WO2018186385A1 - Cylindrical sputtering target, and production method therefor - Google Patents

Cylindrical sputtering target, and production method therefor Download PDF

Info

Publication number
WO2018186385A1
WO2018186385A1 PCT/JP2018/014240 JP2018014240W WO2018186385A1 WO 2018186385 A1 WO2018186385 A1 WO 2018186385A1 JP 2018014240 W JP2018014240 W JP 2018014240W WO 2018186385 A1 WO2018186385 A1 WO 2018186385A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical
bonding material
target
bonding
backing tube
Prior art date
Application number
PCT/JP2018/014240
Other languages
French (fr)
Japanese (ja)
Inventor
昭史 三島
加藤 慎司
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018056467A external-priority patent/JP2018178251A/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201880012802.0A priority Critical patent/CN110337507A/en
Publication of WO2018186385A1 publication Critical patent/WO2018186385A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the cylindrical target 2 and the cylindrical backing tube 3 are not particularly limited.
  • the cylindrical target 2 has an inner diameter of 134 mm to 137 mm made of metal such as copper (Cu), silver (Ag), titanium (Ti), ceramics such as silicon (Si), zinc oxide doped with aluminum (AZO), or the like.
  • metal such as copper (Cu), silver (Ag), titanium (Ti), ceramics such as silicon (Si), zinc oxide doped with aluminum (AZO), or the like.
  • These cylindrical members can be used.
  • the cylindrical backing tube 3 may be a cylindrical member made of titanium (Ti), stainless steel (SUS), copper or a copper alloy and having an outer diameter of 133 mm to 136 mm mm and a length of 1 m to 3 m.
  • the oxide on the surface of the base treatment layer 11 may be damaged to reach the bonding material under the oxide.
  • the familiarity between the base treatment joint material and the filling joint material is further improved in the joint material filling step.
  • Example 1 10 pieces of silicon (Si) cylindrical target doped with boron (B) (specific resistance 0.05 ⁇ ⁇ cm, inner diameter: 137 mm, outer diameter: 157 mm, length: 200 mm, hereinafter referred to as Si-TG), pure Five cylindrical backing tubes made of titanium (Ti) (inner diameter: 125 mm, outer diameter: 135 mm, length: 600 mm, hereinafter referred to as Ti-BT) were prepared. The outer peripheral surface of Si-TG was heated using a mantle heater until the inner peripheral surface temperature of Si-TG reached 240 to 260 ° C.
  • Example 2 As a base treatment bonding material, Sn-1 wt% In (No. 6, melting point 224 ° C.), Sn-5 wt% In (No. 7, melting point 215 ° C.), Sn-10 wt% In (No. 8, melting point) 200 ° C.), and a cylindrical sputtering target is manufactured in the same manner as in Example 1 except that the base processing temperatures are 240 ° C., 230 ° C., and 215 ° C. The rate was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention includes: a surface treatment step in which a surface treating bonding material is applied to an inner circumferential surface, i.e. a bonding surface, of a cylindrical target (2), and/or an outer circumferential surface, i.e. a bonding surface, of a cylindrical backing tube (3), to form a surface treatment layer (11); and a bonding step which is performed after the surface treatment step, and in which a gap between the cylindrical target (2) and the backing tube (3) inserted into the cylindrical target is filled with a filling bonding material, and said filling bonding material is hardened. The melting point and the solidus temperature of the surface treating bonding material exceed the melting point and the solidus temperature of the filling bonding material.

