圧延、熱処理等の後、切削加工されることで、所定形状の金属製ターゲット材が製造される。 When the target material is a metal, the metal is flexible and highly ductile, so that a large target material can be manufactured relatively easily. In general, an ingot is formed by melting, sintering, or the like, and after being forged, rolled, heat treated, or the like, a metal target material having a predetermined shape is manufactured.
 一方、ターゲット材の材料がセラミックスである場合には、セラミックスは脆く、硬いため上述の方法ではターゲットを製造することは困難である。そこで、セラミックス製ターゲット材は、通常、原料粉末を成形して高温で焼結する粉末焼結法により製造される。ただし、粉末焼結法でセラミックス製ターゲット材を製造する場合であっても、焼結炉の大きさに制限があること、焼結体が大型の場合、加熱時の熱応力により反りやクラックが発生しやすいこと、密度のばらつきが大きくなるなどの理由から、製造できるターゲットの大きさには一定の限界がある。このため、一枚のターゲット材により成膜できる面積には限界があった。その限界を超えた面積の成膜を行う必要がある場合には、たとえば、複数枚のセラミックス製ターゲット材を基材に接合して大型のターゲットとすることが行われる。 On the other hand, when the material of the target material is ceramic, the ceramic is brittle and hard, so that it is difficult to manufacture the target by the above-described method. Therefore, the ceramic target material is usually manufactured by a powder sintering method in which a raw material powder is formed and sintered at a high temperature. However, even when a ceramic target material is manufactured by the powder sintering method, the size of the sintering furnace is limited, and if the sintered body is large, warping and cracks may occur due to thermal stress during heating. There is a certain limit to the size of the target that can be manufactured because it tends to occur and variation in density becomes large. For this reason, there is a limit to the area that can be formed with a single target material. When it is necessary to perform film formation in an area exceeding the limit, for example, a plurality of ceramic target materials are bonded to a base material to obtain a large target.
 この場合、各ターゲット材を相互に接触させて基材に接合すると、接合時の加熱またはスパッタ時の発熱によりターゲット材が膨張することにより、ターゲット材に割れが発生するおそれがある。この問題は、主に接合時に半田を用いる等して100℃以上の加熱処理を施す場合に発生し、ターゲット材と基材の熱膨張係率の差が2.5×10-6 /℃以上のときに顕著になり得る。そこで、加熱処理を伴う接合を行う場合には、隣り合うターゲット材間に一定の間隔を設けて複数枚のターゲット材を基材に接合することが一般的である。たとえば、特許文献1には、複数のターゲット材がその端面が被スパッタ面に対して斜めに形成されているスパッタリングターゲットが開示されている。特許文献2には、複数のターゲット材が規則的な列をなして配列され、ターゲット材間の間隙が、前記列の方向とそれに垂直な方向との間の角度に沿って配列されたスパッタリングターゲットが開示されている。特許文献3には、複数の円筒形ターゲット材を備えた円筒形ターゲットであって、隣り合う円筒形ターゲット材間に間隙を有し、隣り合う円筒形ターゲット材の外周面の段差を一定値以下にしたスパッタリングターゲットが開示されている。 In this case, if the target materials are brought into contact with each other and bonded to the base material, the target material may expand due to heating during bonding or heat generated during sputtering, and thus the target material may be cracked. This problem occurs mainly when heat treatment is performed at 100 ° C. or higher by using solder at the time of joining, and the difference in coefficient of thermal expansion between the target material and the substrate is 2.5 × 10 −6 / ° C. or higher. Can become noticeable. Therefore, when joining with heat treatment is performed, a plurality of target materials are generally joined to the base material with a certain interval between adjacent target materials. For example, Patent Literature 1 discloses a sputtering target in which end surfaces of a plurality of target materials are formed obliquely with respect to a surface to be sputtered. In Patent Document 2, a plurality of target materials are arranged in a regular row, and a gap between the target materials is arranged along an angle between the direction of the row and a direction perpendicular thereto. Is disclosed. Patent Document 3 discloses a cylindrical target including a plurality of cylindrical target materials, having a gap between adjacent cylindrical target materials, and a step difference between the outer peripheral surfaces of the adjacent cylindrical target materials is a certain value or less. A sputtering target is disclosed.
 しかし、隣り合うターゲット材の間に間隙が存在すると、ターゲット材の縁部間で異常放電(アーキング)が発生する、接合材がターゲット側壁に付着する、間隙底部に存在する接合材に起因するパーティクルが発生する、間隙部に露出した基材または接合材がスパッタされ、得られた薄膜に不純物が混入する等の問題が生じるおそれがある。たとえば、TAOS(Transparent Amorphous Oxide Semiconductor、透明アモルファス酸化物半導体)をスパッタにより成膜する場合に、ターゲット材間に間隙を有するスパッタリングターゲットを用いると、間隙部に露出した基材もスパッタされ、基材に含まれる金属成分がTAOS膜に混入し、導体の混じった半導体膜が形成されて、トランジスタ性能が悪化するという問題があった。 However, if there is a gap between the adjacent target materials, abnormal discharge (arcing) occurs between the edges of the target material, the bonding material adheres to the target side wall, and particles caused by the bonding material existing at the bottom of the gap The substrate or the bonding material exposed in the gap may be sputtered and impurities may be mixed into the obtained thin film. For example, when TAOS (Transparent 間隙 Oxide Semiconductor) is formed by sputtering, if a sputtering target having a gap between target materials is used, the substrate exposed in the gap is also sputtered. There is a problem that the metal component contained in the semiconductor layer is mixed into the TAOS film and a semiconductor film mixed with a conductor is formed, so that the transistor performance is deteriorated.
 このようなターゲット材間の間隙に起因する問題を解消するため、複数枚のセラミックス製ターゲット材を基材に接合して大型のターゲットとする場合でも、隣り合うターゲット材間に合金を充填して、間隙を設けないようにしたターゲットが提案されている。たとえば、特許文献4に、複数のターゲット材間のクリアランスに接合材よりも高い融点を有する合金を存在させてなるスパッタリングターゲットが開示されている。特許文献5に、複数のターゲット片の境界部分に、そのターゲット片と構成元素種が同一である組成を有する合金材料を充填したスパッタリングターゲットが開示されている。 In order to solve such problems caused by the gap between the target materials, even when a plurality of ceramic target materials are joined to a base material to make a large target, an alloy is filled between adjacent target materials. A target in which no gap is provided has been proposed. For example, Patent Document 4 discloses a sputtering target in which an alloy having a melting point higher than that of a bonding material is present in the clearance between a plurality of target materials. Patent Document 5 discloses a sputtering target in which boundary portions of a plurality of target pieces are filled with an alloy material having a composition that is the same as the constituent elements of the target pieces.
 しかし、これらのスパッタリングターゲットでは、ターゲット材間に充填された合金もスパッタされるので、スパッタにより得られる薄膜には、ターゲット材の組成とは大きく異なる組成を有する部位が生じることになり、目的とする均一な組成を有する薄膜を得ることが困難であるという問題や、セラミックス製ターゲット材の間に合金を挟むことで、ターゲット材と合金との電気抵抗差に起因して、合金部に異常放電が誘発されるという問題があった。また、基材に接合した後のターゲット表面を平滑化することが困難であり、接合部の段差が解消できなかった。 However, in these sputtering targets, since the alloy filled between the target materials is also sputtered, the thin film obtained by sputtering has a portion having a composition significantly different from the composition of the target material. Due to the problem that it is difficult to obtain a thin film having a uniform composition, and because of the electrical resistance difference between the target material and the alloy by sandwiching the alloy between the ceramic target materials, There was a problem of being triggered. Further, it is difficult to smooth the target surface after being bonded to the base material, and the level difference at the bonded portion cannot be eliminated.
特開2005-105389号公報JP 2005-105389 A 特開2012-241281号公報JP 2012-241281 A 特開2010-100930号公報JP 2010-1000093 A 特開2000-144400号公報JP 2000-144400 A 特開2010-106330号公報JP 2010-106330 A
 本発明は、複数のセラミックス製ターゲット材を基材に接合してなるスパッタリングターゲットにおいて、ターゲット材間の間隙等に起因する異常放電などの上記問題が生じにくいスパッタリングターゲットおよびその製造方法を提供することを目的とする。 The present invention provides a sputtering target in which a plurality of ceramic target materials are bonded to a base material, and a method of manufacturing the sputtering target in which the above-mentioned problems such as abnormal discharge caused by gaps between the target materials are unlikely to occur. With the goal.
