JP2012132065A - Cylindrical sputtering target and method for manufacturing the same - Google Patents

Cylindrical sputtering target and method for manufacturing the same Download PDF

Info

Publication number
JP2012132065A
JP2012132065A JP2010285002A JP2010285002A JP2012132065A JP 2012132065 A JP2012132065 A JP 2012132065A JP 2010285002 A JP2010285002 A JP 2010285002A JP 2010285002 A JP2010285002 A JP 2010285002A JP 2012132065 A JP2012132065 A JP 2012132065A
Authority
JP
Japan
Prior art keywords
cylindrical
target
underlayer
target material
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010285002A
Other languages
Japanese (ja)
Other versions
JP5672536B2 (en
Inventor
Toshisuke Yatsutsuha
俊祐 八ツ波
Kenji Onomi
健治 尾身
Masaru Sato
優 佐藤
Tetsuo Shibutami
哲夫 渋田見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2010285002A priority Critical patent/JP5672536B2/en
Publication of JP2012132065A publication Critical patent/JP2012132065A/en
Application granted granted Critical
Publication of JP5672536B2 publication Critical patent/JP5672536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sputtering target capable of obtaining sufficient joining rate and strength, and remarkably suppressing the generation of cracks even under the influence of heat during sputtering, and a method for manufacturing the sputtering target.SOLUTION: A first underlayer 30 formed of nickel or copper is formed on an inner circumferential surface of a target material 20 formed of a cylindrical ceramic sintered body, or on both of the inner circumferential surface of the target material 20 formed of the cylindrical ceramic sintered body and an outer peripheral surface of a cylindrical support base material 10. A second underlayer 40 formed of tin is formed on the first underlayer 30. Thereafter, the target material 20 is arranged outside the cylindrical support base material 10 and both of them are joined together with a joining material so that the target is manufactured.

Description

本発明は、マグネトロン型回転カソードスパッタリング装置等に用いられる円筒形セラミックススパッタリングターゲットおよびその製造に関するものであり、少なくともスパッタリングターゲット材内周面に2層の金属下地層を設けたスパッタリングターゲットに関する。   The present invention relates to a cylindrical ceramic sputtering target used in a magnetron type rotary cathode sputtering apparatus and the like, and its production, and more particularly to a sputtering target in which two metal underlayers are provided on the inner peripheral surface of a sputtering target material.

マグネトロン型回転カソードスパッタリング装置等に用いられるセラミックスターゲットの製造方法としては、別途作製したセラミックス焼結体からなる円筒形ターゲット材を円筒形支持基材に組み込み、低融点半田等の接合材を用いて接合する方法がある(特許文献1参照)。この形態の円筒形ターゲットは比較的低コストで作製でき、高密度のセラミックス焼結体を使用できることから高品位な成膜が可能であり、今後の普及が見込まれている。   As a method of manufacturing a ceramic target used in a magnetron type rotary cathode sputtering apparatus or the like, a cylindrical target material made of a separately prepared ceramic sintered body is incorporated into a cylindrical support base material, and a bonding material such as a low melting point solder is used. There is a method of joining (see Patent Document 1). A cylindrical target of this form can be produced at a relatively low cost, and since a high-density ceramic sintered body can be used, high-quality film formation is possible, and it is expected to spread in the future.

しかし、一方で、この形態の円筒形ターゲットは熱膨張率の異なる二つの円筒形状物を組み合わせ、その間隙を接合材で固定するため、高温となる接合時と冷却固化後では双方の体積収縮量の違いから内部応力が生じ、接合部に剥離等の不具合が発生しやすい。接合が不十分な状態のターゲットでスパッタリングを行なうと、ターゲット材の冷却効率が低下し、ターゲット材が割れる恐れがある。それゆえ、接合率および接合強度を高められる簡便な接合方法の開発が望まれている。   However, on the other hand, this type of cylindrical target combines two cylindrical objects with different coefficients of thermal expansion, and the gap is fixed with a bonding material. Therefore, both volume shrinkage during high temperature bonding and after cooling and solidification Due to the difference, internal stress is generated and defects such as peeling are likely to occur at the joint. When sputtering is performed with a target with insufficient bonding, the cooling efficiency of the target material is lowered, and the target material may be broken. Therefore, development of a simple joining method capable of increasing the joining rate and joining strength is desired.

元来、セラミックスと金属は接合しづらく、低融点半田等の接合材を溶融し、セラミックスに接触させ冷却固化しただけでは接合が難しい。一方、支持基材は金属製であっても、接合時に接合材の融点以上に加熱されるため表面の酸化が進行し、このため溶融した接合材との濡れ性が悪くなり、冷却固化後の接合材の密着力が低下する恐れがある。   Originally, ceramics and metals are difficult to bond, and it is difficult to bond them simply by melting a bonding material such as low melting point solder and bringing it into contact with ceramics and solidifying by cooling. On the other hand, even if the support substrate is made of metal, the surface is oxidized because it is heated to the melting point of the bonding material at the time of bonding, so that the wettability with the molten bonding material deteriorates, and after cooling and solidification There is a possibility that the adhesion of the bonding material may be reduced.

これらの問題を解決する手段として、予めアルミまたはアルミ合金等の金属またはスパッタリングターゲットの表面を酸処理した後、スパッタリングターゲット材の接合面または、スパッタリングターゲット材と支持基体の両接合表面に半田層を電気メッキにより形成した後、半田層を溶融させた状態で両接合面を密着させ、一体化した状態で冷却して固着する方法が知られている(特許文献2参照)。しかしこの方法では、スパッタリングターゲットの材料がセラミックスである場合、電気メッキにより形成した半田層はセラミックスへの密着力が弱く、十分な接合強度を得ることが困難である。   As a means for solving these problems, a metal such as aluminum or aluminum alloy or the surface of a sputtering target is previously acid-treated, and then a solder layer is formed on the bonding surface of the sputtering target material or both the bonding surfaces of the sputtering target material and the support substrate. A method is known in which, after forming by electroplating, both joining surfaces are brought into close contact with each other in a molten state, and then cooled and fixed in an integrated state (see Patent Document 2). However, in this method, when the material of the sputtering target is ceramic, the solder layer formed by electroplating has weak adhesion to the ceramic, and it is difficult to obtain sufficient bonding strength.