Description

円筒型スパッタリングターゲット及びその製造方法Cylindrical sputtering target and manufacturing method thereof
 本発明は、スパッタリング装置に用いられる円筒型スパッタリングターゲット及びその製造方法に関する。
 本願は、2017年4月7日に日本に出願された特願2017-076471号及び2018年3月23日に日本に出願された特願2018-56467号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a cylindrical sputtering target used in a sputtering apparatus and a method for manufacturing the same.
This application claims priority based on Japanese Patent Application No. 2017-076471 filed in Japan on April 7, 2017 and Japanese Patent Application No. 2018-56467 filed in Japan on March 23, 2018. Is hereby incorporated by reference.
 円筒型スパッタリングターゲットを回転させながらスパッタを行うスパッタリング装置が知られている。このスパッタリング装置に用いられる円筒型スパッタリングターゲットは、特許文献1又は特許文献2に示されるように、円筒型バッキングチューブの外周面に円筒型ターゲットの内周面を接合している。
 この接合においては、接合面となる円筒型バッキングチューブの外周面及び円筒型ターゲットの内周面に下地処理として接合材と同じまたは類似の被膜を超音波ウェルダー(超音波はんだコテ)によるウェルダー処理にて形成し、その後、円筒型ターゲットに円筒型バッキングチューブを挿入して、両者の間に接合部のための隙間を設け、その隙間に接合材を供給して隙間を充填する接合方法が知られている。また、接合材としてインジウム(In)を用いることも知られている。
A sputtering apparatus that performs sputtering while rotating a cylindrical sputtering target is known. As shown in Patent Document 1 or Patent Document 2, the cylindrical sputtering target used in this sputtering apparatus has the inner peripheral surface of the cylindrical target joined to the outer peripheral surface of the cylindrical backing tube.
In this bonding, the same or similar coating as the bonding material is applied to the outer peripheral surface of the cylindrical backing tube as the bonding surface and the inner peripheral surface of the cylindrical target for the welding process using an ultrasonic welder (ultrasonic soldering iron). After that, a joining method is known in which a cylindrical backing tube is inserted into a cylindrical target, a gap for a joint is provided between the two, and a joining material is supplied into the gap to fill the gap. ing. It is also known to use indium (In) as a bonding material.
日本国特開2016-74977号公報(A)Japanese Unexamined Patent Publication No. 2016-74377 (A) 日本国特開2014-37619号公報(A)Japanese Unexamined Patent Publication No. 2014-37619 (A)
 ところで、円筒型バッキングチューブと円筒側ターゲットとの接合は、これらバッキングチューブ及びターゲットの加熱、下地処理接合材による下地処理、その冷却、ターゲットへのバッキングチューブの挿入、両者の間に接合材用隙間形成、組み立て、ターゲット及びバッキングチューブの再加熱、接合材の隙間への充填、冷却という一連のプロセスが必要である。
 ここでターゲットとバッキングチューブの下地処理について説明すると、下地処理はターゲット及びバッキングチューブを下地処理接合材の融点以上に加熱し、超音波はんだコテを用い、バッキングチューブの外周面及びターゲットの内周面へ下地処理接合材を塗布する工程である。
By the way, the cylindrical backing tube and the cylindrical target are joined by heating the backing tube and the target, ground treatment by the ground treatment joining material, cooling it, inserting the backing tube into the target, and a gap for the joining material between them. A series of processes are required: forming, assembling, reheating the target and backing tube, filling gaps in the bonding material, and cooling.
Here, the ground treatment of the target and the backing tube will be described. In the ground treatment, the target and the backing tube are heated to a melting point or higher of the ground treatment bonding material, and an outer surface of the backing tube and an inner circumferential surface of the target are used by using an ultrasonic soldering iron. This is a step of applying a base treatment bonding material.
 ターゲット及びバッキングチューブの下地処理接合材の表面は、下地処理後の冷却及び両者の隙間へ接合材を充填するための接合前の再加熱により、表面酸化が進行する。
 この下地処理接合材の表面の酸化膜の形成により、充填する接合材と下地処理接合材との接触が阻害され、接合不良が生じやすく、接合後の超音波探傷検査において所定の接合面積率が確保できず、製品の品質が不合格となることがある。
 このような品質が不合格となったスパッタリングターゲットは、全体を加熱して接合材を融解させた後、ターゲットをバッキングチューブから取り外し、再度、接合をやり直す作業が必要となる。一方、スパッタされる基板の大型化に伴い、円筒型ターゲットは長尺化しており、接合強度の向上も望まれている。
Surface oxidation of the surface of the base treatment bonding material of the target and the backing tube proceeds by cooling after the base treatment and reheating before bonding for filling the gap between them with the bonding material.
Due to the formation of the oxide film on the surface of the base treatment bonding material, the contact between the filling material to be filled and the base treatment bonding material is hindered, and poor bonding is likely to occur, and a predetermined bonding area ratio is obtained in ultrasonic flaw inspection after bonding. The quality of the product may be rejected.
The sputtering target in which such quality is rejected requires heating the whole to melt the bonding material, and then removing the target from the backing tube and re-bonding. On the other hand, with an increase in the size of the substrate to be sputtered, the cylindrical target has become longer, and an improvement in bonding strength is also desired.
 本発明は、このような事情に鑑み、下地処理した接合材表面の酸化膜による接合不良の発生を防止、接合のやり直し作業を低減して歩留まりを向上させ、かつターゲットとバッキングチューブとの接合強度を高めることを目的としている。 In view of such circumstances, the present invention prevents the occurrence of bonding failure due to the oxide film on the surface of the bonding material subjected to the base treatment, improves the yield by reducing the reworking operation, and the bonding strength between the target and the backing tube. The purpose is to increase.
 本発明の一態様である円筒型スパッタリングターゲットの製造方法(以下、「本発明の円筒型スパッタリングターゲットの製造方法」と称する)は、円筒型バッキングチューブの外周面と円筒型ターゲットの内周面とを接合面とし、接合面間に設けた隙間を接合材で充填し接合する円筒型スパッタリングターゲットの製造方法であって、前記円筒型ターゲットの接合面である内周面と前記円筒型バッキングチューブの接合面である外周面との少なくとも一方に下地処理接合材を塗布して下地処理層を形成する下地処理工程と、下地処理工程の後、前記円筒型ターゲットと該円筒型ターゲット内に挿入した前記バッキングチューブとの間の隙間に充填用接合材を充填して固化する接合工程とを含み、前記下地処理接合材の融点または固相線温度が前記充填用接合材の融点または固相線温度を超えている。 A manufacturing method of a cylindrical sputtering target which is one embodiment of the present invention (hereinafter referred to as “a manufacturing method of a cylindrical sputtering target of the present invention”) includes an outer peripheral surface of a cylindrical backing tube and an inner peripheral surface of the cylindrical target. Is a method of manufacturing a cylindrical sputtering target in which a gap provided between the bonding surfaces is filled with a bonding material and bonded, and the inner peripheral surface of the cylindrical target and the cylindrical backing tube A base treatment step of forming a base treatment layer by applying a base treatment bonding material to at least one of the outer peripheral surface as a joining surface, and after the base treatment step, the cylindrical target and the cylindrical target inserted into the cylindrical target A bonding step of filling the bonding material for filling into a gap between the backing tube and solidifying, and melting or solidus temperature of the base treatment bonding material There has been above the melting point or solidus temperature of the filling bonding material.
 この製造方法において、下地処理工程で形成される下地処理層は、下地処理接合材塗布後の冷却中及び接合工程に際しての加熱中に表面が酸化され、酸化膜を形成する。この下地処理接合材の融点又は固相線温度が、充填用接合材の融点又は液相線温度より高い場合、接合時の温度を両者の中間温度に設定することができる。この温度設定により下地処理接合材は、充填用接合材を充填するための加熱工程において、固相状態で加熱されているため酸化が抑制され、接合不良が低減する。 In this manufacturing method, the surface of the ground treatment layer formed in the ground treatment process is oxidized during cooling after application of the ground treatment bonding material and during heating in the joining process to form an oxide film. When the melting point or solidus temperature of the base treatment bonding material is higher than the melting point or liquidus temperature of the filling bonding material, the temperature during bonding can be set to an intermediate temperature between the two. With this temperature setting, the base treatment bonding material is heated in the solid phase in the heating process for filling the filling bonding material, so that oxidation is suppressed and bonding failure is reduced.
 本発明の円筒型スパッタリングターゲットの製造方法において、前記下地処理接合材は錫含有量が90質量%以上の純錫又は錫合金であり、前記充填用接合材はインジウム含有量が85質量%以上の純インジウム又はインジウム合金であるとよい。 In the manufacturing method of the cylindrical sputtering target of the present invention, the base treatment bonding material is a pure tin or tin alloy having a tin content of 90% by mass or more, and the filling bonding material has an indium content of 85% by mass or more. It may be pure indium or an indium alloy.
 この製造方法では、接合工程における接合温度をインジウムの融点(約157℃)以上、下地処理接合材の融点以下とすることで、接合工程時の加熱中おいて、下地処理層の表面が溶融することが無いので、接合前の加熱による下地処理層表面の酸化を抑制することができる。また、充填用接合材と下地処理接合材とが接合界面において接すると、錫とインジウムとの共晶反応の効果で濡れ性が向上し、接合不良を低減することができる。また接合不良が低減するさらなる理由としては、下地処理層表面の酸化膜は錫の酸化物であることから、充填用接合材に比べ密度が小さく、このため、円筒型ターゲットと円筒型バッキングチューブとの隙間に溶融状態の充填用接合材を充填中に、下地処理層表面から剥がれた酸化膜が溶融部の上に浮上することが挙げられる。この効果により、接合完了後も充填接合材中に酸化物が残留しにくくなる。
 この場合、前記充填用接合材は、錫を15質量%以下含むインジウム合金であるとよい。
In this manufacturing method, the surface of the base treatment layer is melted during heating during the joining step by setting the joining temperature in the joining step to the melting point of indium (about 157 ° C.) or higher and below the melting point of the base treatment joining material. Therefore, oxidation of the surface of the base treatment layer due to heating before bonding can be suppressed. Further, when the filling bonding material and the base treatment bonding material are in contact with each other at the bonding interface, wettability is improved by the effect of the eutectic reaction between tin and indium, and bonding defects can be reduced. Further, the reason why the bonding failure is reduced is that the oxide film on the surface of the base treatment layer is a tin oxide, so the density is lower than that of the filling bonding material. Therefore, the cylindrical target and the cylindrical backing tube It is mentioned that the oxide film peeled off from the surface of the base treatment layer floats on the melted part while filling the gap between the melted filling bonding material. This effect makes it difficult for oxides to remain in the filled bonding material even after the bonding is completed.
In this case, the filling bonding material may be an indium alloy containing 15% by mass or less of tin.
 本発明の円筒型スパッタリングターゲットの製造方法において、前記下地処理工程又は前記接合工程の少なくともいずれかを不活性雰囲気にて実施するとよい。
 不活性雰囲気により酸化を極力防止することができ、接合強度のさらなる向上を図ることができる。この場合、下地処理工程では、少なくとも下地処理接合材の塗布開始から冷却完了までの間、また、接合工程では、少なくとも加熱開始から充填用接合材の充填完了までの間で、不活性雰囲気に維持されればよい。
 本発明の円筒型スパッタリングターゲットの製造方法において、前記接合工程は、前記円筒型ターゲットと、該円筒型ターゲット内に挿入した前記バッキングチューブと、を前記充填用接合材の融点または固相線温度以上、前記下地処理接合材の融点または固相線温度未満の温度で再加熱する再加熱工程を備えても良い。
In the method for producing a cylindrical sputtering target of the present invention, at least one of the base treatment step and the bonding step may be performed in an inert atmosphere.
Oxidation can be prevented as much as possible by the inert atmosphere, and the joint strength can be further improved. In this case, in the base treatment process, an inert atmosphere is maintained at least from the start of application of the base treatment bonding material to the completion of cooling, and in the bonding process, at least from the start of heating to the completion of filling of the filling bonding material. It only has to be done.
In the method of manufacturing a cylindrical sputtering target according to the present invention, the bonding step includes the cylindrical target and the backing tube inserted into the cylindrical target at a melting point or a solidus temperature of the filling bonding material or higher. A reheating step of reheating at a temperature lower than the melting point or solidus temperature of the base treatment bonding material may be provided.