 前記目的を達成する本発明は、複数のセラミックス製分割スパッタリングターゲット材と該複数のセラミックス製分割スパッタリングターゲット材を一体に接合するセラミックス製接合部とからなるセラミックス製スパッタリングターゲット材が基材に接合されてなることを特徴とするスパッタリングターゲットである。 According to the present invention for achieving the above object, a ceramic sputtering target material comprising a plurality of ceramic divided sputtering target materials and a ceramic bonding portion for integrally bonding the plurality of ceramic divided sputtering target materials is bonded to a substrate. It is a sputtering target characterized by comprising.
 前記スパッタリングターゲットにおいては、前記セラミックス製スパッタリングターゲット材が、スパッタ面において、前記セラミックス製分割スパッタリングターゲット材と前記セラミックス製接合部との間に実質的に段差を有していないことが好ましく、
 前記セラミックス製接合部の組成が、前記セラミックス製分割スパッタリングターゲット材の組成と実質的に同じであることが好ましい。
In the sputtering target, it is preferable that the ceramic sputtering target material has substantially no step between the ceramic split sputtering target material and the ceramic joint on the sputtering surface,
It is preferable that the composition of the ceramic joint is substantially the same as the composition of the ceramic split sputtering target material.
 前記スパッタリングターゲットにおいては、前記セラミックス製スパッタリングターゲット材を平板形状にすることができ、この場合、前記セラミックス製スパッタリングターゲット材のスパッタ面の面積を300,000mm2以上にすることができる。 In the sputtering target, the ceramic sputtering target material can have a flat plate shape. In this case, the area of the sputtering surface of the ceramic sputtering target material can be 300,000 mm 2 or more.
 また、前記スパッタリングターゲットにおいては、前記セラミックス製スパッタリングターゲット材を円筒形状にすることができ、この場合、軸線方向の長さを1,000mm以上にすることができる。 Further, in the sputtering target, the ceramic sputtering target material can be formed into a cylindrical shape, and in this case, the length in the axial direction can be set to 1,000 mm or more.
 前記スパッタリングターゲットにおいては、前記セラミックス製スパッタリングターゲット材が基材に100℃以上の温度で半田接合されてなることが好ましく、
 前記セラミックス製分割スパッタリングターゲット材と基材との熱膨張係数の差が2.5×10-6/℃以上であることが好ましい。
In the sputtering target, the ceramic sputtering target material is preferably solder-bonded to the base material at a temperature of 100 ° C. or higher,
The difference in thermal expansion coefficient between the ceramic split sputtering target material and the substrate is preferably 2.5 × 10 −6 / ° C. or more.
 他の発明は、複数のセラミックス製分割スパッタリングターゲット材と該複数のセラミックス製分割スパッタリングターゲット材を一体に接合するセラミックス製接合部とからなることを特徴とするセラミックス製スパッタリングターゲット材である。 Another invention is a ceramic sputtering target material comprising a plurality of ceramic divided sputtering target materials and a ceramic bonding portion for integrally bonding the plurality of ceramic divided sputtering target materials.
 また、他の発明は、複数のセラミックス製分割スパッタリングターゲット材の側面と側面との間に接合用セラミックス材料を挟み、前記セラミックス製分割スパッタリングターゲット材および前記接合用セラミックス材料を熱処理することで前記セラミックス製分割スパッタリングターゲット材を一体に接合してセラミックス製スパッタリングターゲット材を作製し、該セラミックス製スパッタリングターゲット材を基材に接合することを特徴とするスパッタリングターゲットの製造方法である。 In another aspect of the invention, a ceramic material for bonding is sandwiched between side surfaces of a plurality of ceramic divided sputtering target materials, and the ceramic divided sputtering target material and the ceramic material for bonding are heat treated. A sputtering target manufacturing method characterized in that a divided sputtering target material is integrally bonded to produce a ceramic sputtering target material, and the ceramic sputtering target material is bonded to a substrate.
 さらに別の発明は、複数のセラミックス製分割スパッタリングターゲット材の側面と側面との間に接合用セラミックス材料を挟み、前記セラミックス製分割スパッタリングターゲット材および前記接合用セラミックス材料を熱処理することで前記セラミックス製分割スパッタリングターゲット材を一体に接合してセラミックス製スパッタリングターゲット材を作製し、該セラミックス製スパッタリングターゲット材の表面のうち少なくともスパッタ面に平滑化処理を施した後、該セラミックス製スパッタリングターゲット材を基材に半田接合することを特徴とするスパッタリングターゲットの製造方法である。 Still another invention is a method of sandwiching a ceramic material for bonding between side surfaces of a plurality of ceramic divided sputtering target materials, and heat-treating the ceramic divided sputtering target material and the bonding ceramic material. The split sputtering target material is integrally joined to produce a ceramic sputtering target material, and after smoothing at least the sputtering surface of the surface of the ceramic sputtering target material, the ceramic sputtering target material is used as a base material. A method for manufacturing a sputtering target, characterized by being solder-bonded to the substrate.
 前記スパッタリングターゲットの製造方法において、前記接合用セラミックス材料はシート状であってもよく、またスラリー状またはペースト状であってもよい。 In the sputtering target manufacturing method, the bonding ceramic material may be in the form of a sheet, or may be in the form of a slurry or a paste.
 本発明に係るスパッタリングターゲットによれば、複数のセラミックス製分割ターゲット材を備えていても、隣り合うセラミックス製分割ターゲット材の間にセラミックス製接合部が存在し、間隙が存在しないので、分割ターゲット材の縁部間で異常放電(アーキング)が発生する、接合材が分割ターゲット材側壁に付着する、間隙底部に存在する接合材に起因するパーティクルが発生する、間隙部に露出した基材または接合材がスパッタされ、成膜された薄膜に不純物が混入する等の問題が生じるおそれが低減される。また、本発明のスパッタリングターゲットにおいては、セラミックス製分割ターゲット材の組成とセラミックス製接合部の組成とを実質的に同じにした場合には、本発明のスパッタリングターゲットをスパッタすることにより得られる薄膜には、セラミックス製分割ターゲット材に由来する組成と大きく組成を異にする部位が生じることがない。 According to the sputtering target of the present invention, even if a plurality of ceramic divided target materials are provided, there are ceramic joints between adjacent ceramic divided target materials, and there are no gaps. An abnormal discharge (arcing) occurs between the edges of the substrate, the bonding material adheres to the side wall of the divided target material, particles due to the bonding material existing at the bottom of the gap are generated, or the base material or bonding material exposed in the gap As a result, it is possible to reduce a possibility that impurities are mixed into the formed thin film. In the sputtering target of the present invention, when the composition of the ceramic divided target material and the composition of the ceramic joint are substantially the same, the thin film obtained by sputtering the sputtering target of the present invention is used. Does not cause a site that is largely different from the composition derived from the ceramic divided target material.
 本発明のスパッタリングターゲットの製造方法によれば、前記スパッタリングターゲットを効率的に製造することができ、さらに粉末焼結法により製造される1個の焼結体からなるスパッタリングターゲット材では実現できない大型のスパッタリングターゲットを製造することができる。 According to the method for producing a sputtering target of the present invention, the sputtering target can be produced efficiently, and a large-sized sputtering target material consisting of a single sintered body produced by a powder sintering method cannot be realized. A sputtering target can be manufactured.
図1(A)は、スパッタリングターゲット10の平面図であり、図1(B)はスパッタリングターゲット10の側面図である。FIG. 1A is a plan view of the sputtering target 10, and FIG. 1B is a side view of the sputtering target 10. 図2(A)は、スパッタリングターゲット20の側面図であり、図2(B)はスパッタリングターゲット20の正面図である。FIG. 2A is a side view of the sputtering target 20, and FIG. 2B is a front view of the sputtering target 20.
<スパッタリングターゲット>
 本発明のスパッタリングターゲットは、複数のセラミックス製分割スパッタリングターゲット材と該複数のセラミックス製分割スパッタリングターゲット材を一体に接合するセラミックス製接合部とからなるセラミックス製スパッタリングターゲット材が基材に接合されてなる。前記スパッタリングターゲットにおいては、具体的には、前記各セラミックス製分割スパッタリングターゲット材が、隣り合うセラミックス製分割スパッタリングターゲット材とそれぞれの側面を対向させて配列され、前記セラミックス製接合部が、前記複数のセラミックス製分割スパッタリングターゲット材の側面と側面との間に形成されている。
<Sputtering target>
The sputtering target of the present invention is formed by bonding a ceramic sputtering target material comprising a plurality of ceramic divided sputtering target materials and a ceramic bonding portion for integrally bonding the plurality of ceramic divided sputtering target materials to a base material. . In the sputtering target, specifically, each of the ceramic split sputtering target materials is arranged with the adjacent ceramic split sputtering target materials facing each side surface, and the ceramic joints are the plurality of the plurality of split sputtering target materials. It is formed between the side surfaces of the ceramic split sputtering target material.