一般に、セラミックスに金属をめっきする場合、密着性がよい金属は限られており、それらはニッケル(Ni)や銅(Cu)などである。ただし、NiやCuは接合時に表面酸化が進行し、接合材の低融点半田との濡れ性が低下するため、これらの金属だけで下地層を形成しても十分な接合強度を得ることはできない。   In general, when metal is plated on ceramics, metals having good adhesion are limited, such as nickel (Ni) and copper (Cu). However, Ni and Cu undergo surface oxidation at the time of bonding, and the wettability of the bonding material with the low-melting-point solder decreases, so that sufficient bonding strength cannot be obtained even if the base layer is formed with only these metals. .

また、接合強度の高いスパッタリングターゲットを得る接合方法として、チタン(Ti)またはチタン合金(Ti合金)のスパッタリングターゲット材およびCu、Cu合金、TiおよびTi合金などの支持基材両接合面にNiあるいはCuをメッキ処理した後、スパッタリングターゲット材および支持基材両面に接合する半田材の一部分を超音波メタライジング法により半田処理し、スパッタリングターゲットと支持基材とを強固に接合する方法が提案されている(特許文献3参照)。しかしこの方法では、スパッタリングターゲットが平板構造である場合においては可能な手段であるが、たとえば円筒形ターゲットに関しては、円筒形ターゲット材の内径が小さい場合、あるいは円筒形ターゲット材の中心軸方向の長さが長い場合は、接合面に超音波メタライジング装置の超音波発信端が接触できない部分が生じ、接合面全体にくまなく超音波メタライジング処理を施すことが困難となる。   Further, as a joining method for obtaining a sputtering target having a high joining strength, Ni or Ti on a joining surface of both a sputtering base material of titanium (Ti) or a titanium alloy (Ti alloy) and a supporting base material such as Cu, Cu alloy, Ti and Ti alloy. After plating Cu, a method is proposed in which a part of a solder material to be bonded to both sides of a sputtering target material and a supporting substrate is soldered by an ultrasonic metallizing method to firmly bond the sputtering target and the supporting substrate. (See Patent Document 3). However, this method is possible when the sputtering target has a flat plate structure. For example, in the case of a cylindrical target, when the inner diameter of the cylindrical target material is small or the length of the cylindrical target material in the central axis direction is long. When the length is long, a portion where the ultrasonic wave transmitting end of the ultrasonic metallizing device cannot contact is formed on the bonding surface, and it is difficult to perform the ultrasonic metallizing process all over the bonding surface.

また、平板構造のターゲットを接合する場合、ターゲット材と支持基材の間隙に溶融した接合材を満たし、ターゲット材と支持基材を互いに近づけるように押圧することで接合材の密着性を高めることも可能であるが、円筒形ターゲットでは構造上、そのような押圧操作が行えないということも接合が難しい要因となっている。   In addition, when joining flat-plate targets, the gap between the target material and the supporting base material is filled with the molten joining material, and the target material and the supporting base material are pressed closer together to increase the adhesiveness of the joining material. However, due to the structure of the cylindrical target, such a pressing operation cannot be performed, which makes it difficult to join.

特許第3618005号公報Japanese Patent No. 3618005 特開平11−106904号公報JP-A-11-106904 特開平08−67978号公報Japanese Patent Laid-Open No. 08-67978

本発明の課題は、円筒形状のセラミックス焼結体からなるターゲット材と円筒形支持基材の接合に際し、接合面に2層の金属下地層を形成することにより、接合の際に接合部を押圧しなくても冷却固化させるだけで十分な接合率および接合強度が得られ、スパッタリング中に熱の影響を受けても割れの発生を著しく低減できるスパッタリングターゲットおよびその製造方法を提供することにある。   An object of the present invention is to form a metal base layer of two layers on a joining surface when joining a target material made of a cylindrical ceramic sintered body and a cylindrical support base material, thereby pressing the joining portion during joining. It is an object of the present invention to provide a sputtering target and a method for manufacturing the sputtering target that can obtain a sufficient bonding rate and bonding strength only by cooling and solidification, and can significantly reduce the occurrence of cracks even under the influence of heat during sputtering.

本発明者らは、上記課題を解決するために鋭意検討を行った結果、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.

即ち本発明は、以下のとおりである。
(1)円筒形支持基材の外側に、円筒形状のセラミックス焼結体からなるターゲット材を接合材で接合した円筒形スパッタリングターゲットであって、ターゲット材の内周面に、またはターゲット材の内周面と円筒形支持基材の外周面の両方に、ニッケルまたは銅からなる第1の下地層を有し、その第1の下地層の上に、スズからなる第2の下地層を有することを特徴とする、円筒形スパッタリングターゲット。
(2)第1の下地層と第2の下地層の合計の厚みが10〜200μmである、(1)に記載のターゲット。
(3)円筒形状のセラミックス焼結体からなるターゲット材の内周面に、または円筒形状のセラミックス焼結体からなるターゲット材の内周面と円筒形支持基材の外周面の両方に、ニッケルまたは銅からなる第1の下地層を形成し、その第1の下地層の上に、スズからなる第2の下地層を形成し、次いで、そのターゲット材を円筒形支持基材の外側に配置し、両者を接合材で接合することを特徴とする、(1)または(2)に記載のターゲットの製造方法。
That is, the present invention is as follows.
(1) A cylindrical sputtering target in which a target material composed of a cylindrical ceramic sintered body is bonded to the outer side of a cylindrical support base material with a bonding material, and is formed on the inner peripheral surface of the target material or inside the target material. Having a first underlayer made of nickel or copper on both the peripheral surface and the outer peripheral surface of the cylindrical support base, and having a second underlayer made of tin on the first underlayer A cylindrical sputtering target.
(2) The target according to (1), wherein the total thickness of the first underlayer and the second underlayer is 10 to 200 μm.
(3) Nickel on the inner peripheral surface of the target material made of a cylindrical ceramic sintered body or on both the inner peripheral surface of the target material made of a cylindrical ceramic sintered body and the outer peripheral surface of the cylindrical support substrate Alternatively, a first base layer made of copper is formed, a second base layer made of tin is formed on the first base layer, and then the target material is disposed outside the cylindrical support base material. And both are joined with a joining material, The manufacturing method of the target as described in (1) or (2) characterized by the above-mentioned.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において、円筒形状のセラミックス焼結体からなるターゲット材は特に限定されるものではないが、例えば透明導電膜などに用いられる光学薄膜材料である、ITO(Indium Tin Oxide)、ZnO(Zinc Oxide)、AZO(Aluminium Zinc Oxide)、IZO(Indium Zinc Oxide)、Ta、Nb、TiO等を挙げることができる。 In the present invention, the target material made of a cylindrical ceramic sintered body is not particularly limited. For example, ITO (Indium Tin Oxide) and ZnO (Zinc Oxide), which are optical thin film materials used for transparent conductive films and the like, are used. ), AZO (Aluminum Zinc Oxide), IZO (Indium Zinc Oxide), Ta 2 O 5 , Nb 2 O 5 , TiO 2 and the like.