 本発明の他態様の円筒型スパッタリングターゲット(以下、「本発明の円筒型スパッタリングターゲット」と称する)は、円筒型ターゲット内に円筒型バッキングチューブが挿入され、円筒型バッキングチューブの外周面と円筒型ターゲットの内周面との間にインジウムと錫を含む接合部が形成されており、前記円筒型バッキングチューブの中心軸に対し垂直な前記接合部の断面において、円筒型ターゲットと前記接合部との接合界面及び円筒型バッキングチューブと前記接合部との接合界面のうちの少なくとも一方の接合界面から接合部内部へ10μmの厚さの範囲内の錫濃度をS1質量%とし、前記接合部の厚さ方向の中央部の錫濃度をS2質量%としたとき、(S1/S2)≧1.5である。 A cylindrical sputtering target according to another aspect of the present invention (hereinafter referred to as “cylindrical sputtering target of the present invention”) has a cylindrical backing tube inserted into the cylindrical target, and an outer peripheral surface of the cylindrical backing tube and a cylindrical shape. A joint including indium and tin is formed between the inner peripheral surface of the target, and in a cross section of the joint perpendicular to the central axis of the cylindrical backing tube, the joint between the cylindrical target and the joint The tin concentration in the thickness range of 10 μm from at least one of the bonding interface and the bonding interface between the cylindrical backing tube and the bonding portion to the inside of the bonding portion is S1% by mass, and the thickness of the bonding portion When the tin concentration in the center of the direction is S2% by mass, (S1 / S2) ≧ 1.5.
 円筒型ターゲットと円筒型バッキングチューブとを接合する場合、両者の間に接合材を充填する前に、円筒型ターゲットの内周面と円筒型バッキングチューブの外周面との少なくとも一方に予め錫を主成分とする下地処理材を塗布しておくことが行われるが、接合後の接合部に、厚さ方向に錫の濃度勾配が上述のように生じていると、下地処理層が接合部になじんだ状態となっており、接合強度が向上する。この場合、(S1/S2)が1.5未満であると、接合部の接合力が低下し、スパッタリング中に円筒型バッキングチューブ上で円筒型ターゲットがずれる可能性がある。 When joining a cylindrical target and a cylindrical backing tube, tin is preliminarily applied to at least one of the inner peripheral surface of the cylindrical target and the outer peripheral surface of the cylindrical backing tube before filling the bonding material therebetween. The base treatment material as a component is applied in advance, but if a tin concentration gradient occurs in the thickness direction in the joined portion after joining as described above, the ground treatment layer becomes compatible with the joined portion. The joint strength is improved. In this case, if (S1 / S2) is less than 1.5, the joining force of the joining portion is reduced, and the cylindrical target may be displaced on the cylindrical backing tube during sputtering.
 本発明によれば、下地処理した接合材表面の酸化膜による接合不良の発生を防止、接合のやり直し作業を低減して歩留まりを向上させ、かつターゲットとバッキングチューブとの接合強度を高めることができる。 According to the present invention, it is possible to prevent the occurrence of bonding failure due to the oxide film on the surface of the bonding material subjected to the ground treatment, reduce the reworking operation, improve the yield, and increase the bonding strength between the target and the backing tube. .
本発明の実施形態の円筒型スパッタリングターゲットの縦断面図である。It is a longitudinal cross-sectional view of the cylindrical sputtering target of embodiment of this invention. 図1の横断面図である。It is a cross-sectional view of FIG. 図1のAで示す部分の拡大断面図及び接合部の断面における成分プロファイルの模式図である。It is the expanded sectional view of the part shown by A of FIG. 1, and the schematic diagram of the component profile in the cross section of a junction part. 円筒型スパッタリングターゲットの製造方法の第1実施形態を説明するフローチャートである。It is a flowchart explaining 1st Embodiment of the manufacturing method of a cylindrical sputtering target. 第1実施形態の製造方法における製造途中の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state in the middle of manufacture in the manufacturing method of 1st Embodiment. 円筒型スパッタリングターゲットの製造方法の第2実施形態を説明するフローチャートである。It is a flowchart explaining 2nd Embodiment of the manufacturing method of a cylindrical sputtering target. 第2実施形態の製造方法における製造途中の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state in the middle of manufacture in the manufacturing method of 2nd Embodiment. 第2実施形態の製造方法における製造途中の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state in the middle of manufacture in the manufacturing method of 2nd Embodiment.
 以下、本発明に係る円筒型スパッタリングターゲット及びその製造方法の実施形態を、図面を参照しながら説明する。
 円筒型スパッタリングターゲット1は、図1及び図2に示すように、円筒型ターゲット2内に円筒型バッキングチューブ3が挿入され、これら円筒型ターゲット2の内周面と円筒型バッキングチューブ3の外周面との間が接合部4を介して接合されている。この場合、円筒型ターゲット2と円筒型バッキングチューブ3とは中心軸が一致した状態で配置される。
Embodiments of a cylindrical sputtering target and a method for manufacturing the same according to the present invention will be described below with reference to the drawings.
As shown in FIGS. 1 and 2, the cylindrical sputtering target 1 includes a cylindrical backing tube 3 inserted into a cylindrical target 2, and an inner peripheral surface of the cylindrical target 2 and an outer peripheral surface of the cylindrical backing tube 3. Are joined via a joint 4. In this case, the cylindrical target 2 and the cylindrical backing tube 3 are arranged in a state where the central axes coincide with each other.
 円筒型ターゲット2及び円筒型バッキングチューブ3の材料や寸法は特に限定されない。例えば、円筒型ターゲット2は、銅(Cu)、銀(Ag)、チタン(Ti)等の金属、シリコン(Si)、アルミニウムをドープした酸化亜鉛(AZO)等のセラミックスなどからなる内径134mm~137mmの筒状部材を用いることができる。例えば、円筒型バッキングチューブ3は、チタン(Ti)、ステンレス鋼(SUS)、または銅あるいは銅合金からなる外径133mm~136mmmm、長さ1m~3mの筒状部材を用いることができる。この場合、円筒型ターゲット2は、長さ30cm程度の短尺のターゲット材2aを、パッキン5を介して複数連結した状態で円筒型バッキングチューブ3の外周に配置される。パッキン5は、接合材冷却工程中、接合材が凝固固化後、100℃以上となった時点で除去される。円筒型ターゲット2内に円筒型バッキングチューブ3を挿入した状態で、両者の間に半径方向に0.5mm~2mmの隙間が形成される。なお、この隙間には、後述するように隙間保持のためのスペーサ6が挿入され、このスペーサ6とともに円筒型ターゲット2及び円筒型バッキングチューブ3とが接合部4により一体化している。 The material and dimensions of the cylindrical target 2 and the cylindrical backing tube 3 are not particularly limited. For example, the cylindrical target 2 has an inner diameter of 134 mm to 137 mm made of metal such as copper (Cu), silver (Ag), titanium (Ti), ceramics such as silicon (Si), zinc oxide doped with aluminum (AZO), or the like. These cylindrical members can be used. For example, the cylindrical backing tube 3 may be a cylindrical member made of titanium (Ti), stainless steel (SUS), copper or a copper alloy and having an outer diameter of 133 mm to 136 mm mm and a length of 1 m to 3 m. In this case, the cylindrical target 2 is disposed on the outer periphery of the cylindrical backing tube 3 in a state where a plurality of short target materials 2 a having a length of about 30 cm are connected via the packing 5. The packing 5 is removed when the bonding material becomes 100 ° C. or higher after the bonding material is solidified and solidified during the bonding material cooling step. With the cylindrical backing tube 3 inserted into the cylindrical target 2, a gap of 0.5 mm to 2 mm is formed in the radial direction between them. As will be described later, a spacer 6 for holding the gap is inserted into the gap, and the cylindrical target 2 and the cylindrical backing tube 3 are integrated with the spacer 6 together by the joint 4.
 接合部4は、例えば、インジウム含有量が85質量%以上の純インジウム又はインジウム合金であり、錫が15質量%以下含まれる。この場合、円筒型スパッタリングターゲット1は後述するように下地処理工程後に接合工程を経て製造されるため、接合部4において、図3に示すようにインジウム(In)と錫(Sn)との濃度勾配が厚さ方向に生じており、円筒型ターゲット2と接合部4との接合界面及び円筒型バッキングチューブ3と接合部4との接合界面から接合部4内部へ10μmの厚さの範囲内(図3の位置P1)の錫濃度(平均値)をS1質量%とし、接合部4の厚さ方向の中央部(接合部4の厚さをTとしたときに接合界面からT/2の位置(図3の位置P2))の錫濃度をS2質量%としたとき、(S1/S2)≧1.5とされる。
 特に限定されないが、接合部4に含まれるインジウムの位置P2での含有量の上限値は、(99.99)質量%である。同様に特に限定されないが、接合部4の位置P2での好ましいインジウム含有量は、90.00質量%~(99.97質量%であり、より好ましくは95.00質量%~99.95質量%である。
 特に限定されないが、接合部4に含まれる錫の位置P2での含有量の下限値は0.01質量%である。同様に特に限定されないが、好ましい接合部4に含まれる錫の含有量は0.1質量%~5.0質量%であり、より好ましくは0.2質量%~1.0質量%である。
 特に限定されないが、S1/S2の上限値は1500である。同様に特に限定されないが、好ましいS1/S2の範囲は5≦(S1/S2)<1000であり、さらに好ましくは20≦(S1/S2)<100である。
The joint 4 is, for example, pure indium or an indium alloy having an indium content of 85% by mass or more, and contains 15% by mass or less of tin. In this case, since the cylindrical sputtering target 1 is manufactured through a bonding process after the base treatment process as will be described later, the concentration gradient of indium (In) and tin (Sn) as shown in FIG. Is generated in the thickness direction, and within a thickness range of 10 μm from the bonding interface between the cylindrical target 2 and the bonding portion 4 and from the bonding interface between the cylindrical backing tube 3 and the bonding portion 4 to the inside of the bonding portion 4 (see FIG. 3 (position P1) at a tin concentration (average value) of S1% by mass, and the central portion in the thickness direction of the joint 4 (the thickness of the joint 4 is T, the position T / 2 from the joint interface ( When the tin concentration at the position P2)) in FIG. 3 is S2% by mass, (S1 / S2) ≧ 1.5.
Although not particularly limited, the upper limit of the content of indium contained in the joint portion 4 at the position P2 is (99.99) mass%. Similarly, although not particularly limited, a preferable indium content at the position P2 of the joint portion 4 is 90.00 mass% to (99.97 mass%, more preferably 95.00 mass% to 99.95 mass%. It is.
Although not particularly limited, the lower limit value of the content of tin contained in the joint portion 4 at the position P2 is 0.01% by mass. Similarly, although not particularly limited, the content of tin contained in the preferred joint 4 is 0.1% by mass to 5.0% by mass, and more preferably 0.2% by mass to 1.0% by mass.
Although not particularly limited, the upper limit value of S1 / S2 is 1500. Similarly, although not particularly limited, a preferable range of S1 / S2 is 5 ≦ (S1 / S2) <1000, and more preferably 20 ≦ (S1 / S2) <100.
<円筒型スパッタリングターゲットの製造方法>
 次に、円筒型スパッタリングターゲット1の製造方法について、その第1実施形態を説明する。この第1実施形態では、図4のフローチャートに示すように、円筒型バッキングチューブ3及び円筒型ターゲット2の加熱工程、下地処理接合材による下地処理工程、下地処理接合材冷却工程、円筒型ターゲット2への円筒型バッキングチューブ3の挿入および両者の間に接合材用隙間を形成した状態に組み立てる組立工程、円筒型ターゲット2及び円筒型バッキングチューブ3の再加熱工程、充填用接合材を隙間に充填する接合材充填工程、そして接合材冷却工程の順に施される。以下、工程順に説明する。
<Method of manufacturing cylindrical sputtering target>
Next, a first embodiment of the method for manufacturing the cylindrical sputtering target 1 will be described. In the first embodiment, as shown in the flowchart of FIG. 4, the heating process of the cylindrical backing tube 3 and the cylindrical target 2, the ground treatment process using the ground treatment bonding material, the ground treatment bonding material cooling process, and the cylindrical target 2 Inserting cylindrical backing tube 3 into assembly and assembling process to form joint gap between them, reheating process of cylindrical target 2 and cylindrical backing tube 3, filling filling filler into gap The joining material filling step and the joining material cooling step are performed in this order. Hereinafter, it demonstrates in order of a process.
(加熱工程)
 円筒型ターゲット2及び円筒型バッキングチューブ3を加熱し、これらの接合面となる円筒型ターゲット2の内周面及び円筒型バッキングチューブ3の外周面を下地処理接合材の融点(又は液相線温度)以上の温度に加熱する。例えば下地処理接合材として純錫(純度:99.8質量%以上)を用いる場合には232℃以上に加熱する。
(Heating process)
The cylindrical target 2 and the cylindrical backing tube 3 are heated, and the inner peripheral surface of the cylindrical target 2 and the outer peripheral surface of the cylindrical backing tube 3 serving as the joint surfaces thereof are used as the melting point (or liquidus temperature of the base treatment bonding material). ) Heat to above temperature. For example, when pure tin (purity: 99.8% by mass or more) is used as the base treatment bonding material, it is heated to 232 ° C. or more.
(下地処理工程)
 加熱工程において加熱状態とした円筒型ターゲット2の内周面及び円筒型バッキングチューブ3の外周面に、それぞれ溶融状態の下地処理接合材を塗り込む。この場合、ヒータを搭載した超音波はんだコテ(図示略)で超音波振動を加えながら下地処理接合材を塗り込むことにより、円筒型ターゲット2の内周面及び円筒型バッキングチューブ3の外周面における汚れや酸化膜の除去などが促進され、これらの表面に下地処理接合材をなじませることができる。下地処理接合材としては、純錫、又は錫含有量が90質量%以上の錫合金が用いられる。