 前記セラミックス製分割スパッタリングターゲット材は、具体的には粉末焼結法により作製された1個の焼結体である。つまり、本発明のスパッタリングターゲットは、1個の焼結体からなるセラミックス製スパッタリングターゲット材が基材に接合されてなるのではなく、複数の焼結体(セラミックス製分割スパッタリングターゲット材)とセラミックス製接合部とからなるセラミックス製スパッタリングターゲット材が基材に接合されてなる。 The ceramic divided sputtering target material is specifically a single sintered body produced by a powder sintering method. That is, the sputtering target of the present invention is not formed by bonding a ceramic sputtering target material made of one sintered body to a base material, but a plurality of sintered bodies (ceramic divided sputtering target material) and a ceramic product. A ceramic sputtering target material composed of a bonding portion is bonded to a base material.
 本発明のスパッタリングターゲットは、このような構造を有することから、1枚の焼結体からなるスパッタリングターゲット材から形成されるスパッタリングターゲットではなり得ない大型のスパッタリングターゲットとなり得る。たとえば、本発明のスパッタリングターゲットのスパッタ面の面積は300,000mm2以上、さらには600,000mm2以上、さらには900,000mm2以上となり得る。このような大型のターゲット材を1枚の焼結体により形成しようとすると、焼成中に成形体内部の温度むらが大きくなるため、得られる焼結体の部位ごとの密度がばらつくことや、加熱時の熱応力により反りやクラックが発生しやすいことなどから、実用に耐えるターゲット材は得られない。本発明のスパッタリングターゲットによれば、1枚の焼結体からなるスパッタリングターゲット材から形成されるスパッタリングターゲットでは一回のスパッタ操作により成膜することが不可能であった大面積の薄膜の成膜を、一回のスパッタ操作により実現することができる。 Since the sputtering target of the present invention has such a structure, it can be a large sputtering target that cannot be a sputtering target formed from a sputtering target material made of a single sintered body. For example, the area of the sputtering surface of the sputtering target of the present invention is 300,000Mm 2 or more, more 600,000Mm 2 or more, further it can be a 900,000Mm 2 or more. If an attempt is made to form such a large target material with a single sintered body, the temperature unevenness inside the molded body increases during firing. Since a warp or a crack is likely to occur due to thermal stress at the time, a target material that can withstand practical use cannot be obtained. According to the sputtering target of the present invention, a thin film having a large area that could not be formed by a single sputtering operation with a sputtering target formed of a sputtering target material made of a single sintered body. Can be realized by a single sputtering operation.
 また、複数のセラミックス製分割スパッタリングターゲット材を一体に接合してセラミックス製スパッタリングターゲット材とする接合部はセラミックス製である。すなわち、前記接合部の材料はセラミックスであって、金属、合金などではない。分割スパッタリングターゲット材と接合部とからなるスパッタリングターゲット材を備えたスパッタリングターゲットを用いてスパッタすると、分割スパッタリングターゲット材の部分とともに接合部の部分もスパッタされるので、得られる薄膜には、分割スパッタリングターゲット材に由来する組成を有する部位の他に、接合部に由来する組成を有する部位も含まれることになる。本発明における接合部はセラミックス製分割スパッタリングターゲット材と同じくセラミックス製であるので、本発明のスパッタリングターゲットをスパッタすることにより得られる薄膜には、セラミックス製分割スパッタリングターゲット材に由来する組成を有する部位と大きく酸素含有量を異にする部位を生じることがない。セラミックス製接合部の組成は、セラミックス製分割スパッタリングターゲット材の組成と実質的に同じであることが好ましい。この場合、本発明のスパッタリングターゲットをスパッタすることにより得られる薄膜には、セラミックス製分割スパッタリングターゲット材に由来する組成と異なる組成を有する部位を生じることが実質的になく、均一な組成を有する薄膜を得ることができる。ここで、実質的に同じとは、不可避的不純物の含有を許容しないということではない。本発明の効果を損なわない程度の組成の違いであれば許容され、決して完全同一まで要求するものではない。 Further, the joint portion in which a plurality of ceramic divided sputtering target materials are integrally joined to form a ceramic sputtering target material is made of ceramics. That is, the material of the joint is ceramic, not metal, alloy or the like. When sputtering is performed using a sputtering target having a sputtering target material composed of a split sputtering target material and a joint portion, the joint portion is sputtered together with the split sputtering target material portion. In addition to the portion having the composition derived from the material, the portion having the composition derived from the joint portion is also included. Since the joint in the present invention is made of ceramics like the ceramic split sputtering target material, the thin film obtained by sputtering the sputtering target of the present invention has a part having a composition derived from the ceramic split sputtering target material, and There is no occurrence of sites with greatly different oxygen contents. The composition of the ceramic joint is preferably substantially the same as the composition of the ceramic split sputtering target material. In this case, the thin film obtained by sputtering the sputtering target of the present invention has substantially no site having a composition different from the composition derived from the ceramic split sputtering target material, and has a uniform composition. Can be obtained. Here, “substantially the same” does not mean that inclusion of inevitable impurities is not allowed. Any difference in composition that does not impair the effects of the present invention is acceptable and does not require complete identity.
 前記セラミックス製スパッタリングターゲット材の形状には特に制限はなく、その形状としては、たとえば平板形状、円筒形状を挙げることができる。セラミックス製分割スパッタリングターゲット材およびセラミックス製接合部の形状も、セラミックス製スパッタリングターゲット材の形状に応じて適宜決定される。前記セラミックス製スパッタリングターゲット材が平板形状である場合、該スパッタリングターゲット材を平板形状の基材に接合することにより本発明のスパッタリングターゲットが得られる。前記セラミックス製スパッタリングターゲット材が円筒形状である場合、該スパッタリングターゲット材の中空部に円筒形状の基材を挿入し、両者を接合することにより本発明のスパッタリングターゲットが得られる。 The shape of the ceramic sputtering target material is not particularly limited, and examples of the shape include a flat plate shape and a cylindrical shape. The shapes of the ceramic split sputtering target material and the ceramic joint are also appropriately determined according to the shape of the ceramic sputtering target material. When the ceramic sputtering target material has a flat plate shape, the sputtering target of the present invention is obtained by bonding the sputtering target material to a flat plate-shaped substrate. When the ceramic sputtering target material has a cylindrical shape, the sputtering target of the present invention can be obtained by inserting a cylindrical base material into the hollow portion of the sputtering target material and bonding them together.
 図1に、平板形状を有するセラミックス製スパッタリングターゲット材を基材に接合してなるスパッタリングターゲットの一具体例であるスパッタリングターゲット10を示す。図1(A)はスパッタリングターゲット10の平面図であり、図1(B)はスパッタリングターゲット10の側面図である。スパッタリングターゲット10は、平板形状のセラミックス製スパッタリングターゲット材11と、平板形状の基材14と、これらを接合する接合材層15とからなる。セラミックス製スパッタリングターゲット材11は、一列に配列された、平面形状が長方形の3枚のセラミックス製分割スパッタリングターゲット材12と、隣り合う2枚のセラミックス製分割スパッタリングターゲット材12の間に隙間なく形成され、これらを接合する2層のセラミックス製接合部13とを有してなる。スパッタリングターゲット10においては、図1(A)に示された、セラミックス製スパッタリングターゲット材11の面積、すなわち3枚のセラミックス製分割スパッタリングターゲット材12および2つのセラミックス製接合部13の面積の総和がスパッタ面の面積となる。 FIG. 1 shows a sputtering target 10 which is a specific example of a sputtering target formed by bonding a flat plate-shaped ceramic sputtering target material to a substrate. FIG. 1A is a plan view of the sputtering target 10, and FIG. 1B is a side view of the sputtering target 10. The sputtering target 10 includes a flat plate-shaped ceramic sputtering target material 11, a flat plate-shaped base material 14, and a bonding material layer 15 for bonding them. The ceramic sputtering target material 11 is formed between the three ceramic divided sputtering target materials 12 arranged in a line and having a rectangular planar shape and the two adjacent ceramic divided sputtering target materials 12 without a gap. And a two-layer ceramic joint 13 for joining them. In the sputtering target 10, the total area of the ceramic sputtering target material 11, that is, the area of the three ceramic divided sputtering target materials 12 and the two ceramic joints 13 shown in FIG. The area of the surface.