円筒形支持基材の材質としては、例えばステンレス(SUS)、チタン(Ti)、チタン合金(Ti合金)などである。   Examples of the material of the cylindrical support base include stainless steel (SUS), titanium (Ti), titanium alloy (Ti alloy), and the like.

接合材としては融点が約230℃よりも低い低融点半田などが用いられ、例えば鉛フリーのインジウム(融点157℃)やスズ―インジウム合金(117℃)が用いられる。   As the bonding material, a low melting point solder having a melting point lower than about 230 ° C. is used. For example, lead-free indium (melting point: 157 ° C.) or tin-indium alloy (117 ° C.) is used.

第1の下地層には、接合材よりも融点が高くセラミックスターゲット材に対して密着性のよいNi(融点1455℃)またはCu(融点1084℃)が選ばれる。第1の下地層の上に第2の下地層を形成するが、第2の下地層は接合材より融点が高く、第1の下地層との密着性がよく、かつ接合材との濡れ性がよい金属であるスズ(Sn:融点232℃)を用いる。特にSnは接合時の高温においても表面酸化が進行しないため、接合材との濡れ性が低下しない。
第1および第2の下地層の形成法としては、スパッタリング法、イオンプレーティング法、蒸着法、メッキ法などがあるが、セラミックスターゲット材に下地層を形成する方法としてはメッキ法が好ましい。メッキ法としては特に限定されるものではなく、電解メッキまたは無電解メッキのいずれであってもよい。
For the first underlayer, Ni (melting point 1455 ° C.) or Cu (melting point 1084 ° C.) having a melting point higher than that of the bonding material and good adhesion to the ceramic target material is selected. The second underlayer is formed on the first underlayer. The second underlayer has a higher melting point than the bonding material, good adhesion to the first underlayer, and wettability with the bonding material. However, tin (Sn: melting point 232 ° C.) which is a good metal is used. In particular, Sn does not proceed with surface oxidation even at a high temperature during bonding, so that the wettability with the bonding material does not decrease.
As a method for forming the first and second underlayers, there are a sputtering method, an ion plating method, a vapor deposition method, a plating method, and the like. A plating method is preferable as a method for forming the underlayer on the ceramic target material. The plating method is not particularly limited, and may be either electrolytic plating or electroless plating.

第1および第2の下地層の厚みは密着性や作業時間を考慮し、それぞれ5〜100μmが好ましい。   The thickness of the first and second underlayers is preferably 5 to 100 μm in consideration of adhesion and working time.

本発明においては、第1および第2の下地層は円筒形状のセラミックス焼結体からなるターゲット材の内周面だけでなく、円筒形支持基材の外周面にも形成することが好ましい。その形成方法には前述と同様の方法を用いることができ、これにより円筒形支持基材の濡れ性を改善することができる。   In the present invention, the first and second underlayers are preferably formed not only on the inner peripheral surface of the target material made of a cylindrical ceramic sintered body but also on the outer peripheral surface of the cylindrical support substrate. As the forming method, the same method as described above can be used, whereby the wettability of the cylindrical support substrate can be improved.

上述のように第1および第2の下地層を形成した後、円筒形支持基材の外側に円筒形状のターゲット材を配置する。このとき、両者の中心軸が合うように配置してもよく、また複数の円筒形状のターゲット材を用いる場合は、それらの外周面ができるだけそろうように配置してもよい。その後、円筒形状のターゲット材および円筒形支持基材を接合材の融点以上に加熱し、両者の隙間に溶融した接合材を注入し、冷却固化させることにより接合する。   After forming the first and second underlayers as described above, a cylindrical target material is disposed outside the cylindrical support base material. At this time, they may be arranged so that the central axes of the two are aligned, and when a plurality of cylindrical target materials are used, they may be arranged so that their outer peripheral surfaces are as close as possible. Thereafter, the cylindrical target material and the cylindrical support substrate are heated to the melting point or higher of the bonding material, and the molten bonding material is injected into the gap between the two, and bonded by cooling and solidifying.

このような方法においては、形成した下地層が接合作業中に溶融することを防ぐため、下地層を構成する金属は接合材よりも高融点であることが必要であるが、本発明の第1の下地層に用いられるNiやCu、および第2の下地層に用いられるSnは、いずれも前述のように融点が高いため問題はない。そしてこれらの金属で接合面に二層の下地層を形成することにより、接合率および接合強度が高い円筒形スパッタリングターゲットを得ることができる。   In such a method, in order to prevent the formed underlayer from melting during the bonding operation, the metal constituting the underlayer needs to have a higher melting point than the bonding material. Any of Ni and Cu used for the underlying layer and Sn used for the second underlying layer have no problem since they have a high melting point as described above. A cylindrical sputtering target having a high bonding rate and high bonding strength can be obtained by forming a two-layer underlayer on the bonding surface using these metals.