 錫合金としては、15質量%以下のインジウムを含有するインジウム錫合金が好適である。インジウム添加量が15質量%を越える錫合金は、融点(液相線温度)が180℃以下となり、接合の際の加熱により接合表面での酸化が進行し、接合部に酸化膜が巻込まれ接合強度が低下するおそれがある。
 特に限定されないが、下地処理接合材の錫含有量の上限値は100質量%である。同様に特に限定されないが、好ましい下地処理接合材の錫含有量は90質量%~100質量%であり、より好ましくは95質量%~100質量%である。
 下地処理接合材として、その他に、0.7質量%以下の銅(例えばSn-0.7Cuの合金)を含有する銅錫合金、9質量%以下の亜鉛を含有する錫亜鉛合金、3.5質量%以下の銀を含有する銀錫合金なども用いることができる。
 この下地処理工程はアルゴン、窒素等の不活性雰囲気にて実施すると、下地処理接合材によって形成される下地処理層の表面の酸化を抑制することができる。この不活性雰囲気は、少なくとも、下地処理材の塗布開始から、次の下地処理接合材冷却工程において下地処理接合材の冷却が完了するまでの間、維持するとよい。
(Ground treatment process)
The ground treatment bonding material in the molten state is applied to the inner peripheral surface of the cylindrical target 2 and the outer peripheral surface of the cylindrical backing tube 3 which are heated in the heating step. In this case, the surface treatment bonding material is applied to the inner peripheral surface of the cylindrical target 2 and the outer peripheral surface of the cylindrical backing tube 3 while applying ultrasonic vibration with an ultrasonic soldering iron (not shown) equipped with a heater. Removal of dirt and oxide films is promoted, and the surface treatment bonding material can be made to conform to these surfaces. As the base treatment bonding material, pure tin or a tin alloy having a tin content of 90% by mass or more is used.
As the tin alloy, an indium tin alloy containing 15% by mass or less of indium is preferable. A tin alloy in which the amount of indium added exceeds 15% by mass has a melting point (liquidus temperature) of 180 ° C. or lower, oxidation at the bonding surface proceeds by heating during bonding, and an oxide film is rolled into the bonded portion. Strength may be reduced.
Although not particularly limited, the upper limit value of the tin content of the base treatment bonding material is 100% by mass. Similarly, although not particularly limited, the tin content of a preferable base treatment bonding material is 90% by mass to 100% by mass, and more preferably 95% by mass to 100% by mass.
In addition, as a base treatment bonding material, a copper-tin alloy containing 0.7% by mass or less of copper (eg, Sn-0.7Cu alloy), a tin-zinc alloy containing 9% by mass or less of zinc, 3.5 A silver tin alloy containing less than or equal to mass% silver can also be used.
When the base treatment step is performed in an inert atmosphere such as argon or nitrogen, the surface of the base treatment layer formed by the base treatment bonding material can be prevented from being oxidized. This inert atmosphere is preferably maintained at least from the start of application of the base treatment material until the cooling of the base treatment joint material is completed in the next base treatment joint material cooling step.
(下地処理接合材冷却工程)
 下地処理接合材を塗布した円筒型ターゲット2及び円筒型バッキングチューブ3を常温(20℃)まで冷却して、下地処理接合材を固化する。これにより、円筒型ターゲット2の内周面及び円筒型バッキングチューブの外周面に下地処理層11が形成された状態となる。この下地処理層11の厚さとしては特に限定されるものではないが、10μm以上200μm以下が適切である。下地処理層11の厚さが10μm未満の場合は、円筒型ターゲット2及び円筒型バッキングチューブ3に下地処理接合材を十分になじませることが難しく、また、円筒型ターゲット2および円筒型バッキングチューブ3の素材表面が露出しやすくなり、その後に充填用接合材を充填した際に接合不良を生じやすくなる。下地処理層11の厚さが200μmを越えると、下地処理後に重力により接合材が下方に集積し、組立時において円筒型ターゲット2に円筒型バッキングチューブ3を通すことができなくなり、製造が困難となることがある。
 特に限定されないが、より好ましい下地処理層11の厚さは30μm~150μmであり、さらにより好ましくは50μm~100μmである。
 なお、この下地処理接合材冷却工程において、固化した後の下地処理層11の表面の酸化物を室温において機械的に除去することとしてもよい。あるいは、下地処理層11表面の酸化物に、酸化物の下の接合材までに達する傷を付けることとしてもよい。このように下地処理層11の表面の酸化物を室温において、全部あるいは一部除去することにより、接合材充填工程において下地処理接合材と充填用接合材とのなじみがさらに良好となる。
(Base treatment bonding material cooling process)
The cylindrical target 2 and the cylindrical backing tube 3 coated with the base treatment bonding material are cooled to room temperature (20 ° C.) to solidify the base treatment bonding material. As a result, the ground treatment layer 11 is formed on the inner peripheral surface of the cylindrical target 2 and the outer peripheral surface of the cylindrical backing tube. The thickness of the base treatment layer 11 is not particularly limited, but is preferably 10 μm or more and 200 μm or less. When the thickness of the ground treatment layer 11 is less than 10 μm, it is difficult to sufficiently apply the ground treatment bonding material to the cylindrical target 2 and the cylindrical backing tube 3, and the cylindrical target 2 and the cylindrical backing tube 3. The surface of the material is likely to be exposed, and a bonding failure is likely to occur when the filling bonding material is subsequently filled. If the thickness of the ground treatment layer 11 exceeds 200 μm, the bonding material accumulates downward due to gravity after the ground treatment, and the cylindrical backing tube 3 cannot be passed through the cylindrical target 2 during assembly, making it difficult to manufacture. May be.
Although not particularly limited, the thickness of the base treatment layer 11 is more preferably 30 μm to 150 μm, and still more preferably 50 μm to 100 μm.
Note that, in the base treatment bonding material cooling step, the oxide on the surface of the base treatment layer 11 after solidification may be mechanically removed at room temperature. Alternatively, the oxide on the surface of the base treatment layer 11 may be damaged to reach the bonding material under the oxide. Thus, by removing all or part of the oxide on the surface of the base treatment layer 11 at room temperature, the familiarity between the base treatment joint material and the filling joint material is further improved in the joint material filling step.
(組立工程)
 図5に示すように、まず、円筒型バッキングチューブ3の端部を配置可能な凹部13aを有する固定台13に、その凹部13aを囲むように円筒型ターゲット2を載置する。次に、円筒型ターゲット2内に円筒型バッキングチューブ3を挿入し、これらの間に周方向に一定の隙間をあけた状態で同軸上に配置する。周方向に一定の隙間とするために、円筒型ターゲット2と円筒型バッキングチューブ3との間にスペーサ6を配置する。このスペーサ6としては、銅又はステンレス鋼等の金属からなるワイヤが好適であり、円筒型ターゲット2と円筒型バッキングチューブ3との間の隙間に応じた外径のものを用いる。このスペーサ6を隙間の周方向に等間隔で複数本、例えば3本挿入することにより、円筒型ターゲット2と円筒型バッキングチューブ3とを周方向に一定の隙間で同軸上に配置する。
(Assembly process)
As shown in FIG. 5, first, the cylindrical target 2 is placed on a fixed base 13 having a recess 13 a in which the end of the cylindrical backing tube 3 can be placed so as to surround the recess 13 a. Next, the cylindrical backing tube 3 is inserted into the cylindrical target 2 and arranged coaxially with a certain gap in the circumferential direction therebetween. A spacer 6 is disposed between the cylindrical target 2 and the cylindrical backing tube 3 in order to provide a constant gap in the circumferential direction. As the spacer 6, a wire made of a metal such as copper or stainless steel is preferable, and a spacer having an outer diameter corresponding to the gap between the cylindrical target 2 and the cylindrical backing tube 3 is used. By inserting a plurality of, for example, three spacers 6 at regular intervals in the circumferential direction of the gap, the cylindrical target 2 and the cylindrical backing tube 3 are coaxially arranged with a constant gap in the circumferential direction.
(再加熱工程)
 前述のように組み立てられた円筒型ターゲット2と円筒型バッキングチューブ3とをヒータ(図示略)により加熱し、充填用接合材の融点(又は液相線温度)以上で、下地処理接合材の融点(又は固相線温度)以下の温度に設定する。このように、円筒型ターゲット2と円筒型バッキングチューブ3とを充填用接合材の融点(又は液相線温度)以上で、下地処理接合材の融点(又は固相線温度)以下の温度に加熱することにより、下地処理層11は溶融することがなく、加熱による酸化を抑制することができる。
 特に限定されないが、好ましい再加熱過程の温度は145℃以上200℃未満であり、より好ましくは160℃以上180℃未満である。
 同様に、好ましい再加熱過程の加熱時間は10分間~3時間であり、より好ましくは30分間~2時間である。
(Reheating process)
The cylindrical target 2 and the cylindrical backing tube 3 assembled as described above are heated by a heater (not shown), and the melting point (or liquidus temperature) of the filling bonding material is equal to or higher than the melting point of the base treatment bonding material. (Or solidus temperature) Set to a temperature below. In this way, the cylindrical target 2 and the cylindrical backing tube 3 are heated to a temperature not lower than the melting point (or liquidus temperature) of the filling bonding material and not higher than the melting point (or solidus temperature) of the base treatment bonding material. By doing so, the base treatment layer 11 is not melted, and oxidation due to heating can be suppressed.
Although it does not specifically limit, The temperature of a preferable reheating process is 145 degreeC or more and less than 200 degreeC, More preferably, it is 160 degreeC or more and less than 180 degreeC.
Similarly, the heating time in the preferred reheating process is 10 minutes to 3 hours, more preferably 30 minutes to 2 hours.
(接合材充填工程)
 加熱状態の円筒型ターゲット2と円筒型バッキングチューブ3とを上下方向に沿って配置し、その隙間の下端部をパッキン5によって閉塞した状態で、隙間の上方から図5の矢印Bで示すように溶融状態の充填用接合材を充填する。充填用接合材は、スペーサ6により保持された隙間の下部に溜まり、徐々に上部に向かって充填される。隙間の上端には、隙間からあふれる充填用接合材を受けるための受皿12を設けておき、この受皿12に充填用接合材があふれるまで充填する。
(Bonding material filling process)
The heated cylindrical target 2 and the cylindrical backing tube 3 are arranged along the vertical direction, and the lower end of the gap is closed by the packing 5 as shown by the arrow B in FIG. Filled with a filling filling material in a molten state. The filling bonding material accumulates in the lower part of the gap held by the spacer 6 and is gradually filled toward the upper part. A receiving tray 12 for receiving the filling bonding material overflowing from the gap is provided at the upper end of the gap, and the receiving tray 12 is filled until the filling bonding material overflows.
 この充填用接合材としては、錫を15質量%以下含有するインジウム合金が好適である。充填用接合材としての錫濃度が15質量%を越えるインジウム合金は、錫濃度が15質量%を越え79質量%以下では融点が140℃未満に下がり、スパッタ中において円筒型ターゲット2からの伝導熱により軟化し円筒型ターゲット2が円筒型バッキングチューブ3上で動いてずれる可能性がある。また、79質量%以上では固相線と液相線との温度差から、充填用接合材が凝固する際に引巣に伴う接合不良が生じやすい。
 この充填用接合材を円筒型ターゲット2と円筒型バッキングチューブ3との間の隙間に充填すると、前述したように下地処理層11の主成分は錫であり、充填用接合材の主成分はインジウムであることから、これら錫とインジウムとが共晶反応の効果で濡れ性が向上する。また、下地処理層表面の酸化物は錫の酸化物であるから、充填用接合材に比べて密度が小さく、隙間の最上端で接合材を溢れさせることにより、酸化物を浮上させて隙間から除去することができる。このため、接合部に酸化物が残留しにくい。
 充填用接合材としては、前述したインジウム合金だけでなく、下地処理接合材との組み合わせとして、表1のものを適用できる。
As this filling bonding material, an indium alloy containing 15% by mass or less of tin is suitable. An indium alloy having a tin concentration of more than 15% by mass as a bonding material for filling has a melting point of less than 140 ° C. when the tin concentration exceeds 15% by mass and is 79% by mass or less, and heat conduction from the cylindrical target 2 during sputtering. May cause the cylindrical target 2 to move on the cylindrical backing tube 3 and shift. On the other hand, when the content is 79% by mass or more, due to a temperature difference between the solid phase line and the liquid phase line, poor bonding due to the shrinkage tends to occur when the filling bonding material solidifies.
When this filling bonding material is filled in the gap between the cylindrical target 2 and the cylindrical backing tube 3, as described above, the main component of the ground treatment layer 11 is tin, and the main component of the filling bonding material is indium. Therefore, the wettability is improved by the effect of eutectic reaction between tin and indium. Moreover, since the oxide on the surface of the base treatment layer is an oxide of tin, the density is lower than that of the filling bonding material, and by overflowing the bonding material at the uppermost end of the gap, the oxide is levitated and is released from the gap. Can be removed. For this reason, it is difficult for the oxide to remain in the joint.