 平板形状を有するセラミックス製スパッタリングターゲット材においては、これを構成するセラミックス製分割スパッタリングターゲット材は平板形状であり、その平面形状、大きさ、枚数、配列のし方等に特に制限はない。たとえば、平板形状を有するセラミックス製スパッタリングターゲット材においては、平面形状が長方形状のセラミックス製分割スパッタリングターゲット材を図1に示すように一列に配列してもよく、二列以上の列に配列してもよい。平面形状が長方形状のセラミックス製分割スパッタリングターゲット材が二列以上に配列される場合には、セラミックス製スパッタリングターゲット材は、縦および横方向に配列される複数のセラミックス製分割スパッタリングターゲット材と、各セラミックス製分割スパッタリングターゲット材の間に形成された1つのセラミックス製接合部とを有してなる。 In the ceramic sputtering target material having a flat plate shape, the ceramic divided sputtering target material constituting the flat plate shape has a flat plate shape, and there is no particular limitation on the planar shape, size, number of sheets, arrangement method, and the like. For example, in a ceramic sputtering target material having a flat plate shape, a ceramic divided sputtering target material having a rectangular planar shape may be arranged in a line as shown in FIG. 1, or arranged in two or more lines. Also good. When the ceramic split sputtering target material having a rectangular planar shape is arranged in two or more rows, the ceramic sputtering target material includes a plurality of ceramic split sputtering target materials arranged in the vertical and horizontal directions, and And one ceramic joint formed between the ceramic split sputtering target materials.
 平板形状を有するセラミックス製スパッタリングターゲット材の大きさには特に制限はなく、たとえば、そのスパッタ面の面積を300,000mm2以上、さらには600,000mm2以上、さらには900,000mm2以上とすることができる。 In particular limitation on the size of the ceramic sputtering target material having a plate shape is not, for example, the area of the sputtering surface 300,000Mm 2 or more, more 600,000Mm 2 or more, further to 900,000Mm 2 or more be able to.
 図2に、円筒形状を有するセラミックス製スパッタリングターゲット材を基材に接合してなるスパッタリングターゲットの一具体例であるスパッタリングターゲット20を示す。図2(A)はスパッタリングターゲット20の側面図であり、図2(B)はスパッタリングターゲット20の正面図である。スパッタリングターゲット20は、円筒形状のセラミックス製スパッタリングターゲット材21と、円筒形状の基材24と、これらを接合する接合材層25からなる。セラミックス製スパッタリングターゲット材21は、それぞれの軸線を一致させて配列された、円筒形状の3個のセラミックス製分割スパッタリングターゲット材22と、隣り合う2個のセラミックス製分割スパッタリングターゲット材22の間に隙間なく形成され、これらを接合する環状の2層のセラミックス製接合部23とを有してなる。スパッタリングターゲット20においては、セラミックス製スパッタリングターゲット材21の外周面、すなわち3個のセラミックス製分割スパッタリングターゲット材22および2つのセラミックス製接合部23の外周面の面積の総和がスパッタ面の面積となる。 FIG. 2 shows a sputtering target 20 which is a specific example of a sputtering target formed by bonding a ceramic sputtering target material having a cylindrical shape to a base material. FIG. 2A is a side view of the sputtering target 20, and FIG. 2B is a front view of the sputtering target 20. The sputtering target 20 includes a cylindrical ceramic sputtering target material 21, a cylindrical base material 24, and a bonding material layer 25 for bonding them. The ceramic sputtering target material 21 has a gap between three cylindrical ceramic divided sputtering target materials 22 and the two adjacent ceramic divided sputtering target materials 22 arranged with their respective axes aligned. And two annular ceramic joints 23 for joining them. In the sputtering target 20, the total area of the outer peripheral surface of the ceramic sputtering target material 21, that is, the outer peripheral surfaces of the three ceramic divided sputtering target materials 22 and the two ceramic joint portions 23 is the area of the sputtering surface.
 円筒形状を有するセラミックス製スパッタリングターゲット材においては、これを構成するセラミックス製分割スパッタリングターゲット材の形状は円筒形状であり、その大きさ、個数等に特に制限はない。 In the ceramic sputtering target material having a cylindrical shape, the shape of the ceramic divided sputtering target material constituting the cylindrical sputtering target material is a cylindrical shape, and the size, the number, etc. thereof are not particularly limited.
 円筒形状を有するセラミックス製スパッタリングターゲット材の大きさには特に制限はなく、たとえば、その軸線方向の長さを1,000mm以上、さらには2,000mm以上、さらには3,000mm以上とすることができる。 The size of the ceramic sputtering target material having a cylindrical shape is not particularly limited. For example, the length in the axial direction may be 1,000 mm or more, further 2,000 mm or more, and further 3,000 mm or more. it can.
 セラミックス製スパッタリングターゲット材の材料には特に制限はなく、従来用いられている1個の焼結体からなるセラミックス製スパッタリングターゲット材と同じ材料とすることができる。その材料としては、たとえば酸化インジウム-酸化錫系材料(ITO)、酸化アルミニウム-酸化亜鉛系材料(AZO)および酸化インジウム-酸化ガリウム-酸化亜鉛系材料(IGZO)はもちろん、ZnOなども挙げることができる。 The material of the ceramic sputtering target material is not particularly limited, and may be the same material as the ceramic sputtering target material made of a single sintered body that has been conventionally used. Examples of the material include ZnO as well as indium oxide-tin oxide material (ITO), aluminum oxide-zinc oxide material (AZO), and indium oxide-gallium oxide-zinc oxide material (IGZO). it can.
 前記材料がITOである場合には、セラミックス製スパッタリングターゲット材におけるInの含有量はIn23量換算で通常99~90質量%、Snの含有量はSnO2量換算で通常1~10質量%である。 When the material is ITO, the content of In in the ceramic sputtering target material is usually 99 to 90% by mass in terms of In 2 O 3 and the content of Sn is usually 1 to 10% in terms of SnO 2. %.
 前記材料がAZOである場合には、セラミックス製スパッタリングターゲット材におけるAlの含有量はAl23量換算で通常0.1~5質量%、Znの含有量はZnO量換算で通常99.9~95質量%である。 When the material is AZO, the content of Al in the ceramic sputtering target material is usually 0.1 to 5% by mass in terms of the amount of Al 2 O 3 and the content of Zn is usually 99.9 in terms of the amount of ZnO. ~ 95% by mass.
 前記材料がIGZOである場合には、セラミックス製スパッタリングターゲット材におけるInの含有量はIn23量換算で通常40~60質量%、Gaの含有量はGa23量換算で通常20~40質量%、Znの含有量はZnO量換算で通常10~30質量%である。 When the material is IGZO, the content of In in the ceramic sputtering target material is usually 40 to 60 mass% in terms of In 2 O 3 , and the content of Ga is usually 20 to 20 in terms of Ga 2 O 3. 40% by mass and the Zn content is usually 10-30% by mass in terms of ZnO.
 セラミックス製接合部の材料は、セラミックス製分割スパッタリングターゲット材を接合することができれば特に制限はない。前述のとおり、セラミックス製接合部の組成は、セラミックス製分割スパッタリングターゲット材の組成と実質的に同じであることが好ましい。すなわち、たとえばセラミックス製分割スパッタリングターゲット材の材料がITO、AZOまたはIGZOである場合にはセラミックス製接合部の材料もそれぞれITOAZOまたはIGZOであることが好ましく、セラミックス製接合部の金属および酸素の比率などの組成もセラミックス製分割スパッタリングターゲット材の組成と実質的に同じであることが好ましい。 The material for the ceramic joint is not particularly limited as long as it can join a ceramic split sputtering target material. As described above, it is preferable that the composition of the ceramic joint is substantially the same as the composition of the ceramic split sputtering target material. That is, for example, when the material of the ceramic split sputtering target material is ITO, AZO, or IGZO, the material of the ceramic joint is preferably ITOAZO or IGZO, respectively, and the ratio of the metal and oxygen of the ceramic joint, etc. It is preferable that the composition of is substantially the same as the composition of the ceramic split sputtering target material.
 なお、本発明においてセラミックスとは、基本成分が金属酸化物であり、高温での熱処理によって得られた焼結体を意味する。 In the present invention, the ceramic means a sintered body obtained by heat treatment at a high temperature whose basic component is a metal oxide.