本発明によれば、接合率および接合強度が高い円筒形セラミックスのターゲットを得ることができ、スパッタリング時の割れの発生が著しく抑制される。   According to the present invention, a cylindrical ceramic target having a high bonding rate and bonding strength can be obtained, and the occurrence of cracks during sputtering is significantly suppressed.

本発明の円筒形セラミックスターゲットの一例を示す図である。It is a figure which shows an example of the cylindrical ceramic target of this invention.

以下、本発明について実施例をもって説明するが、本発明はこれに限定されるものではない。なお、放電試験はスパッタリングガスにアルゴンを使用し、スパッタリング圧力:0.3Pa、電力4500Wで行った。   Hereinafter, although an example explains the present invention, the present invention is not limited to this. The discharge test was performed using argon as a sputtering gas and at a sputtering pressure of 0.3 Pa and a power of 4500 W.

(実施例1)
円筒形ITOターゲット材(外径:150mmφ、内径:130mmφ、長さ:300mm)を1個、Ti製円筒形基材(外径:128mmφ、内径:122mmφ、長さ:400mm)を1個用意し、円筒形ITOターゲット材の内周面およびTi製円筒形基材の外周面に、第1の下地層としてNiを膜厚5μm、第1の下地層の上に第2の下地層としてSnを膜厚15μm、それぞれ電気メッキ法で形成した。Ti製円筒形基材を垂直に立て、その外側に円筒形ITOターゲット材を両者の中心軸が一致するように配置し固定した。この組み立て品をリボンヒーターを用いて180℃まで加熱し、円筒形ITOターゲット材の内周面とTi製円筒形基材の外周面の間に形成されるクリアランスに溶融させたIn半田を流し込み、その後、冷却固化させた。この方法によって作製した円筒形ITOスパッタリングターゲットを超音波探傷装置(日本クラウトクレーマー製)で測定したところ、接合率は97%であった。この円筒形ITOスパッタリングターゲットの放電試験を行なった結果、使用率80%においても割れは認められなかった。
Example 1
Prepare one cylindrical ITO target material (outer diameter: 150 mmφ, inner diameter: 130 mmφ, length: 300 mm) and one Ti cylindrical substrate (outer diameter: 128 mmφ, inner diameter: 122 mmφ, length: 400 mm) On the inner peripheral surface of the cylindrical ITO target material and the outer peripheral surface of the Ti cylindrical substrate, Ni is used as a first underlayer with a film thickness of 5 μm, and Sn as a second underlayer on the first underlayer. A film thickness of 15 μm was formed by electroplating. A cylindrical cylindrical substrate made of Ti was set up vertically, and a cylindrical ITO target material was arranged and fixed on the outside thereof so that the central axes of both coincided. This assembly is heated to 180 ° C. using a ribbon heater, and molten In solder is poured into the clearance formed between the inner peripheral surface of the cylindrical ITO target material and the outer peripheral surface of the Ti cylindrical substrate, Thereafter, it was cooled and solidified. When the cylindrical ITO sputtering target produced by this method was measured with an ultrasonic flaw detector (manufactured by Nippon Kraut Kramer), the joining rate was 97%. As a result of conducting a discharge test of this cylindrical ITO sputtering target, no crack was observed even at a usage rate of 80%.

(比較例1)
円筒形ITOターゲット材(外径:150mmφ、内径:130mmφ、長さ:300mm)を1個、Ti製円筒形基材(外径:128mmφ、内径:122mmφ、長さ:400mm)を1個用意し、円筒形ITOターゲット材の内周面およびTi製円筒形基材の外周面に下地層としてNiを膜厚5μmで電気メッキ法にて形成した。実施例1と同様にして、円筒形ITOターゲット材とTi製円筒形基材をIn半田で接合し、円筒形ITOスパッタリングターゲットを作製した。この方法によって作製した円筒形ITOスパッタリングターゲットの接合率を実施例1と同様にして測定したところ、35%であった。この円筒形ITOスパッタリングターゲットの放電試験を行なった結果、放電中に割れが発生した。
(Comparative Example 1)
Prepare one cylindrical ITO target material (outer diameter: 150 mmφ, inner diameter: 130 mmφ, length: 300 mm) and one Ti cylindrical substrate (outer diameter: 128 mmφ, inner diameter: 122 mmφ, length: 400 mm) Then, Ni was formed as an underlayer on the inner peripheral surface of the cylindrical ITO target material and the outer peripheral surface of the Ti cylindrical substrate by electroplating with a film thickness of 5 μm. In the same manner as in Example 1, a cylindrical ITO target material and a Ti cylindrical substrate were joined with In solder to produce a cylindrical ITO sputtering target. When the joining rate of the cylindrical ITO sputtering target produced by this method was measured in the same manner as in Example 1, it was 35%. As a result of conducting a discharge test of this cylindrical ITO sputtering target, cracks occurred during discharge.