As the filling bonding material, not only the above-mentioned indium alloy, but also those in Table 1 can be applied as a combination with the base treatment bonding material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す組み合わせとすることにより、下地処理接合材の融点が充填用接合材の融点より高く設定され、接合温度を両者の中間領域に設定可能となり、接合不良に伴うやり直し作業が低減し、さらに接合強度の向上を発揮することができる。
 また、接合材及び酸化物の密度については表2に示す通りである。
By using the combinations shown in Table 1, the melting point of the base treatment bonding material is set higher than the melting point of the filling bonding material, the bonding temperature can be set in the middle region between the two, and the rework work associated with the bonding failure is reduced. In addition, the bonding strength can be improved.
The density of the bonding material and oxide is as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、下地処理接合材として錫(Sn)を用い、充填用接合材としてインジウム(In)を用いることにより、下地処理層の表面に形成される酸化膜(酸化錫)の密度は、インジウムの密度より小さいものとなる。したがって、円筒型ターゲット2と円筒型バッキングチューブ3との隙間にインジウムからなる充填用接合材を充填することにより、下地処理層の表面の酸化錫を浮上させて除去することが可能である As shown in Table 2, the density of the oxide film (tin oxide) formed on the surface of the base treatment layer by using tin (Sn) as the base treatment bonding material and indium (In) as the filling bonding material Is smaller than the density of indium. Therefore, by filling the gap between the cylindrical target 2 and the cylindrical backing tube 3 with the filling bonding material made of indium, it is possible to float and remove the tin oxide on the surface of the base treatment layer.
 なお、再加熱工程、接合材充填工程(少なくとも充填完了までの間)は不活性雰囲気にて実施することにより、接合材の酸化を抑制し、さらなる接合強度の向上が可能となる。 Note that the reheating step and the bonding material filling step (at least until the filling is completed) are performed in an inert atmosphere, thereby suppressing the oxidation of the bonding material and further improving the bonding strength.
(接合材冷却工程)
 円筒型ターゲット2と円筒型バッキングチューブ3との隙間に充填用接合材を充填した後、これを冷却して固化させ、不要な付着物等を除去して清掃することにより、円筒型ターゲット2と円筒型バッキングチューブ3とが接合部4により一体化した円筒型スパッタリングターゲット1が完成する。
 この円筒型スパッタリングターゲット1は、錫を主成分とする下地処理層11を形成した後に、インジウムを主成分とする充填用接合材で一体化したものであるため、接合部4には、前述したように、その厚さ方向に錫とインジウムとの濃度勾配が生じている。また、下地処理層11表面の酸化物の残留が抑制されているので、下地処理層11が接合部4になじんで一体化しており、接合不良が低減し、接合強度を向上させることができる。
(Bonding material cooling process)
After filling the gap between the cylindrical target 2 and the cylindrical backing tube 3 with a filling bonding material, this is cooled and solidified to remove unnecessary deposits and the like, and then cleaned. The cylindrical sputtering target 1 in which the cylindrical backing tube 3 is integrated by the joint 4 is completed.
Since this cylindrical sputtering target 1 is formed by forming a base treatment layer 11 containing tin as a main component and then integrating it with a filling bonding material containing indium as a main component, Thus, the concentration gradient of tin and indium is generated in the thickness direction. In addition, since the oxide residue on the surface of the base treatment layer 11 is suppressed, the base treatment layer 11 is integrated with the bonding portion 4 so as to reduce the bonding failure and improve the bonding strength.
 この場合、円筒型ターゲット2と接合部4との接合界面及び円筒型バッキングチューブ3と接合部4との接合界面から接合部4内部へ10μmの厚さの範囲内の錫濃度をS1質量%とし、接合部の厚さ方向の中央部の錫濃度をS2質量%としたとき、(S1/S2)≧1.5とされる。(S1/S2)<1.5であると、接合部4の接合力が低下し、スパッタリング中に円筒型バッキングチューブ3上で円筒型ターゲット2がずれる可能性がある。 In this case, the tin concentration within the thickness range of 10 μm from the joint interface between the cylindrical target 2 and the joint 4 and the joint interface between the cylindrical backing tube 3 and the joint 4 into the joint 4 is S1 mass%. When the tin concentration in the central part in the thickness direction of the joint is S2% by mass, (S1 / S2) ≧ 1.5. When (S1 / S2) <1.5, the bonding force of the bonding portion 4 is reduced, and the cylindrical target 2 may be displaced on the cylindrical backing tube 3 during sputtering.
 なお、前述の実施形態では、円筒型ターゲット2と円筒型バッキングチューブ3とを同軸上に組み立てた後に、その隙間の上方から溶融した充填用接合材を供給したが、特許文献2記載の方法と同様の方法で充填してもよい。
 その場合のフローチャートを図6に示す。(加熱工程)から(下地処理接合材冷却工程)までは、前述した第1実施形態の製造方法の場合と同様である。その後、円筒型ターゲット2を載置する固定台13に代えて、溶融状態の充填用接合材を溜める凹部を有する治具を用いて、この治具14の上に、凹部15の真上に配置されるように円筒型ターゲット2を、パッキン5を介して垂直に支持する。また、治具14の凹部15にて接合材を加熱し、予め溶融状態で溜めておく(接合材溶融工程)。そして、図7Aに示すように、下端部をダミー栓16によって閉塞状態とした円筒型バッキングチューブ3を円筒型ターゲット2内に挿入し、円筒型ターゲット2と円筒型バッキングチューブ3とをヒータ(図示略)により加熱し、充填用接合材の融点(又は液相線温度)以上で、下地処理接合材の融点(又は固相線温度)以下の温度に設定する(再加熱工程)。次に、この円筒型バッキングチューブ3と円筒型ターゲット2との間の隙間に、溶融状態の充填用接合材Fを下方から徐々に充填する。図7Bに示すように、円筒型ターゲット2の上端の受皿12に充填用接合材Fがあふれ出したら充填完了である(接合材充填工程)。この実施形態では、接合材充填工程が、円筒型ターゲット2と円筒型バッキングチューブ3とを組み立てる工程でもある。
In the above-described embodiment, after the cylindrical target 2 and the cylindrical backing tube 3 are coaxially assembled, the molten bonding material is supplied from above the gap. You may fill by the same method.
A flowchart in that case is shown in FIG. The steps from (heating step) to (priming treatment bonding material cooling step) are the same as those in the manufacturing method of the first embodiment described above. Then, instead of the fixed base 13 on which the cylindrical target 2 is placed, a jig having a concave portion for storing a molten filling bonding material is used, and the jig is disposed on the jig 14 and immediately above the concave portion 15. As described above, the cylindrical target 2 is vertically supported through the packing 5. Further, the bonding material is heated in the recess 15 of the jig 14 and stored in a molten state in advance (bonding material melting step). Then, as shown in FIG. 7A, the cylindrical backing tube 3 whose lower end is closed by the dummy plug 16 is inserted into the cylindrical target 2, and the cylindrical target 2 and the cylindrical backing tube 3 are connected to a heater (not shown). And is set to a temperature not lower than the melting point (or liquidus temperature) of the filling bonding material and not higher than the melting point (or solidus temperature) of the base treatment bonding material (reheating step). Next, the gap between the cylindrical backing tube 3 and the cylindrical target 2 is gradually filled with the molten filling bonding material F from below. As shown in FIG. 7B, when the filling bonding material F overflows the receiving tray 12 at the upper end of the cylindrical target 2, the filling is completed (bonding material filling step). In this embodiment, the bonding material filling step is also a step of assembling the cylindrical target 2 and the cylindrical backing tube 3.
 なお、前述の実施形態では、円筒型ターゲット2の内周面と円筒型バッキングチューブ3の外周面との両方に下地処理接合材を塗布したが、いずれかの表面が充填用接合材と濡れやすい状態であれば、その表面については下地処理接合材の塗布を省略してもよい。 In the above-described embodiment, the base treatment bonding material is applied to both the inner peripheral surface of the cylindrical target 2 and the outer peripheral surface of the cylindrical backing tube 3, but either surface is easily wetted with the filling bonding material. If it is in a state, application of the base treatment bonding material may be omitted on the surface.
<実施例1>
 ボロン(B)をドープしたシリコン(Si)の円筒型ターゲット(比抵抗0.05Ω・cm、内径:137mm、外径:157mm、長さ:200mm、以下Si-TGと称す)を10ピース、純チタン(Ti)製の円筒型バッキングチューブ(内径:125mm、外径:135mm、長さ:600mm、以下Ti-BTと称す)を5本準備した。
 Si-TGは外周面を、マントルヒーターを用いて、Si-TGの内周面温度が240~260℃に達するまで加熱した。250℃前後に温度を保持し、純錫(Sn)を下地処理接合材として、大気雰囲気中にてSi-TGの内周面に超音波はんだコテで下地処理した後、常温まで冷却した。
 Ti-BTは、内周面に熱風を循環させTi-BTの外周面温度が240~260℃に達するまで加熱する。250℃前後に温度を保持し、純錫(Sn)を下地処理接合材として、大気雰囲気中にてTi-BTの外周面に超音波はんだコテにて下地処理し、常温まで冷却した。
 下地処理後、Si-TGを2ピースずつTi-BTの所定の位置に配置した。円筒型ターゲット間は接合材充填中に接合材が漏れないように、耐熱性のフッ素樹脂製のパッキン(厚さが約0.6mm)を挟んだ。尚、Ti-BTとSi-TGとの組立は、直径:0.6mm銅製ワイヤ(スペーサ)を約120°の間隔で3か所挿入し、Si-TGとTi-BTとの間に接合材充填用の隙間を形成した。
 隙間形成後の接合材の充填は、大気中にてSi-TGの外周面をマントルヒーターにて加熱しTi-BTの内周面温度を180℃前後に保持した後、特開2014-37619号に示す方法(図6、図7A及び図7Bに示す方法)で純インジウム(In)を接合材として下部から上部に向かって充填した。最上部では接合材を溢れさせ、酸化物を浮上させた。同様の工程を用い、No.1~5の計5本の円筒型スパッタリングターゲットを製造した。
 冷却後、超音波探傷検査装置により接合面積率を計測した。接合面積率は、Si-TGとTi-BTとの接合面の総面積に対して、接合不良個所を除いた接合済面積の比率である。接合面積率が95%以上であった場合、合格と評価した。この場合、1回の接合で合格とならなかった場合は、接合材を融解して除去した後、再度接合し直し、接合面積率を計測した。
<Example 1>
10 pieces of silicon (Si) cylindrical target doped with boron (B) (specific resistance 0.05 Ω · cm, inner diameter: 137 mm, outer diameter: 157 mm, length: 200 mm, hereinafter referred to as Si-TG), pure Five cylindrical backing tubes made of titanium (Ti) (inner diameter: 125 mm, outer diameter: 135 mm, length: 600 mm, hereinafter referred to as Ti-BT) were prepared.
The outer peripheral surface of Si-TG was heated using a mantle heater until the inner peripheral surface temperature of Si-TG reached 240 to 260 ° C. The temperature was maintained at around 250 ° C., and pure tin (Sn) was used as a base treatment bonding material, and the inner peripheral surface of Si-TG was subjected to a ground treatment with an ultrasonic soldering iron in the air atmosphere, and then cooled to room temperature.
Ti-BT is heated until the temperature of the outer peripheral surface of Ti-BT reaches 240 to 260 ° C. by circulating hot air on the inner peripheral surface. The temperature was maintained at around 250 ° C., and pure tin (Sn) was used as a base treatment bonding material, and the outer peripheral surface of Ti-BT was ground-treated with an ultrasonic soldering iron in an air atmosphere and cooled to room temperature.
After the base treatment, two pieces of Si-TG were placed at a predetermined position of Ti-BT. Between the cylindrical targets, a heat-resistant fluororesin packing (thickness of about 0.6 mm) was sandwiched so that the bonding material did not leak during filling of the bonding material. As for the assembly of Ti-BT and Si-TG, the diameter: 0.6 mm copper wire (spacer) is inserted at three places at intervals of about 120 °, and the bonding material is between Si-TG and Ti-BT. A gap for filling was formed.
After the gap is formed, the bonding material is filled by heating the outer peripheral surface of Si-TG with a mantle heater in the atmosphere and maintaining the inner peripheral surface temperature of Ti-BT at around 180 ° C., then, Japanese Patent Application Laid-Open No. 2014-37619. In the method shown in FIG. 6 (method shown in FIGS. 6, 7A and 7B), pure indium (In) was filled as a bonding material from the bottom to the top. At the top, the bonding material overflowed and the oxide floated. Using the same process, no. A total of five cylindrical sputtering targets 1 to 5 were produced.
After cooling, the bonding area ratio was measured with an ultrasonic flaw detection apparatus. The bonding area ratio is the ratio of the bonded area excluding the defective bonding portion to the total area of the bonding surface of Si-TG and Ti-BT. When the bonding area ratio was 95% or more, it was evaluated as acceptable. In this case, when the bonding was not successful in one bonding, the bonding material was melted and removed, then bonded again, and the bonding area ratio was measured.
 また、No.1の試料より、直径:20mmの接合部を含む接合強度測定用試料を任意の位置から半径方向に20個採取し引張試験に供した。20個の強度の平均値をもって接合部の引張強度とした。
 また、No.1の試料から断面組織観察用試料を作成し、倍率2000倍にて接合界面を観察した。Ti-BTの接合界面およびSi-TGの接合界面のそれぞれから約10μmの範囲内(図3のP1点)で、ビーム径:約1μmにて錫(Sn)濃度をEPMAで定量分析を実施した。この場合、Ti-BTの接合界面側をBT側界面、Si-TGの接合界面側をTG界面とし、BT側界面付近のP1点の錫濃度をSB、TG側界面付近のP1点の錫濃度をSTとし、これらの平均値(ST+SB)/2をS1とした。さらに、同じ試料の中で充填用接合材の中心部(各接合界面から約0.5mmの位置:図3のP2点)の錫(Sn)濃度(S2)をEPMAにて定量分析し、S1/S2を求めた。
No. From the sample 1, 20 samples for bonding strength measurement including a bonded portion having a diameter of 20 mm were collected from an arbitrary position in the radial direction and subjected to a tensile test. The average value of the 20 strengths was taken as the tensile strength of the joint.