 セラミックス製接合部の厚み、すなわちそのセラミックス製接合部により接合される2個のセラミックス製分割スパッタリングターゲット材どうしの離間距離は、使用される複数のセラミックス製分割スパッタリングターゲット材を接合してセラミックス製スパッタリングターゲット材を形成することができる程度の厚みであればよく、セラミックス製スパッタリングターゲット材を形成できる限りできるだけ薄いほうがよい。セラミックス製接合部の厚みは、セラミックス製分割スパッタリングターゲット材の材料、大きさ、個数およびセラミックス製接合部の材料等に応じて適宜決定されるが、本発明においては40~400μmの厚さにすることが想定されている。 The thickness of the ceramic joint, that is, the distance between the two ceramic split sputtering target materials joined by the ceramic joint is determined by joining a plurality of ceramic split sputtering target materials to be used. It is sufficient that the thickness is such that the target material can be formed, and the thickness should be as thin as possible so that the ceramic sputtering target material can be formed. The thickness of the ceramic joint is appropriately determined according to the material, size and number of the ceramic split sputtering target material, the material of the ceramic joint, etc., but in the present invention, the thickness is 40 to 400 μm. It is assumed that
 セラミックス製スパッタリングターゲット材におけるセラミックス製分割スパッタリングターゲット材とセラミックス製接合部との体積の比率には特に制限はないが、スパッタの本来の対象であるセラミックス製分割スパッタリングターゲット材の比率をできるだけ高くし、セラミックス製接合部の比率をできるだけ低くすることが好ましい。たとえば大型のスパッタリングターゲットの場合には、個々のセラミックス製分割スパッタリングターゲット材をできるだけ大型にし、これらができるだけ少量のセラミックス製接合部によって接合されていることが好ましい。 There is no particular limitation on the volume ratio of the ceramic split sputtering target material to the ceramic joint in the ceramic sputtering target material, but the ratio of the ceramic split sputtering target material that is the original target of sputtering is as high as possible, It is preferable to make the ratio of the ceramic joints as low as possible. For example, in the case of a large-sized sputtering target, it is preferable that individual ceramic divided sputtering target materials are made as large as possible, and these are joined by as few ceramic joints as possible.
 基材の材料には特に制限はなく、スパッタリングターゲット材の種類に応じて、従来使用されている基材の材料の中から適宜選択して使用することができる。基材の材料としては、たとえば、銅、銅合金、ステンレス、チタン等を挙げることができる。 The base material is not particularly limited, and can be appropriately selected from conventionally used base materials according to the type of the sputtering target material. Examples of the base material include copper, copper alloy, stainless steel, and titanium.
 セラミックス製スパッタリングターゲット材を基材に接合する接合材の種類には特に制限はなく、スパッタリングターゲット材の種類に応じて、従来使用されている接合材の中から適宜選択して使用することができる。接合材としては、たとえば、インジウムを主成分とする半田やSn-Ag系の半田等が挙げられる。 There is no particular limitation on the type of the bonding material for bonding the ceramic sputtering target material to the base material, and it can be used by appropriately selecting from conventionally used bonding materials according to the type of the sputtering target material. . Examples of the bonding material include solder mainly composed of indium and Sn—Ag solder.
 前記スパッタリングターゲットにおいては、前記セラミックス製スパッタリングターゲット材が、スパッタ面において、セラミックス製分割スパッタリングターゲット材とセラミックス製接合部との間に実質的に段差を有していないことが好ましい。より具体的には段差が0.1mm以下であることが好ましい。このようになっていると、スパッタリング中に段差部分に起因する異常放電が発生するおそれを小さくできるという利点がある。たとえば、平板形状を有するスパッタリングターゲット10においては、図1(B)に示されたセラミックス製スパッタリングターゲット材11の上面(スパッタ面)、すなわち3枚のセラミックス製分割スパッタリングターゲット材12の上面を表わす線および2つのセラミックス製接合部13の上面を表わす線が実質的に1本の直線上に並ぶことが好ましい。円筒形状を有するスパッタリングターゲット20においては、図2(A)に示されたセラミックス製スパッタリングターゲット材21の外周面(スパッタ面)、すなわち3個のセラミックス製分割スパッタリングターゲット材22および2つのセラミックス製接合部13の外周面を表わす線のうち上側に示された線および下側に示された線がそれぞれ実質的に1本の直線上に並ぶことが好ましい。円筒形状のスパッタリングターゲットにおいては、各分割ターゲット材を、それぞれの中心軸が一致するように配置することが好ましく、各分割ターゲット材の中心軸のずれは0.1mm以下であることが好ましい。 In the sputtering target, it is preferable that the ceramic sputtering target material has substantially no step between the ceramic split sputtering target material and the ceramic joint on the sputtering surface. More specifically, the step is preferably 0.1 mm or less. If it has become like this, there exists an advantage that a possibility that abnormal discharge resulting from a level difference part may occur during sputtering can be made small. For example, in the sputtering target 10 having a flat plate shape, a line representing the upper surface (sputtering surface) of the ceramic sputtering target material 11 shown in FIG. 1B, that is, the upper surface of the three ceramic divided sputtering target materials 12. It is preferable that the lines representing the upper surfaces of the two ceramic joints 13 are substantially aligned on one straight line. In the sputtering target 20 having a cylindrical shape, the outer peripheral surface (sputtering surface) of the ceramic sputtering target material 21 shown in FIG. 2A, that is, three ceramic divided sputtering target materials 22 and two ceramic bonding members. Of the lines representing the outer peripheral surface of the portion 13, it is preferable that the upper line and the lower line are substantially aligned on a single straight line. In a cylindrical sputtering target, each divided target material is preferably arranged so that the central axes thereof coincide with each other, and the deviation of the central axis of each divided target material is preferably 0.1 mm or less.
 本発明は、セラミックス製スパッタリングターゲット材を基材に100℃以上、特に150℃以上の温度で半田接合する場合に好ましく適用される。このような基材やターゲット材の熱膨張が伴う場面でこそ利用する意義が高まるのである。 The present invention is preferably applied when a ceramic sputtering target material is solder-bonded to a substrate at a temperature of 100 ° C. or higher, particularly 150 ° C. or higher. The significance of using the base material and the target material in a scene accompanied by thermal expansion increases.
 そして、本発明は、ターゲット材と基材の熱膨張係数の差が2.5×10-6/℃以上、特に8×10-6/℃以上となるような、熱膨張の影響を受けやすいターゲット材と基材との組み合わせの場合に好ましく適用される。
<スパッタリングターゲットの製造方法>
 本発明のスパッタリングターゲットの製造方法は、複数のセラミックス製分割スパッタリングターゲット材の側面と側面との間に接合用セラミックス材料を挟み、前記セラミックス製分割スパッタリングターゲット材および前記接合用セラミックス材料を熱処理することで前記セラミックス製分割スパッタリングターゲット材を一体に接合してセラミックス製スパッタリングターゲット材を作製し、該セラミックス製スパッタリングターゲット材を基材に接合することを特徴とする。この製造方法により、前記本発明のスパッタリングターゲットを製造することができる。
The present invention is susceptible to thermal expansion such that the difference in coefficient of thermal expansion between the target material and the substrate is 2.5 × 10 −6 / ° C. or higher, particularly 8 × 10 −6 / ° C. or higher. It is preferably applied in the case of a combination of a target material and a base material.
<Manufacturing method of sputtering target>
In the sputtering target manufacturing method of the present invention, a bonding ceramic material is sandwiched between side surfaces of a plurality of ceramic divided sputtering target materials, and the ceramic divided sputtering target material and the bonding ceramic material are heat-treated. The ceramic split sputtering target material is integrally joined to produce a ceramic sputtering target material, and the ceramic sputtering target material is joined to a substrate. By this production method, the sputtering target of the present invention can be produced.
 まず、複数のセラミックス製分割スパッタリングターゲット材の側面と側面との間に接合用セラミックス材料を挟み、前記セラミックス製分割スパッタリングターゲット材および前記接合用セラミックス材料を熱処理することで前記セラミックス製分割スパッタリングターゲット材を一体に接合してセラミックス製スパッタリングターゲット材を作製する。 First, the ceramic divided sputtering target material is sandwiched between side surfaces of a plurality of ceramic divided sputtering target materials, and the ceramic divided sputtering target material and the bonding ceramic material are heat-treated to heat-treat the ceramic divided sputtering target material. Are integrally joined to produce a ceramic sputtering target material.
 セラミックス製分割スパッタリングターゲット材は、粉末焼結法等により製造することができる。その材料、形状、大きさ、個数等は、作製するセラミックス製スパッタリングターゲット材に応じて適宜決定すればよい。 The ceramic split sputtering target material can be manufactured by a powder sintering method or the like. The material, shape, size, number, and the like may be appropriately determined according to the ceramic sputtering target material to be produced.