(比較例2)
実施例1と同様にして、但し円筒形ITOターゲット材およびTi製円筒形基材に下地層を形成せずにIn半田で接合を試みたが、濡れ性が悪く、両者は接合できなかった。.
(実施例2)
円筒形AZOターゲット材(外径:150mmφ、内径:130mmφ、長さ:300mm)を1個、SUS製円筒形基材(外径:128mmφ、内径:122mmφ、長さ:400mm)を1個用意し、円筒形AZOターゲット材の内周面に第1の下地層としてCuを膜厚5μm、第1の下地層の上に第2の下地層としてSnを膜厚15μm、それぞれ電気メッキ法で形成した。また、SUS製円筒形基材の外周面に第1の下地層としてNiを膜厚5μm、第1の下地層の上に第2の下地層としてSnを膜厚15μm、それぞれ電気メッキ法で形成した。SUS製円筒形基材を垂直に立て、その外側に円筒形AZOターゲット材を両者の中心軸が一致するように配置し固定した。この組み立て品をリボンヒーターを用いて180℃まで加熱し、円筒形AZOターゲット材の内周面とSUS製円筒形基材の外周面の間に形成されるクリアランスに溶融させたIn半田を流し込み、その後、冷却固化させた。この方法によって作製した円筒形AZOスパッタリングターゲットの接合率を実施例1と同様にして測定したところ、95%であった。この円筒形AZOスパッタリングターゲットの放電試験を行なった結果、使用率81%においても割れは認められなかった。
(Comparative Example 2)
In the same manner as in Example 1, however, joining was attempted with In solder without forming an underlayer on the cylindrical ITO target material and the Ti cylindrical base material, but the wettability was poor and both could not be joined. .
(Example 2)
Prepare one cylindrical AZO target material (outer diameter: 150 mmφ, inner diameter: 130 mmφ, length: 300 mm) and one SUS cylindrical substrate (outer diameter: 128 mmφ, inner diameter: 122 mmφ, length: 400 mm) In addition, Cu was formed as a first underlayer on the inner peripheral surface of the cylindrical AZO target material with a thickness of 5 μm, and Sn was formed as a second underlayer on the first underlayer with a thickness of 15 μm by an electroplating method. . Further, Ni is formed as a first underlayer on the outer peripheral surface of the SUS cylindrical base material with a thickness of 5 μm, and Sn is formed as a second underlayer on the first underlayer with a thickness of 15 μm by an electroplating method. did. A SUS cylindrical base material was set up vertically, and a cylindrical AZO target material was arranged and fixed on the outer side thereof so that the central axes of both coincided. This assembly is heated to 180 ° C. using a ribbon heater, and molten In solder is poured into the clearance formed between the inner peripheral surface of the cylindrical AZO target material and the outer peripheral surface of the SUS cylindrical base material, Thereafter, it was cooled and solidified. When the joining ratio of the cylindrical AZO sputtering target produced by this method was measured in the same manner as in Example 1, it was 95%. As a result of conducting a discharge test of this cylindrical AZO sputtering target, no crack was observed even at a usage rate of 81%.

(比較例3)
円筒形AZOターゲット材(外径:150mmφ、内径:130mmφ、長さ:300mm)を1個、SUS製円筒形基材(外径:128mmφ、内径:122mmφ、長さ:400mm)を1個用意し、円筒形AZOターゲット材の内周面に下地層としてCuを膜厚5μmで電気メッキ法にて形成し、SUS製円筒形基材の外周面には下地層としてNiを膜厚5μmで電気メッキ法にて形成した。実施例2と同様にして円筒形AZOターゲット材とSUS製円筒形基材をIn半田で接合し、円筒形AZOスパッタリングターゲットを作製した。この円筒形AZOスパッタリングターゲットの接合率を実施例1と同様にして測定したところ、29%であった。この円筒形AZOスパッタリングターゲットの放電試験を行なった結果、放電中に割れが発生した。
(Comparative Example 3)
Prepare one cylindrical AZO target material (outer diameter: 150 mmφ, inner diameter: 130 mmφ, length: 300 mm) and one SUS cylindrical substrate (outer diameter: 128 mmφ, inner diameter: 122 mmφ, length: 400 mm) Then, Cu is formed on the inner peripheral surface of the cylindrical AZO target material as an underlayer by electroplating with a film thickness of 5 μm, and Ni is formed on the outer peripheral surface of the SUS cylindrical base material as an underlayer with a film thickness of 5 μm. Formed by the method. In the same manner as in Example 2, the cylindrical AZO target material and the SUS cylindrical base material were joined with In solder to produce a cylindrical AZO sputtering target. When the joining rate of this cylindrical AZO sputtering target was measured in the same manner as in Example 1, it was 29%. As a result of conducting a discharge test of this cylindrical AZO sputtering target, cracks occurred during discharge.

(比較例4)
実施例2において、円筒形AZOターゲット材およびSUS製円筒形基材に下地層を形成せずにIn半田で接合を試みたが、濡れ性が悪く、接合できなかった。
(Comparative Example 4)
In Example 2, joining was attempted with In solder without forming an underlayer on the cylindrical AZO target material and the cylindrical base material made of SUS, but the wettability was poor and joining was not possible.

(実施例3)
円筒形IZOターゲット材(外径:150mmφ、内径:130mmφ、長さ:300mm)を1個、Ti製円筒形基材(外径:128mmφ、内径:122mmφ、長さ:400mm)を1個用意し、円筒形IZOターゲット材の内周面およびTi製円筒形基材の外周面に、第1の下地層としてNiを膜厚5μm、第1の下地層の上に第2の下地層としてSnを膜厚15μm、それぞれ電気メッキ法で形成した。Ti製円筒形基材を垂直に立て、その外側に円筒形IZOターゲット材を両者の中心軸が一致するように配置し固定した。この組み立て品をリボンヒーターを用いて180℃まで加熱し、円筒形IZOターゲット材の内周面とTi製円筒形基材の外周面の間に形成されるクリアランスに溶融させたIn半田を流し込み、その後、冷却固化させた。この方法によって作製した円筒形IZOスパッタリングターゲットの接合率を実施例1と同様にして測定したところ、96%であった。この円筒形IZOスパッタリングターゲットの放電試験を行なった結果、使用率80%においても割れは認められなかった。
(Example 3)
Prepare one cylindrical IZO target material (outer diameter: 150 mmφ, inner diameter: 130 mmφ, length: 300 mm) and one Ti cylindrical substrate (outer diameter: 128 mmφ, inner diameter: 122 mmφ, length: 400 mm) On the inner peripheral surface of the cylindrical IZO target material and the outer peripheral surface of the Ti cylindrical base material, Ni is formed as a first underlayer with a film thickness of 5 μm, and Sn is formed as a second underlayer on the first underlayer. A film thickness of 15 μm was formed by electroplating. A Ti cylindrical base material was set up vertically, and a cylindrical IZO target material was arranged and fixed on the outside thereof so that the central axes of both coincided. This assembly is heated to 180 ° C. using a ribbon heater, and molten In solder is poured into the clearance formed between the inner peripheral surface of the cylindrical IZO target material and the outer peripheral surface of the Ti cylindrical base material, Thereafter, it was cooled and solidified. When the joining rate of the cylindrical IZO sputtering target produced by this method was measured in the same manner as in Example 1, it was 96%. As a result of conducting a discharge test of this cylindrical IZO sputtering target, no crack was observed even at a usage rate of 80%.