No. A sample for observing a cross-sectional structure was prepared from the sample 1 and the bonding interface was observed at a magnification of 2000 times. Quantitative analysis of tin (Sn) concentration was performed with EPMA at a beam diameter of about 1 μm within a range of about 10 μm from each of the Ti-BT bonding interface and the Si-TG bonding interface (point P1 in FIG. 3). . In this case, the Ti-BT bonding interface side is the BT side interface, the Si-TG bonding interface side is the TG interface, the tin concentration at the P1 point near the BT side interface is SB, and the tin concentration at the P1 point near the TG side interface Was ST, and the average value (ST + SB) / 2 was S1. Further, the tin (Sn) concentration (S2) in the center portion of the filling material in the same sample (position of about 0.5 mm from each bonding interface: point P2 in FIG. 3) is quantitatively analyzed by EPMA, and S1 / S2 was determined.
<実施例2>
 下地処理接合材として、Sn-1重量%In(No.6、融点224℃)、Sn-5重量%In(No.7、融点215℃)、Sn-10重量%In(No.8、融点200℃)を用い、下地処理温度をそれぞれ240℃、230℃、および215℃とする以外は実施例1と同様な方法で円筒型スパッタリングターゲットを製造し、冷却後超音波探傷検査装置により接合面積率を計測した。また超音波探傷検査終了後、実施例1と同様に接合強度測定用試料および断面観察用試料を作成し、引っ張り試験およびEPMAによる錫(Sn)濃度の定量分析を実施した。
<Example 2>
As a base treatment bonding material, Sn-1 wt% In (No. 6, melting point 224 ° C.), Sn-5 wt% In (No. 7, melting point 215 ° C.), Sn-10 wt% In (No. 8, melting point) 200 ° C.), and a cylindrical sputtering target is manufactured in the same manner as in Example 1 except that the base processing temperatures are 240 ° C., 230 ° C., and 215 ° C. The rate was measured. After the ultrasonic flaw detection test was completed, a sample for bonding strength measurement and a sample for cross-sectional observation were prepared in the same manner as in Example 1, and a tensile test and quantitative analysis of tin (Sn) concentration by EPMA were performed.
<実施例3>
 下地処理接合材として、Sn-3.5重量%Ag(No.9、融点221℃)、Sn-9重量%Zn(No.10、融点198℃)、Sn-0.7重量%Cu(No.11、融点227℃)を用い、下地処理温度をそれぞれ240℃、215℃、および240℃とする以外は実施例1と同様な方法で円筒型スパッタリングターゲットを製造し、冷却後超音波探傷検査装置により接合面積率を計測した。また超音波探傷検査終了後、実施例1と同様に接合強度測定用試料および断面観察用試料を作成し、引っ張り試験およびEPMAによる錫(Sn)濃度の定量分析を実施した。
<Example 3>
As a base treatment bonding material, Sn-3.5 wt% Ag (No. 9, melting point 221 ° C.), Sn-9 wt% Zn (No. 10, melting point 198 ° C.), Sn-0.7 wt% Cu (No 11 and a melting point of 227 ° C.), and a cylindrical sputtering target was manufactured in the same manner as in Example 1 except that the base treatment temperatures were 240 ° C., 215 ° C., and 240 ° C. The bonding area ratio was measured with an apparatus. After the ultrasonic flaw detection test was completed, a sample for bonding strength measurement and a sample for cross-sectional observation were prepared in the same manner as in Example 1, and a tensile test and quantitative analysis of tin (Sn) concentration by EPMA were performed.
<実施例4>
 充填用接合材として、In-5重量%Sn,(No.12、融点150℃)、In-10重量%Sn(No.13、融点144℃)、In-15重量%Sn(No.14、融点140℃)を用い、接合温度をそれぞれ165℃、160℃、および155℃とする以外は実施例1と同様な方法で円筒型ターゲットを製造し、冷却後超音波探傷検査装置により接合面積率を計測する。また超音波探傷検査終了後、実施例1と同様に接合強度測定用試料および断面観察用試料を作成し、引っ張り試験およびEPMAによる錫(Sn)濃度の定量分析を実施した。
<Example 4>
As a bonding material for filling, In-5 wt% Sn, (No. 12, melting point 150 ° C.), In-10 wt% Sn (No. 13, melting point 144 ° C.), In-15 wt% Sn (No. 14, The melting point is 140 ° C., and the cylindrical target is manufactured in the same manner as in Example 1 except that the bonding temperatures are 165 ° C., 160 ° C., and 155 ° C. Measure. After the ultrasonic flaw detection test was completed, a sample for bonding strength measurement and a sample for cross-sectional observation were prepared in the same manner as in Example 1, and a tensile test and quantitative analysis of tin (Sn) concentration by EPMA were performed.
<実施例5>
 下地処理工程および/または接合工程を窒素雰囲気とする以外は、実施例1と同様の方法で円筒型スパッタリングターゲット3本(No.15~17)を製造した。
 冷却後、超音波探傷検査装置により接合面積率を計測した。
 また、No.15の試料より、実施例1と同様に接合強度測定用試料および断面観察用試料を作成し、引っ張り試験およびEPMAによる錫(Sn)濃度の定量分析を実施した。
<Example 5>
Three cylindrical sputtering targets (Nos. 15 to 17) were produced in the same manner as in Example 1 except that the base treatment step and / or the bonding step was performed in a nitrogen atmosphere.
After cooling, the bonding area ratio was measured with an ultrasonic flaw detection apparatus.
No. From the 15 samples, a sample for bonding strength measurement and a sample for cross-sectional observation were prepared in the same manner as in Example 1, and a tensile test and quantitative analysis of tin (Sn) concentration by EPMA were performed.
<従来例>
 Si-TGの外周面を、マントルヒーターを用いて加熱し、Si-TGの外周面温度を180℃前後に温度を保持し、純インジウム(In)を下地処理接合材として、大気中にてSi-TGの内周面に超音波はんだコテにて下地処理した。
 Ti-BTは、内周面に熱風を循環させTi-BTの外周面温度も180℃前後に温度を保持し、純インジウム(In)を下地処理接合材として、Ti-BTの外周面に超音波はんだコテにて下地処理した。
 下地処理後、Si-TGを1個ずつTi-BTの所定の位置に挿入した。円筒型ターゲット間は接合中に接合材が漏れないように、耐熱性のフッ素樹脂製のパッキン(約0.6mm)を挟んだ。尚、Ti-BTとSi-TGとの組立は、直径:0.6mm銅製ワイヤ(スペーサ))を約120°の間隔で3か所挿入し、Si-TGとTi-BTとの間に接合材充填用の隙間を形成した。
 隙間形成後の接合材の充填は、Si-TGの外周面をマントルヒーターにて加熱しTi-BTの内周面温度を180℃前後に保持した後、特開2014-37619号に示す方法(図6、図7A及び図7Bに示す方法)で純インジウム(In)を接合材として下部から上部に向かって充填した。最上部では接合材を溢れさせ、酸化物を浮上させた。同様の工程を用い、5本の円筒型ターゲットを製造した(No.18~No.22)。
 冷却後、超音波探傷検査装置により接合面積率を計測した。
 また、No.18の試料から直径:20mmの接合部を含む接合強度測定用サンプルを任意の位置から20個作成し引っ張り試験に供した。
<Conventional example>
The outer peripheral surface of Si-TG is heated using a mantle heater, the temperature of the outer peripheral surface of Si-TG is maintained at around 180 ° C., and pure indium (In) is used as a base treatment bonding material in the atmosphere to form Si -The inner surface of the TG was ground with an ultrasonic soldering iron.
In Ti-BT, hot air is circulated on the inner peripheral surface, the temperature of the outer peripheral surface of Ti-BT is maintained at around 180 ° C., and pure indium (In) is used as a base treatment bonding material, and the outer peripheral surface of Ti-BT is super The substrate was treated with a sonic soldering iron.
After the base treatment, Si-TG was inserted one by one into a predetermined position of Ti-BT. Between the cylindrical targets, a heat-resistant fluororesin packing (about 0.6 mm) was sandwiched so that the bonding material did not leak during the bonding. As for the assembly of Ti-BT and Si-TG, diameter: 0.6mm copper wire (spacer)) is inserted at three places at intervals of about 120 ° and joined between Si-TG and Ti-BT. A gap for filling the material was formed.
After the gap is formed, the bonding material is filled by the method shown in Japanese Patent Application Laid-Open No. 2014-37619 after the outer peripheral surface of Si-TG is heated with a mantle heater and the inner peripheral surface temperature of Ti-BT is maintained at around 180 ° C. 6, 7 </ b> A, and 7 </ b> B), pure indium (In) was filled as a bonding material from the bottom to the top. At the top, the bonding material overflowed and the oxide floated. Using the same process, five cylindrical targets were manufactured (No. 18 to No. 22).
After cooling, the bonding area ratio was measured with an ultrasonic flaw detection apparatus.
No. Twenty samples for bonding strength measurement including a bonded portion having a diameter of 20 mm were prepared from 18 samples from arbitrary positions and subjected to a tensile test.
<比較例>
 Si-TG、Ti-BTとも、下地処理接合材として、Sn-20重量%In(No.23、融点136℃)、Sn-30重量%In(No.24、融点125℃)を用い、下地処理温度をそれぞれ160℃、および135℃とする以外は実施例1と同様な方法で円筒型ターゲットを製造し、冷却後超音波探傷検査装置により接合面積率を計測した。また超音波探傷検査終了後、実施例1と同様に接合強度測定用試料および断面観察用試料を作成し、引っ張り試験およびEPMAによる錫(Sn)濃度の定量分析を実施した。
<Comparative example>
For both Si-TG and Ti-BT, Sn-20 wt% In (No. 23, melting point 136 ° C.) and Sn-30 wt% In (No. 24, melting point 125 ° C.) were used as the base treatment bonding material. A cylindrical target was manufactured by the same method as in Example 1 except that the processing temperatures were 160 ° C. and 135 ° C., respectively, and the bonding area ratio was measured by an ultrasonic flaw detection apparatus after cooling. After the ultrasonic flaw detection test was completed, a sample for bonding strength measurement and a sample for cross-sectional observation were prepared in the same manner as in Example 1, and a tensile test and quantitative analysis of tin (Sn) concentration by EPMA were performed.
 各試料の製造条件及び接合率については表3に、引張強度及び錫濃度分析の結果については表4に示す。表3において、接合率は95%以上を合格とした。
 なお、表3において、下地処理接合材が合金の場合の融点は、固相線温度または共晶点を示し、充填用接合材が合金の場合の融点は液相線温度を示している。表3に記載される製造条件のうち、下地処理工程の雰囲気及び充填工程の雰囲気については、採用された雰囲気を「チェックマーク」で示し、非採用の雰囲気を、適用不可を意味する「N/A」(Not Applicable)で示している。
Table 3 shows the manufacturing conditions and bonding rate of each sample, and Table 4 shows the results of tensile strength and tin concentration analysis. In Table 3, the joining rate was determined to be 95% or more.
In Table 3, the melting point when the base treatment bonding material is an alloy indicates the solidus temperature or eutectic point, and the melting point when the filling bonding material is an alloy indicates the liquidus temperature. Among the manufacturing conditions described in Table 3, for the atmosphere in the base treatment process and the atmosphere in the filling process, the adopted atmosphere is indicated by “check mark”, and the non-adopted atmosphere is “N / A ”(Not Applicable).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3の結果からわかるように、下地処理接合材よりも融点の低い充填用接合材を用いることにより、接合率(面積率)が95%以上と高いものであった。従来例においても、95%以上の接合率を得られたものがあるが、2回以上接合をやり直した結果であり、1回の接合で95%以上の合格となったものは80%であった。これに対して実施例のものは1回の接合で95%以上の接合率がすべての試料で得られており、従来例に比べて歩留まりが優れていることがわかる。その中でも、下地処理工程又は接合材充填工程を不活性雰囲気で実施したものは、特に接合率が高かった。
 また、表4に示されるように、下地処理接合材の錫含有量が90質量%以上で、充填用接合材のインジウム含有量が85質量%以上であると、接合部の錫濃度分布(S1/S2)が1.5以上となり、高い接合強度を得られている。
As can be seen from the results in Table 3, the joining rate (area ratio) was as high as 95% or more by using a filling joining material having a melting point lower than that of the base treatment joining material. Even in the conventional example, there is one in which a joining rate of 95% or more is obtained, but it is a result of re-joining twice or more, and 80% is a result of passing 95% or more in one joining. It was. On the other hand, in the example, a bonding rate of 95% or more was obtained in all the samples by one bonding, and it can be seen that the yield is superior to the conventional example. Among them, the bonding rate was particularly high when the base treatment process or the bonding material filling process was performed in an inert atmosphere.
Further, as shown in Table 4, when the tin content of the base treatment bonding material is 90% by mass or more and the indium content of the filling bonding material is 85% by mass or more, the tin concentration distribution (S1 / S2) is 1.5 or more, and high bonding strength is obtained.
 高品質の円筒型スパッタリングターゲットを効率良く生産することができるようになる。 High-quality cylindrical sputtering target can be produced efficiently.
 1  円筒型スパッタリングターゲット
 2  円筒型ターゲット
 2a  ターゲット材
 3  円筒型バッキングチューブ
 4  接合部
 5  パッキン
 6  スペーサ
 11  下地処理層
 12  受皿
 13  固定台
 14  治具
 15  凹部
 16  ダミー栓
DESCRIPTION OF SYMBOLS 1 Cylindrical sputtering target 2 Cylindrical target 2a Target material 3 Cylindrical backing tube 4 Joining part 5 Packing 6 Spacer 11 Substrate treatment layer 12 Sauce pan 13 Fixing base 14 Jig 15 Concave part 16 Dummy plug