 接合用セラミックス材料は、複数のセラミックス製分割スパッタリングターゲット材を相互に接合するための材料であって、後述の操作によって熱処理、すなわち焼成されて前記セラミックス製接合部となる。したがって、熱処理により前記セラミックス製接合部となるような材料が接合用セラミックス材料として使用される。 The bonding ceramic material is a material for bonding a plurality of ceramic divided sputtering target materials to each other, and is subjected to heat treatment, that is, fired by the operation described later, to become the ceramic bonding portion. Therefore, a material that becomes the ceramic joint by heat treatment is used as the ceramic material for joining.
 接合用セラミックス材料は、通常、セラミックス原料粉末、分散媒、バインダーを含有し、その他、分散剤、可塑剤等を含有してもよい。 The ceramic material for bonding usually contains a ceramic raw material powder, a dispersion medium, a binder, and may further contain a dispersant, a plasticizer, and the like.
 セラミックス原料粉末としては、たとえば、ITOであるセラミックス製接合部を形成する場合には、In23粉末およびSnO2粉末の混合粉末を使用でき、ITO粉末を使用することもできる。セラミックス原料粉末は、BET(Brunauer-Emmett-Teller)法で測定した比表面積がそれぞれ通常1~40m2/gである。セラミックス原料粉末は、目的とするITOの組成が得られるような比率で混合される。 As a ceramic raw material powder, for example, when forming a ceramic joint made of ITO, a mixed powder of In 2 O 3 powder and SnO 2 powder can be used, and ITO powder can also be used. The specific surface area of the ceramic raw material powder measured by the BET (Brunauer-Emmett-Teller) method is usually 1 to 40 m 2 / g. The ceramic raw material powder is mixed in such a ratio that a desired ITO composition can be obtained.
 前述の理由により、セラミックス製接合部の組成がセラミックス製分割スパッタリングターゲット材の組成と実質的に同じになるように、その接合用セラミックス材料におけるセラミックス原料粉末の配合比率を調整することが好ましい。 For the reasons described above, it is preferable to adjust the blending ratio of the ceramic raw material powder in the ceramic material for bonding so that the composition of the ceramic bonding portion is substantially the same as the composition of the ceramic split sputtering target material.
 粉末の混合は、たとえば、各粉末およびジルコニアボールをポットに入れ、ボールミル混合することにより行うことができる。 The powder can be mixed, for example, by putting each powder and zirconia balls in a pot and mixing them with a ball mill.
 分散媒としては、通常水等が使用される。 As the dispersion medium, water or the like is usually used.
 バインダーとしては、公知の粉末焼結法において成形体を得るときに通常使用されるバインダーを挙げることができ、たとえばポリビニルアルコール(PVA)を使用することができる。 Examples of the binder include a binder that is usually used when a molded body is obtained by a known powder sintering method. For example, polyvinyl alcohol (PVA) can be used.
 接合用セラミックス材料は、前記セラミックス原料粉末、分散媒およびバインダー等を混合することにより作製できる。その混合方法には特に制限はない。 The ceramic material for bonding can be produced by mixing the ceramic raw material powder, a dispersion medium, a binder, and the like. The mixing method is not particularly limited.
 接合用セラミックス材料は、シート状またはスラリー状もしくはペースト状とすることができる。シート状接合用セラミックス材料は、セラミックス原料粉末の量に対して分散媒を通常0.1~10質量%、バインダーを通常0.1~30質量%配合して混合材を作成し、この混合材をたとえばドクターブレード法により所定の厚みのシートにし、このシートを所定の形状、大きさに切断することにより調製することができる。また、ドクターブレードで作製したシートは通常乾燥した後使用する。乾燥の温度は100℃以下であることが好ましい。シート状接合用セラミックス材料の厚みは50~500μmとすることが好ましい。このような厚みにすることでターゲット材同士を隙間なく接合できるというメリットがある。スラリー状接合用セラミックス材料は、セラミックス原料粉末の量に対して分散媒を通常0.1~10質量%、バインダーを通常0.1~30質量%配合して混合することにより調製することができる。ペースト状接合用セラミックス材料は、セラミックス原料粉末の量に対して分散媒を通常0.1~10質量%、バインダーを通常0.1~30質量%配合して混合することにより調製することができる。 The bonding ceramic material can be in the form of a sheet, slurry, or paste. The ceramic material for sheet-like bonding is prepared by mixing 0.1 to 10% by mass of the dispersion medium and 0.1 to 30% by mass of the binder with respect to the amount of the ceramic raw material powder. Can be prepared by, for example, forming a sheet having a predetermined thickness by a doctor blade method and cutting the sheet into a predetermined shape and size. Moreover, the sheet | seat produced with the doctor blade is used after drying normally. The drying temperature is preferably 100 ° C. or lower. The thickness of the sheet-like bonding ceramic material is preferably 50 to 500 μm. Such a thickness has the advantage that the target materials can be joined together without any gaps. The slurry-like ceramic material for bonding can be prepared by mixing and mixing 0.1 to 10% by mass of the dispersion medium and usually 0.1 to 30% by mass of the binder with respect to the amount of the ceramic raw material powder. . The paste-like ceramic material for bonding can be prepared by mixing and mixing 0.1 to 10% by mass of the dispersion medium and usually 0.1 to 30% by mass of the binder with respect to the amount of the ceramic raw material powder. .
 この接合用セラミックス材料を複数のセラミックス製分割スパッタリングターゲット材の側面と側面との間に挟む。この操作は、接合用セラミックス材料がシート状の場合には、たとえば、第1のセラミックス製分割スパッタリングターゲット材の側面に、その側面の形状に適合した形状を有するシート状接合用セラミックス材料を付着させ、そのシート状接合用セラミックス材料に第2のセラミックス製分割スパッタリングターゲット材の側面を、第1のセラミックス製分割スパッタリングターゲット材の反対側から押し当てることにより行うことができる。シート状接合用セラミックス材料は、必要に応じて2枚以上を重ねて挟んでもよい。 The sandwiched ceramic material is sandwiched between the side surfaces of a plurality of ceramic divided sputtering target materials. This operation is performed when, for example, the bonding ceramic material is a sheet, the sheet bonding ceramic material having a shape suitable for the shape of the side surface is attached to the side surface of the first ceramic split sputtering target material. The side surface of the second ceramic divided sputtering target material can be pressed against the sheet-like bonding ceramic material from the opposite side of the first ceramic divided sputtering target material. Two or more sheets of the sheet-like bonding ceramic material may be sandwiched as necessary.
 接合用セラミックス材料がスラリー状またはペースト状の場合には、たとえば、2つのセラミックス製分割スパッタリングターゲット材の両方の側面に接合用セラミックス材料を塗布し、塗布されたそれぞれの接合用セラミックス材料が合体するように前記2つのセラミックス製分割スパッタリングターゲット材を対置することにより行うことができる。また、接合用セラミックス材料がスラリー状またはペースト状で、セラミックス製分割スパッタリングターゲット材が平板状の場合には、たとえば、2つのセラミックス製分割スパッタリングターゲット材を、それぞれの側面が所定の距離をおいて対向するように基板上に置き、その側面間の空隙に接合用セラミックス材料を注入し、その間隙を接合用セラミックス材料で埋めることにより行うこともできる。 When the bonding ceramic material is in the form of a slurry or paste, for example, the bonding ceramic material is applied to both side surfaces of two ceramic divided sputtering target materials, and the applied bonding ceramic materials are combined. Thus, it can carry out by facing the said 2 ceramics division | segmentation sputtering target materials. When the bonding ceramic material is in the form of a slurry or paste and the ceramic divided sputtering target material is a flat plate shape, for example, two ceramic divided sputtering target materials are separated from each other at a predetermined distance. It can also be carried out by placing on the substrate so as to face each other, injecting a bonding ceramic material into the gap between the side surfaces, and filling the gap with the bonding ceramic material.
 2つのセラミックス製分割スパッタリングターゲット材間の間隙部からはみ出た接合用セラミックス材料は適宜掻き取ればよい。 The bonding ceramic material protruding from the gap between the two ceramic split sputtering target materials may be scraped off as appropriate.
 複数のセラミックス製分割スパッタリングターゲット材の側面と側面との間に挟まれる接合用セラミックス材料の厚みは、セラミックス製分割スパッタリングターゲット材の接合が可能である限り特に制限はない。この接合用セラミックス材料の厚みに応じて、前記セラミックス製接合部の厚みが決定される。 The thickness of the bonding ceramic material sandwiched between the side surfaces of the plurality of ceramic divided sputtering target materials is not particularly limited as long as the ceramic divided sputtering target materials can be bonded. The thickness of the ceramic joint is determined according to the thickness of the bonding ceramic material.