(比較例5)
円筒形IZOターゲット材(外径:150mmφ、内径:130mmφ、長さ:300mm)を1個、Ti製円筒形基材(外径:128mmφ、内径:122mmφ、長さ:400mm)を1個用意し、円筒形IZOターゲット材の内周面およびTi製円筒形基材の外周面に、下地層としてNiを膜厚5μmで電気メッキ法にて形成した。実施例3と同様にして円筒形IZOターゲット材とTi製円筒形基材をIn半田で接合し、円筒形IZOスパッタリングターゲットを作製した。この円筒形IZOスパッタリングターゲットの接合率を実施例1と同様にして測定したところ、27%であった。この円筒形IZOスパッタリングターゲットの放電試験を行なった結果、放電中に割れが発生した。
(Comparative Example 5)
Prepare one cylindrical IZO target material (outer diameter: 150 mmφ, inner diameter: 130 mmφ, length: 300 mm) and one Ti cylindrical substrate (outer diameter: 128 mmφ, inner diameter: 122 mmφ, length: 400 mm) As a base layer, Ni was formed by electroplating with a film thickness of 5 μm on the inner peripheral surface of the cylindrical IZO target material and the outer peripheral surface of the Ti cylindrical base material. In the same manner as in Example 3, a cylindrical IZO target material and a Ti cylindrical substrate were joined with In solder to produce a cylindrical IZO sputtering target. When the joining ratio of this cylindrical IZO sputtering target was measured in the same manner as in Example 1, it was 27%. As a result of conducting a discharge test of this cylindrical IZO sputtering target, cracks occurred during discharge.

(比較例6)
実施例3において、円筒形IZOターゲット材およびTi製円筒形基材に下地層を形成せずにIn半田で接合を試みたが、濡れ性が悪く、両者は接合できなかった。
(Comparative Example 6)
In Example 3, joining was attempted with In solder without forming an underlayer on the cylindrical IZO target material and the Ti cylindrical base material, but the wettability was poor and both could not be joined.

(実施例4)
円筒形ITOターゲット材(外径:150mmφ、内径:130mmφ、長さ:300mm)を1個、SUS製円筒形基材(外径:128mmφ、内径:122mmφ、長さ:400mm)を1個用意し、円筒形ITOターゲット材の内周面に、第1の下地層としてNiを膜厚5μm、第1の下地層の上に第2の下地層としてSnを膜厚15μm、それぞれ電気メッキ法で形成した。SUS製円筒形基材の外周面には超音波半田ごてを使用してIn半田を下塗りした。SUS製円筒形基材を垂直に立て、その外側に円筒形ITOターゲット材を両者の中心軸が一致するように配置し固定した。この組み立て品をリボンヒーターを用いて180℃まで加熱し、円筒形ITOターゲット材の内周面とSUS製円筒形基材の外周面の間に形成されるクリアランスに溶融させたIn半田を流し込み、その後、冷却固化させた。この方法によって作製した円筒形ITOスパッタリングターゲットの接合率を実施例1と同様にして測定したところ、95%であった。この円筒形ITOスパッタリングターゲットの放電試験を行なった結果、使用率81%においても割れは認められなかった。
Example 4
Prepare one cylindrical ITO target material (outer diameter: 150 mmφ, inner diameter: 130 mmφ, length: 300 mm) and one SUS cylindrical substrate (outer diameter: 128 mmφ, inner diameter: 122 mmφ, length: 400 mm) On the inner surface of the cylindrical ITO target material, Ni is formed as a first underlayer with a thickness of 5 μm, and Sn is formed as a second underlayer with a thickness of 15 μm on the first underlayer by electroplating. did. An In solder was undercoated on the outer peripheral surface of the SUS cylindrical base material using an ultrasonic soldering iron. A SUS cylindrical base material was set up vertically, and a cylindrical ITO target material was arranged and fixed on the outside thereof so that the central axes of both coincided. This assembly is heated to 180 ° C. using a ribbon heater, and molten In solder is poured into the clearance formed between the inner peripheral surface of the cylindrical ITO target material and the outer peripheral surface of the SUS cylindrical base material, Thereafter, it was cooled and solidified. When the joining rate of the cylindrical ITO sputtering target produced by this method was measured in the same manner as in Example 1, it was 95%. As a result of conducting a discharge test of this cylindrical ITO sputtering target, no crack was observed even at a usage rate of 81%.

(実施例5)
円筒形AZOターゲット材(外径:150mmφ、内径:130mmφ、長さ:300mm)を1個、SUS製円筒形基材(外径:128mmφ、内径:122mmφ、長さ:400mm)を1個用意し、円筒形AZOターゲット材の内周面に、第1の下地層としてCuを膜厚5μm、第1の下地層の上に第2の下地層としてSnを膜厚15μm、それぞれ電気メッキ法で形成した。SUS製円筒形基材の外周面には超音波半田ごてを使用してIn半田を下塗りした。SUS製円筒形基材を垂直に立て、その外側に円筒形AZOターゲット材を両者の中心軸が一致するように配置し固定した。この組み立て品をリボンヒーターを用いて180℃まで加熱し、円筒形AZOターゲット材の内周面とSUS製円筒形基材の外周面の間に形成されるクリアランスに溶融させたIn半田を流し込み、その後、冷却固化させた。この方法によって作製した円筒形AZOスパッタリングターゲットの接合率を実施例1と同様にして測定したところ、96%であった。この円筒形AZOスパッタリングターゲットの放電試験を行なった結果、使用率80%においても割れは認められなかった。
(Example 5)
Prepare one cylindrical AZO target material (outer diameter: 150 mmφ, inner diameter: 130 mmφ, length: 300 mm) and one SUS cylindrical substrate (outer diameter: 128 mmφ, inner diameter: 122 mmφ, length: 400 mm) On the inner peripheral surface of the cylindrical AZO target material, Cu is formed as a first underlayer with a thickness of 5 μm, and Sn is formed as a second underlayer with a thickness of 15 μm on the first underlayer by electroplating. did. An In solder was undercoated on the outer peripheral surface of the SUS cylindrical base material using an ultrasonic soldering iron. A SUS cylindrical base material was set up vertically, and a cylindrical AZO target material was arranged and fixed on the outer side thereof so that the central axes of both coincided. This assembly is heated to 180 ° C. using a ribbon heater, and molten In solder is poured into the clearance formed between the inner peripheral surface of the cylindrical AZO target material and the outer peripheral surface of the SUS cylindrical base material, Thereafter, it was cooled and solidified. When the joining ratio of the cylindrical AZO sputtering target produced by this method was measured in the same manner as in Example 1, it was 96%. As a result of conducting a discharge test of this cylindrical AZO sputtering target, no crack was observed even at a usage rate of 80%.