Claims (5)

  1.  円筒型バッキングチューブの外周面と円筒型ターゲットの内周面とを接合面とし、接合面間に設けた隙間を接合材で充填し接合する円筒型スパッタリングターゲットの製造方法であって、前記円筒型ターゲットの接合面である内周面と前記円筒型バッキングチューブの接合面である外周面との少なくとも一方に下地処理接合材を塗布して下地処理層を形成する下地処理工程と、下地処理工程の後、前記円筒型ターゲットと該円筒型ターゲット内に挿入した前記バッキングチューブとの間の隙間に充填用接合材を充填して固化する接合工程とを含み、前記下地処理接合材の融点または固相線温度が前記充填用接合材の融点または固相線温度を超えていることを特徴とする円筒型スパッタリングターゲットの製造方法。 A method of manufacturing a cylindrical sputtering target, in which an outer peripheral surface of a cylindrical backing tube and an inner peripheral surface of a cylindrical target are joined surfaces, and a gap provided between the joined surfaces is filled with a joining material and joined. A ground treatment step of forming a ground treatment layer by applying a ground treatment bonding material to at least one of an inner circumferential surface as a joining surface of a target and an outer circumferential surface as a joining surface of the cylindrical backing tube; And a bonding step of filling and solidifying the gap between the cylindrical target and the backing tube inserted into the cylindrical target by filling with a filling bonding material, the melting point or solid phase of the base treatment bonding material A method for producing a cylindrical sputtering target, wherein a linear temperature exceeds a melting point or a solidus temperature of the filling bonding material.
  2.  前記下地処理接合材は錫含有量が90質量%以上の純錫又は錫合金であり、前記充填用接合材はインジウム含有量が85質量%以上の純インジウム又はインジウム合金であることを特徴とする請求項1記載の円筒型スパッタリングターゲットの製造方法。 The base treatment bonding material is pure tin or a tin alloy having a tin content of 90% by mass or more, and the filling bonding material is pure indium or an indium alloy having an indium content of 85% by mass or more. The manufacturing method of the cylindrical sputtering target of Claim 1.
  3.  前記下地処理工程又は前記接合工程の少なくともいずれかを不活性雰囲気にて実施することを特徴とする請求項1又は2記載の円筒型スパッタリングターゲットの製造方法。 3. The method for manufacturing a cylindrical sputtering target according to claim 1, wherein at least one of the base treatment step and the bonding step is performed in an inert atmosphere.
  4.  前記接合工程は、
     前記円筒型ターゲットと、該円筒型ターゲット内に挿入した前記バッキングチューブと、を前記充填用接合材の融点または固相線温度以上、前記下地処理接合材の融点または固相線温度未満の温度で再加熱する再加熱工程を備ることを特徴とする請求項1から3のいずれか一項に記載の円筒型スパッタリングターゲットの製造方法。
    The joining step includes
    The cylindrical target and the backing tube inserted into the cylindrical target are at a temperature equal to or higher than the melting point or solidus temperature of the filling bonding material and lower than the melting point or solidus temperature of the ground treatment bonding material. The method for producing a cylindrical sputtering target according to any one of claims 1 to 3, further comprising a reheating step of reheating.
  5.  円筒型ターゲット内に円筒型バッキングチューブが挿入され、円筒型バッキングチューブの外周面と円筒型ターゲットの内周面との間にインジウムと錫を含む接合部が形成されており、前記円筒型バッキングチューブの中心軸に対し垂直な前記接合部の断面において、円筒型ターゲットと前記接合部との接合界面及び円筒型バッキングチューブと前記接合部との接合界面のうちの少なくとも一方の接合界面から接合部内部へ10μmの厚さの範囲内の錫濃度をS1質量%とし、前記接合部の厚さ方向の中央部の錫濃度をS2質量%としたとき、(S1/S2)≧1.5であることを特徴とする円筒型スパッタリングターゲット。 A cylindrical backing tube is inserted into the cylindrical target, and a joint including indium and tin is formed between the outer peripheral surface of the cylindrical backing tube and the inner peripheral surface of the cylindrical target, and the cylindrical backing tube In the cross section of the joint perpendicular to the central axis of the joint, from the joint interface between the cylindrical target and the joint and from the joint interface between the cylindrical backing tube and the joint, the inside of the joint (S1 / S2) ≧ 1.5 when the tin concentration in the thickness range of 10 μm is S1 mass% and the tin concentration in the central portion in the thickness direction of the joint is S2 mass%. A cylindrical sputtering target characterized by
PCT/JP2018/014240 2017-04-07 2018-04-03 Cylindrical sputtering target, and production method therefor WO2018186385A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880012802.0A CN110337507A (en) 2017-04-07 2018-04-03 Cylinder type sputtering target and its manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-076471 2017-04-07
JP2017076471 2017-04-07
JP2018056467A JP2018178251A (en) 2017-04-07 2018-03-23 Cylindrical sputtering target and manufacturing method of the same
JP2018-056467 2018-03-23