 上記操作を繰り返して、所定の個数のセラミックス製分割スパッタリングターゲット材の間に接合用セラミックス材料を挟む。たとえば3個のセラミックス製分割スパッタリングターゲット材を一列に配列する場合には、第1のセラミックス製分割スパッタリングターゲット材、第1の接合用セラミックス材料、第2のセラミックス製分割スパッタリングターゲット材、第2の接合用セラミックス材料、第3のセラミックス製分割スパッタリングターゲット材の順に並ぶ。 The above operation is repeated to sandwich a ceramic material for bonding between a predetermined number of ceramic divided sputtering target materials. For example, when three ceramic divided sputtering target materials are arranged in a line, the first ceramic divided sputtering target material, the first bonding ceramic material, the second ceramic divided sputtering target material, The bonding ceramic material and the third ceramic divided sputtering target material are arranged in this order.
 セラミックス製分割スパッタリングターゲット材間に挟まれた接合用セラミックス材料は脱脂してもよい。脱脂はセラミックス材料およびこれを挟むセラミックス製分割スパッタリングターゲット材を加熱することにより行われる。脱脂温度は、通常600~800℃、好ましくは700~800℃である。脱脂時間は通常3~10時間、好ましくは5~10時間である。 The bonding ceramic material sandwiched between the ceramic split sputtering target materials may be degreased. Degreasing is performed by heating a ceramic material and a ceramic divided sputtering target material sandwiching the ceramic material. The degreasing temperature is usually 600 to 800 ° C., preferably 700 to 800 ° C. The degreasing time is usually 3 to 10 hours, preferably 5 to 10 hours.
 このようにして成形されたセラミックス製分割スパッタリングターゲット材および接合用セラミックス材料を熱処理する。 The ceramic divided sputtering target material and the bonding ceramic material thus formed are heat-treated.
 この熱処理に使用される焼成炉には特に制限はなく、セラミックス製スパッタリングターゲット材の製造に従来使用されている焼成炉を使用することができる。また、焼成炉に前記の成形されたセラミックス製分割スパッタリングターゲット材および接合用セラミックス材料の全体が入りきらない場合でも、接合用セラミックス材料部分の周囲のみを局所的に加熱することもできる。 The firing furnace used for this heat treatment is not particularly limited, and a firing furnace conventionally used for manufacturing ceramic sputtering target materials can be used. Moreover, even when the ceramic split sputtering target material and the bonding ceramic material formed as a whole cannot enter the firing furnace, only the periphery of the bonding ceramic material portion can be locally heated.
 焼成温度は、接合用セラミックス材料に含まれるセラミックスがITOである場合には、通常1450~1700℃、好ましくは1500~1650℃、より好ましくは1500~1600℃である。セラミックスがAZOまたはIGZOである場合には、通常1250~1550℃、好ましくは1300~1500℃、より好ましくは1350~1450℃である。 The firing temperature is usually 1450 to 1700 ° C., preferably 1500 to 1650 ° C., more preferably 1500 to 1600 ° C. when the ceramic contained in the bonding ceramic material is ITO. When the ceramic is AZO or IGZO, the temperature is usually 1250 to 1550 ° C., preferably 1300 to 1500 ° C., more preferably 1350 to 1450 ° C.
 焼成時間は、通常3~30時間、好ましくは5~10時間、より好ましくは5~8時間である。 Calcination time is usually 3 to 30 hours, preferably 5 to 10 hours, more preferably 5 to 8 hours.
 昇温速度は通常100~500℃/hである。降温速度は通常10~100℃/h、好ましくは10~50℃/h、より好ましくは10~30℃/hである。 The heating rate is usually 100 to 500 ° C./h. The temperature lowering rate is usually 10 to 100 ° C./h, preferably 10 to 50 ° C./h, more preferably 10 to 30 ° C./h.
 焼成雰囲気には特に制限なく、通常、大気雰囲気や酸素雰囲気である。 The firing atmosphere is not particularly limited, and is usually an air atmosphere or an oxygen atmosphere.
 この熱処理により複数のセラミックス製分割スパッタリングターゲット材が一体に接合され、セラミックス製スパッタリングターゲット材となる。また、この熱処理により、接合用セラミックス材料は焼結されて前記セラミックス製接合部となる。 A plurality of ceramic divided sputtering target materials are integrally joined by this heat treatment to form a ceramic sputtering target material. Further, by this heat treatment, the bonding ceramic material is sintered to become the ceramic bonding portion.
 複数のセラミックス製分割スパッタリングターゲット材およびこれらのセラミックス製分割スパッタリングターゲット材に挟まれた接合用セラミックス材料の面うち、少なくともスパッタ面となる側の面は、平板形状ターゲット材の場合にはできるだけ同一平面上に並んでいることが好ましく、円筒形状ターゲット材の場合には各ターゲット材の中心軸が一致していることが好ましく、各ターゲット材の中心軸のずれは0.1mm以下であることが好ましい。 Of the surfaces of a plurality of ceramic split sputtering target materials and the ceramic material for bonding sandwiched between these ceramic split sputtering target materials, at least the surface to be the sputtering surface is as flat as possible in the case of a flat target material It is preferable to line up, and in the case of a cylindrical target material, it is preferable that the center axis of each target material is coincident, and the deviation of the center axis of each target material is preferably 0.1 mm or less. .
 そこで、セラミックス製スパッタリングターゲット材は、その表面のうち少なくともスパッタ面に平滑化処理を施した後に基材に半田接合することが好ましい。平滑化処理後に半田接合すると、スパッタリング中に段差部分に起因する異常放電の発生するおそれを小さくすることができるという利点がある。平滑化処理は、たとえば、ターゲット材を平研機などの加工機で加工することより行うことができる。平滑化処理された面の算術平均による表面粗さは、通常5μm以下、好ましくは1μm以下である。 Therefore, it is preferable that the ceramic sputtering target material is solder-bonded to the substrate after smoothing at least the sputtering surface of the surface. When solder bonding is performed after the smoothing treatment, there is an advantage that the possibility of occurrence of abnormal discharge due to the stepped portion during sputtering can be reduced. The smoothing process can be performed, for example, by processing the target material with a processing machine such as a plane research machine. The surface roughness by the arithmetic mean of the smoothed surface is usually 5 μm or less, preferably 1 μm or less.
 次に、このようにして作製されたセラミックス製スパッタリングターゲット材を基材に接合する。これにより本発明のスパッタリングターゲットが製造される。セラミックス製スパッタリングターゲット材を基材に接合する方法は、通常の1つの焼結体からなるターゲット材を基材に接合する方法と同様である。 Next, the ceramic sputtering target material produced in this way is bonded to the base material. Thereby, the sputtering target of this invention is manufactured. The method for bonding the ceramic sputtering target material to the base material is the same as the method for bonding the target material made of one ordinary sintered body to the base material.
 本発明のスパッタリングターゲットの製造方法は、上述のとおり、複数の分割ターゲット材を接合用材料により一体化させてターゲット材を作製した後、このターゲット材を基材に接合する方法であって、分割ターゲット材を基材に接合した後、分割ターゲット材の間に接合用材料を充填して分割ターゲット材を一体化させる方法ではない。後者の方法では、充填した接合用セラミックス材料を焼成して固化させる際に加えられる熱により、基材、たとえば代表的なCu製基材は融けてしまう。また、高温に耐えうる材料からなる基材を使用したとしても、接合用セラミックス材料は焼結する際に収縮するので、ターゲット材の割れが発生する可能性が高い。本発明のスパッタリングターゲットの製造方法は、このような問題を生じることがない。 As described above, the method for manufacturing a sputtering target of the present invention is a method in which a plurality of divided target materials are integrated with a bonding material to produce a target material, and then this target material is bonded to a base material. After joining the target material to the base material, it is not a method of integrating the divided target material by filling a bonding material between the divided target materials. In the latter method, the base material, for example, a typical Cu base material, melts due to heat applied when the filled ceramic material for bonding is fired and solidified. Even if a base material made of a material that can withstand high temperatures is used, the bonding ceramic material shrinks when sintered, and thus there is a high possibility that the target material will crack. The sputtering target manufacturing method of the present invention does not cause such a problem.
10、20  スパッタリングターゲット
11、21  セラミックス製スパッタリングターゲット材
12、22  セラミックス製分割スパッタリングターゲット材
13、23  セラミックス製接合部
14、24  基材
15、25  接合材層
10, 20 Sputtering target 11, 21 Ceramic sputtering target material 12, 22 Ceramic split sputtering target material 13, 23 Ceramic bonding portion 14, 24 Base material 15, 25 Bonding material layer

Claims (14)

  1.  複数のセラミックス製分割スパッタリングターゲット材と該複数のセラミックス製分割スパッタリングターゲット材を一体に接合するセラミックス製接合部とからなるセラミックス製スパッタリングターゲット材が基材に接合されてなることを特徴とするスパッタリングターゲット。 A sputtering target comprising: a ceramic sputtering target material comprising a plurality of ceramic divided sputtering target materials and a ceramic bonding portion for integrally bonding the plurality of ceramic divided sputtering target materials; .