10:円筒形支持基材
20:円筒形状のセラミックス焼結体からなるターゲット材
30:第1の下地層
40:第2の下地層
50:クリアランス
10: Cylindrical support base material 20: Target material 30 made of a cylindrical ceramic sintered body 30: First underlayer 40: Second underlayer 50: Clearance

Claims (3)

円筒形支持基材の外側に、円筒形状のセラミックス焼結体からなるターゲット材を接合材で接合した円筒形スパッタリングターゲットであって、ターゲット材の内周面に、またはターゲット材の内周面と円筒形支持基材の外周面の両方に、ニッケルまたは銅からなる第1の下地層を有し、その第1の下地層の上に、スズからなる第2の下地層を有することを特徴とする、円筒形スパッタリングターゲット。 A cylindrical sputtering target in which a target material composed of a cylindrical ceramic sintered body is bonded to the outside of a cylindrical support base material with a bonding material, and the inner peripheral surface of the target material or the inner peripheral surface of the target material It has the 1st foundation layer which consists of nickel or copper on both the outer peripheral surfaces of a cylindrical support base material, and has the 2nd foundation layer which consists of tin on the 1st foundation layer, A cylindrical sputtering target. 第1の下地層と第2の下地層の合計の厚みが10〜200μmである、請求項1に記載のターゲット。 The target according to claim 1 whose total thickness of the 1st foundation layer and the 2nd foundation layer is 10-200 micrometers. 円筒形状のセラミックス焼結体からなるターゲット材の内周面に、または円筒形状のセラミックス焼結体からなるターゲット材の内周面と円筒形支持基材の外周面の両方に、ニッケルまたは銅からなる第1の下地層を形成し、その第1の下地層の上に、スズからなる第2の下地層を形成し、次いで、そのターゲット材を円筒形支持基材の外側に配置し、両者を接合材で接合することを特徴とする、請求項1または2に記載のターゲットの製造方法。 From nickel or copper on the inner peripheral surface of a target material made of a cylindrical ceramic sintered body, or on both the inner peripheral surface of a target material made of a cylindrical ceramic sintered body and the outer peripheral surface of a cylindrical support substrate A first underlayer is formed, a second underlayer made of tin is formed on the first underlayer, and then the target material is disposed outside the cylindrical support base. The method for manufacturing a target according to claim 1, wherein the two are bonded with a bonding material.
JP2010285002A 2010-12-21 2010-12-21 Cylindrical sputtering target and manufacturing method thereof Active JP5672536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010285002A JP5672536B2 (en) 2010-12-21 2010-12-21 Cylindrical sputtering target and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010285002A JP5672536B2 (en) 2010-12-21 2010-12-21 Cylindrical sputtering target and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012132065A true JP2012132065A (en) 2012-07-12
JP5672536B2 JP5672536B2 (en) 2015-02-18

Family

ID=46647985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010285002A Active JP5672536B2 (en) 2010-12-21 2010-12-21 Cylindrical sputtering target and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5672536B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125422A (en) * 2012-12-27 2014-07-07 Tosoh Corp Oxide sintered body, oxide sintered body sputtering target and its manufacturing method
WO2014128976A1 (en) * 2013-02-25 2014-08-28 三井金属鉱業株式会社 Sputtering target and manufacturing method therefor
JP2015024944A (en) * 2012-12-27 2015-02-05 東ソー株式会社 Oxide sintered body, sputtering target and method for producing the same
JP2015036431A (en) * 2013-08-12 2015-02-23 住友金属鉱山株式会社 Cylindrical sputtering target and manufacturing method of the same
JP2015132013A (en) * 2013-12-13 2015-07-23 Jx日鉱日石金属株式会社 Sputtering target and production method thereof
JP5902333B1 (en) * 2015-02-27 2016-04-13 Jx金属株式会社 Sputtering target and manufacturing method thereof
JP2016160533A (en) * 2016-03-09 2016-09-05 Jx金属株式会社 Sputtering target, and its manufacturing method
JP2017190527A (en) * 2013-04-30 2017-10-19 株式会社コベルコ科研 Li CONTAINING OXIDE TARGET JOINT BODY AND METHOD FOR MANUFACTURING THE SAME
CN108425096A (en) * 2018-05-21 2018-08-21 米亚索乐装备集成(福建)有限公司 A kind of target, target preparation method and device
WO2018186385A1 (en) * 2017-04-07 2018-10-11 三菱マテリアル株式会社 Cylindrical sputtering target, and production method therefor
JP2018178251A (en) * 2017-04-07 2018-11-15 三菱マテリアル株式会社 Cylindrical sputtering target and manufacturing method of the same
KR20190112627A (en) 2018-03-26 2019-10-07 제이엑스금속주식회사 Sputtering target member, sputtering target assembly and manufacturing method of sputtering target member
WO2019223685A1 (en) * 2018-05-21 2019-11-28 米亚索乐装备集成(福建)有限公司 Target, and preparation method and apparatus therefor
KR20200133837A (en) * 2012-07-18 2020-11-30 미쓰비시 마테리알 가부시키가이샤 Cylindrical sputtering target and manufacturing method therefor
WO2022045054A1 (en) * 2020-08-26 2022-03-03 三菱マテリアル株式会社 Method for manufacturing cylindrical sputtering target, and cylindrical sputtering target

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509479A (en) * 1994-11-15 1998-09-14 トーソー エスエムディ インク Adhesion of target to backing plate member
JP2008523251A (en) * 2004-12-14 2008-07-03 ヴェー ツェー ヘレーウス ゲゼルシャフト ミット ベシュレンクテル ハフツング Tubular target comprising a tie layer disposed between the target tube and the support tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509479A (en) * 1994-11-15 1998-09-14 トーソー エスエムディ インク Adhesion of target to backing plate member
JP2008523251A (en) * 2004-12-14 2008-07-03 ヴェー ツェー ヘレーウス ゲゼルシャフト ミット ベシュレンクテル ハフツング Tubular target comprising a tie layer disposed between the target tube and the support tube

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102256426B1 (en) 2012-07-18 2021-05-25 미쓰비시 마테리알 가부시키가이샤 Cylindrical sputtering target and manufacturing method therefor
KR20200133837A (en) * 2012-07-18 2020-11-30 미쓰비시 마테리알 가부시키가이샤 Cylindrical sputtering target and manufacturing method therefor
JP2015024944A (en) * 2012-12-27 2015-02-05 東ソー株式会社 Oxide sintered body, sputtering target and method for producing the same
JP2014125422A (en) * 2012-12-27 2014-07-07 Tosoh Corp Oxide sintered body, oxide sintered body sputtering target and its manufacturing method
WO2014128976A1 (en) * 2013-02-25 2014-08-28 三井金属鉱業株式会社 Sputtering target and manufacturing method therefor
JP2017190527A (en) * 2013-04-30 2017-10-19 株式会社コベルコ科研 Li CONTAINING OXIDE TARGET JOINT BODY AND METHOD FOR MANUFACTURING THE SAME
JP2015036431A (en) * 2013-08-12 2015-02-23 住友金属鉱山株式会社 Cylindrical sputtering target and manufacturing method of the same
JP2015132013A (en) * 2013-12-13 2015-07-23 Jx日鉱日石金属株式会社 Sputtering target and production method thereof
CN105925942A (en) * 2015-02-27 2016-09-07 Jx金属株式会社 Sputtering Target And Manufacturing Method Of Sputtering Target
JP5902333B1 (en) * 2015-02-27 2016-04-13 Jx金属株式会社 Sputtering target and manufacturing method thereof
JP2016160533A (en) * 2016-03-09 2016-09-05 Jx金属株式会社 Sputtering target, and its manufacturing method
WO2018186385A1 (en) * 2017-04-07 2018-10-11 三菱マテリアル株式会社 Cylindrical sputtering target, and production method therefor
JP2018178251A (en) * 2017-04-07 2018-11-15 三菱マテリアル株式会社 Cylindrical sputtering target and manufacturing method of the same
CN110337507A (en) * 2017-04-07 2019-10-15 三菱综合材料株式会社 Cylinder type sputtering target and its manufacturing method
KR20190112627A (en) 2018-03-26 2019-10-07 제이엑스금속주식회사 Sputtering target member, sputtering target assembly and manufacturing method of sputtering target member
KR20200126353A (en) 2018-03-26 2020-11-06 제이엑스금속주식회사 Sputtering target member, sputtering target assembly and manufacturing method of sputtering target member
CN108425096A (en) * 2018-05-21 2018-08-21 米亚索乐装备集成(福建)有限公司 A kind of target, target preparation method and device
WO2019223685A1 (en) * 2018-05-21 2019-11-28 米亚索乐装备集成(福建)有限公司 Target, and preparation method and apparatus therefor
WO2022045054A1 (en) * 2020-08-26 2022-03-03 三菱マテリアル株式会社 Method for manufacturing cylindrical sputtering target, and cylindrical sputtering target

Also Published As

Publication number Publication date
JP5672536B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5672536B2 (en) Cylindrical sputtering target and manufacturing method thereof
JP5672537B2 (en) Cylindrical sputtering target and manufacturing method thereof
JP5103911B2 (en) Cylindrical sputtering target and manufacturing method thereof
JP6753869B2 (en) How to make composites
JP5799154B2 (en) Sputtering target and manufacturing method thereof
JP2015036431A (en) Cylindrical sputtering target and manufacturing method of the same
KR20120115079A (en) Thermoelectric device, electrode materials and method for fabricating thereof
JP5194460B2 (en) Cylindrical sputtering target and manufacturing method thereof
US20110132973A1 (en) Method of manufacturing high-heat-load equipment by metallurgically joining carbon material with copper-alloy material
TWI564413B (en) Backing plate, target assembly and target for supporting
WO2015085650A1 (en) Method for diffusion welding w-ti alloy target material assembly
CN103224218B (en) A kind of method for packing of MEMS
CN115041767B (en) Method for binding ITO target material and Cu backboard
JP6305083B2 (en) Sputtering target and manufacturing method thereof
CN102409299A (en) Oxide ceramic sputtering target, preparation method thereof and brazing alloy for oxide ceramic sputtering target
TW201520381A (en) Preparation method of aluminum nitride substrate coated with copper to bond with thick copper plate
US20100288631A1 (en) Ceramic sputtering target assembly and a method for producing the same
CN107442922A (en) A kind of method that connecting dissimilar material is spread using amorphous intermediate layer
CN100489151C (en) Target material with multilayer metal film
CN111885852A (en) Preparation method of ceramic copper-clad plate
JP2016176147A (en) Cylindrical type sputtering target
CN205542755U (en) Highly reliable power device eutectic silicon back metallization structure
KR20140147961A (en) Sputtering target assembly and method of manufacturing the same
JPS61115667A (en) Method of joining target for sputtering to cooling plate
JP4985215B2 (en) Manufacturing method of cylindrical sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141211

R151 Written notification of patent or utility model registration

Ref document number: 5672536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151