Publications (1)

Publication Number Publication Date
WO2018186385A1 true WO2018186385A1 (en) 2018-10-11

Family

ID=63712931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014240 WO2018186385A1 (en) 2017-04-07 2018-04-03 Cylindrical sputtering target, and production method therefor

Country Status (1)

Country Link
WO (1) WO2018186385A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137117A1 (en) * 2018-12-26 2020-07-02 三菱マテリアル株式会社 Method for producing cylindrical sputtering target
WO2021177152A1 (en) * 2020-03-04 2021-09-10 三菱マテリアル株式会社 Cylindrical sputtering target and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132065A (en) * 2010-12-21 2012-07-12 Tosoh Corp Cylindrical sputtering target and method for manufacturing the same
JP2015145530A (en) * 2014-02-04 2015-08-13 Jx日鉱日石金属株式会社 Sputtering target and method for manufacturing the same
JP2016023325A (en) * 2014-07-17 2016-02-08 住友金属鉱山株式会社 Joining material sheet and method for manufacturing cylindrical sputtering target

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132065A (en) * 2010-12-21 2012-07-12 Tosoh Corp Cylindrical sputtering target and method for manufacturing the same
JP2015145530A (en) * 2014-02-04 2015-08-13 Jx日鉱日石金属株式会社 Sputtering target and method for manufacturing the same
JP2016023325A (en) * 2014-07-17 2016-02-08 住友金属鉱山株式会社 Joining material sheet and method for manufacturing cylindrical sputtering target

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137117A1 (en) * 2018-12-26 2020-07-02 三菱マテリアル株式会社 Method for producing cylindrical sputtering target
WO2021177152A1 (en) * 2020-03-04 2021-09-10 三菱マテリアル株式会社 Cylindrical sputtering target and method for producing same

Similar Documents

Publication Publication Date Title
JP2018178251A (en) Cylindrical sputtering target and manufacturing method of the same
US3957194A (en) Liquid interface diffusion method of bonding titanium and/or titanium alloy structure
US5316206A (en) Method of joining aluminium members
KR101731688B1 (en) Method for surface brazing between aluminum alloy member and copper alloy member
US9272361B2 (en) Method for joining metal materials
JP6263574B2 (en) Brazing sheet, method for producing the same and method for brazing aluminum structure
JP6861834B2 (en) Flux-free CAB brazing aluminum material
JP6188511B2 (en) Aluminum alloy brazing sheet for fluxless brazing and manufacturing method thereof
US3854194A (en) Liquid interface diffusion method of bonding titanium and/or titanium alloy structure and product using nickel-copper, silver bridging material
WO2018186385A1 (en) Cylindrical sputtering target, and production method therefor
KR101570949B1 (en) Method for plane brazing of aluminum alloy members
WO2020195787A1 (en) Method for manufacturing cylindrical sputtering target
EP0224068B1 (en) Improved storage life of pb-in-ag solder foil by sn addition
JP7210259B2 (en) Aluminum bonded body, manufacturing method thereof, and brazing sheet used for aluminum bonded body
US4734256A (en) Wetting of low melting temperature solders by surface active additions
WO2020137117A1 (en) Method for producing cylindrical sputtering target
JP3845765B2 (en) Aluminum brazing flux sealing member and brazing sheet
JP5398293B2 (en) Joining method and joining structure of aluminum-based material
JP2020200491A (en) Cylindrical sputtering target and method for manufacturing the same
JP2020026546A (en) CYLINDRICAL SPUTTERING TARGET AND In-BASED SOLDER AND MANUFACTURING METHOD OF CYLINDRICAL SPUTTERING TARGET
Choe et al. Fluxless Sn-Bi-Au bonding process using multilayer design
JPS6349381A (en) Insert material for diffused joining
WO2013081124A2 (en) Bonding method for aluminium alloy material
JP3674860B2 (en) Joining method between pure aluminum and aluminum alloy
JP2016141611A (en) Composition for joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780692

Country of ref document: EP

Kind code of ref document: A1