  2.  前記セラミックス製スパッタリングターゲット材が、スパッタ面において、前記セラミックス製分割スパッタリングターゲット材と前記セラミックス製接合部との間に実質的に段差を有していないことを特徴とする請求項1に記載のスパッタリングターゲット。 The sputtering according to claim 1, wherein the ceramic sputtering target material has substantially no step between the ceramic split sputtering target material and the ceramic joint on a sputtering surface. target.
  3.  前記セラミックス製接合部の組成が、前記セラミックス製分割スパッタリングターゲット材の組成と実質的に同じであることを特徴とする請求項1または2に記載のスパッタリングターゲット。 The sputtering target according to claim 1 or 2, wherein the composition of the ceramic joint is substantially the same as the composition of the ceramic split sputtering target material.
  4.  前記セラミックス製スパッタリングターゲット材が平板形状であることを特徴とする請求項1~3のいずれかに記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 3, wherein the ceramic sputtering target material has a flat plate shape.
  5.  前記セラミックス製スパッタリングターゲット材のスパッタ面の面積が300,000mm2以上であることを特徴とする請求項4に記載のスパッタリングターゲット。 The sputtering target according to claim 4, wherein an area of a sputtering surface of the ceramic sputtering target material is 300,000 mm 2 or more.
  6.  前記セラミックス製スパッタリングターゲット材が円筒形状であることを特徴とする請求項1~3のいずれかに記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 3, wherein the ceramic sputtering target material has a cylindrical shape.
  7.  軸線方向の長さが1,000mm以上であることを特徴とする請求項6に記載のスパッタリングターゲット。 The length in the axial direction is 1,000 mm or more, The sputtering target according to claim 6.
  8.  前記セラミックス製スパッタリングターゲット材が基材に100℃以上の温度で半田接合されてなることを特徴とする請求項1~7のいずれかに記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 7, wherein the ceramic sputtering target material is solder-bonded to a base material at a temperature of 100 ° C or higher.
  9.  前記セラミックス製分割スパッタリングターゲット材と基材との熱膨張係数の差が2.5×10-6/℃以上であることを特徴とする請求項1~8のいずれかに記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 8, wherein a difference in thermal expansion coefficient between the ceramic split sputtering target material and the substrate is 2.5 x 10 -6 / ° C or more.
  10.  複数のセラミックス製分割スパッタリングターゲット材と該複数のセラミックス製分割スパッタリングターゲット材を一体に接合するセラミックス製接合部とからなることを特徴とするセラミックス製スパッタリングターゲット材。 A ceramic sputtering target material comprising a plurality of ceramic divided sputtering target materials and a ceramic bonding portion for integrally bonding the plurality of ceramic divided sputtering target materials.
  11.  複数のセラミックス製分割スパッタリングターゲット材の側面と側面との間に接合用セラミックス材料を挟み、前記セラミックス製分割スパッタリングターゲット材および前記接合用セラミックス材料を熱処理することで前記セラミックス製分割スパッタリングターゲット材を一体に接合してセラミックス製スパッタリングターゲット材を作製し、該セラミックス製スパッタリングターゲット材を基材に接合することを特徴とするスパッタリングターゲットの製造方法。 The ceramic split sputtering target material is integrated by sandwiching a ceramic material for bonding between the side surfaces of a plurality of ceramic split sputtering target materials and heat-treating the ceramic split sputtering target material and the bonding ceramic material. A sputtering target material made of ceramic by bonding to a substrate, and the sputtering target material made of ceramic is bonded to a substrate.
  12.  複数のセラミックス製分割スパッタリングターゲット材の側面と側面との間に接合用セラミックス材料を挟み、前記セラミックス製分割スパッタリングターゲット材および前記接合用セラミックス材料を熱処理することで前記セラミックス製分割スパッタリングターゲット材を一体に接合してセラミックス製スパッタリングターゲット材を作製し、該セラミックス製スパッタリングターゲット材の表面のうち少なくともスパッタ面に平滑化処理を施した後、該セラミックス製スパッタリングターゲット材を基材に半田接合することを特徴とするスパッタリングターゲットの製造方法。 The ceramic split sputtering target material is integrated by sandwiching a ceramic material for bonding between the side surfaces of a plurality of ceramic split sputtering target materials and heat-treating the ceramic split sputtering target material and the bonding ceramic material. A ceramic sputtering target material is bonded to the substrate, and at least a sputtering surface of the surface of the ceramic sputtering target material is smoothed, and then the ceramic sputtering target material is soldered to the substrate. A method for producing a sputtering target.
  13.  前記接合用セラミックス材料がシート状であることを特徴とする請求項11または12に記載のスパッタリングターゲットの製造方法。 The method for manufacturing a sputtering target according to claim 11 or 12, wherein the bonding ceramic material is in a sheet form.
  14.  前記接合用セラミックス材料がスラリー状またはペースト状であることを特徴とする請求項11または12記載のスパッタリングターゲットの製造方法。 The method for manufacturing a sputtering target according to claim 11 or 12, wherein the ceramic material for bonding is in the form of a slurry or a paste.
PCT/JP2013/054826 2013-02-25 2013-02-25 Sputtering target and manufacturing method therefor WO2014128976A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054826 WO2014128976A1 (en) 2013-02-25 2013-02-25 Sputtering target and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054826 WO2014128976A1 (en) 2013-02-25 2013-02-25 Sputtering target and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2014128976A1 true WO2014128976A1 (en) 2014-08-28

Family

ID=51390798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054826 WO2014128976A1 (en) 2013-02-25 2013-02-25 Sputtering target and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2014128976A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153540A (en) * 2016-06-02 2016-08-25 Jx金属株式会社 Sputtering target and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920470A (en) * 1982-07-26 1984-02-02 Murata Mfg Co Ltd Target for sputtering
JP2012132065A (en) * 2010-12-21 2012-07-12 Tosoh Corp Cylindrical sputtering target and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920470A (en) * 1982-07-26 1984-02-02 Murata Mfg Co Ltd Target for sputtering
JP2012132065A (en) * 2010-12-21 2012-07-12 Tosoh Corp Cylindrical sputtering target and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153540A (en) * 2016-06-02 2016-08-25 Jx金属株式会社 Sputtering target and production method thereof

Similar Documents

Publication Publication Date Title
TWI700261B (en) Sn-Zn-O series oxide sintered body and its manufacturing method
US9655237B2 (en) Silicon nitride substrate and method for producing silicon nitride substrate
KR101956506B1 (en) Indium zinc oxide (izo) based sputtering target, and method for producing same
JP2013507526A (en) Tin oxide ceramic sputtering target and method for producing the same
TWI594970B (en) ITO sputtering target and manufacturing method thereof, and manufacturing method of ITO transparent conductive film and ITO transparent conductive film
KR20150135530A (en) Li-CONTAINING OXIDE TARGET ASSEMBLY
EP2767610A1 (en) ZnO-Al2O3-MgO sputtering target and method for the production thereof
KR101583693B1 (en) Ito sputtering target material and method for producing same
JP4961515B1 (en) Split sputtering target and manufacturing method thereof
JP6273735B2 (en) Cylindrical sputtering target and manufacturing method thereof
JP2008184337A (en) Method of manufacturing ceramic sintered compact
TW202020180A (en) Sputtering target and method of manufacturing sputtering target
WO2014128976A1 (en) Sputtering target and manufacturing method therefor
JP7101717B2 (en) Sputtering target and its manufacturing method
JP6977395B2 (en) Manufacturing method of cesium tungsten oxide sintered body, cesium tungsten oxide sintered body and oxide target
TWI515315B (en) ITO sputtering target
JP2015089966A (en) Sputtering target material and its manufacturing method
EP4071126A1 (en) Bonded substrate and method for manufacturing bonded substrate
JP4000813B2 (en) Sputtering target
JP6273734B2 (en) Flat plate sputtering target and manufacturing method thereof
JP5438825B2 (en) Sputtering target
JP2015089967A (en) Sputtering target material and its manufacturing method
JP2016147778A (en) Method for producing inorganic powder sintered compact
JP5809542B2 (en) Sputtering target material and manufacturing method thereof
KR20150120073A (en) Method of fabricating indium zinc oxide sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP