JP5398293B2 - Joining method and joining structure of aluminum-based material - Google Patents

Joining method and joining structure of aluminum-based material Download PDF

Info

Publication number
JP5398293B2
JP5398293B2 JP2009031538A JP2009031538A JP5398293B2 JP 5398293 B2 JP5398293 B2 JP 5398293B2 JP 2009031538 A JP2009031538 A JP 2009031538A JP 2009031538 A JP2009031538 A JP 2009031538A JP 5398293 B2 JP5398293 B2 JP 5398293B2
Authority
JP
Japan
Prior art keywords
joining
aluminum
intermediate material
temperature
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009031538A
Other languages
Japanese (ja)
Other versions
JP2010184283A (en
Inventor
健二 宮本
靖志 中島
成幸 中川
宏規 坂元
明久 井上
久道 木村
一郎 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nissan Motor Co Ltd
Original Assignee
Tohoku University NUC
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nissan Motor Co Ltd filed Critical Tohoku University NUC
Priority to JP2009031538A priority Critical patent/JP5398293B2/en
Publication of JP2010184283A publication Critical patent/JP2010184283A/en
Application granted granted Critical
Publication of JP5398293B2 publication Critical patent/JP5398293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、表面に強固な酸化皮膜が生成されており、これによって接合性が著しく阻害されるアルミニウムやアルミニウム合金などアルミニウム系材料の接合方法と、このような方法によって得られるアルミニウム系材料の接合構造に関するものである。   The present invention provides a method for joining aluminum-based materials such as aluminum and aluminum alloys, in which a strong oxide film is formed on the surface, thereby significantly impairing the bondability, and joining of aluminum-based materials obtained by such a method. Concerning structure.

上記のようなアルミニウム系材料の代表的な接合方法としては、ろう付(ブレージング)やはんだ付(ソルダリング)がある。   As a typical joining method of the aluminum-based material as described above, there are brazing (brazing) and soldering (soldering).

上記方法のうち、アルミニウム系材料のろう付においては、材料の表面に形成されている酸化皮膜がろうのぬれや流動を阻害するため、フラックスを用いて酸化皮膜を除去することが必要となる。
このようなフラックスとしては、塩化物系又はフッ化物系の一種よりなるものが使用される(例えば、特許文献1参照)。
Among the above methods, in brazing of an aluminum-based material, it is necessary to remove the oxide film using a flux because the oxide film formed on the surface of the material inhibits the wetting and flow of the brazing.
As such a flux, what consists of a chloride type or a fluoride type is used (for example, refer patent document 1).

一方、アルミニウム系材料のはんだ付においても、上記したろう付と同様に、塩化亜鉛などの塩化物を主成分とする無機フラックスが一般的に用いられる。   On the other hand, in the soldering of an aluminum-based material, an inorganic flux whose main component is a chloride such as zinc chloride is generally used as in the case of brazing.

特開平8−323278号公報JP-A-8-323278

しかし、アルミニウム系材料のろう付において、継手部に上記のような塩化物系のフラックスが残存すると、水分を吸収し母材や継手部に腐食が生じるため、ろう付作業後は速やかに洗浄を行わなければならない。
一般に、このようなフラックスの大部分は、熱水(80〜100℃)によって除去することができるが、さらに完全に除去するためには、酸処理を行う必要がある。
However, when brazing aluminum materials, if chloride-based fluxes such as the above remain in the joints, moisture will be absorbed and corrosion will occur in the base metal and joints. It must be made.
In general, most of such a flux can be removed by hot water (80 to 100 ° C.), but in order to further completely remove it, it is necessary to perform an acid treatment.

このような酸処理には、硝酸が一般的に広く用いられているが、小物組立品には用いられるものの、大型組立品に対しては、多量の残留フラックスと硝酸が反応して、危険なガスが発生し、アルミニウム母材に対しても有害なため適用されることは少ない。
いずれにしても、このような酸処理や、その後の洗浄の工程、さらにはそのための設備が必要となって、生産コストが増すばかりでなく、洗浄を完全に行うための酸洗が部品形状によって制約があったり、洗浄が十分ではないと腐食が生じたりするといったことが問題となる。
For such acid treatment, nitric acid is generally widely used, but although it is used for small assemblies, it is dangerous for large assemblies because of the large amount of residual flux that reacts with nitric acid. Since gas is generated and harmful to the aluminum base material, it is rarely applied.
In any case, such an acid treatment and subsequent cleaning process and further equipment are required, which not only increases the production cost, but also allows pickling for complete cleaning depending on the part shape. The problem is that there are restrictions and corrosion occurs if the cleaning is not sufficient.

さらに、ろう付により得られた継手は約600℃、すなわちアルミニウム母材の焼きなまし温度以上に加熱されるため、非熱処理合金のろう付継手の強度は母材の軟質材まで低下してしまう。
そもそも、熱応力や熱衝撃が問題となるような複雑形状の部品においては、製造工程上の制約から接合プロセス温度の上限が存在するため、高温プロセスであるロウ付による接合方法は適用できない。
Furthermore, since the joint obtained by brazing is heated to about 600 ° C., that is, the annealing temperature of the aluminum base metal or higher, the strength of the brazed joint of the non-heat-treatable alloy decreases to the soft base material.
In the first place, in the case of a component having a complicated shape in which thermal stress or thermal shock becomes a problem, the upper limit of the bonding process temperature exists due to restrictions on the manufacturing process, and therefore, the bonding method by brazing, which is a high temperature process, cannot be applied.

一方、アルミニウム系材料のはんだ付に用いられるフラックスは、反応型フラックスとも呼ばれるものであって、アルミニウムの酸化皮膜に対する侵食性がきわめて強い。また、接合部に残留したこのようなフラックスは、水分を吸収しアルミニウムを腐食し易いので、はんだ付後のフラックス除去処理を完全に行わなければならないといった問題がある。   On the other hand, a flux used for soldering an aluminum-based material is also called a reactive flux, and has extremely strong erosion resistance against an aluminum oxide film. Further, such a flux remaining in the joint portion easily absorbs moisture and corrodes aluminum, so that there is a problem that the flux removal process after soldering must be performed completely.

本発明は、強固な酸化皮膜を有するアルミニウム系材料の接合における上記課題を解決すべくなされたものである。
そして、その目的とするところは、酸化皮膜除去用のフラックスを使用することなく、低温度で接合することができ、接合後のフラックス洗浄工程を不要にして、コスト低減が可能なアルミニウム系材料の接合方法を提供することにある。さらに、このような方法を適用したアルミニウム系材料の接合構造を提供することにある。
The present invention has been made to solve the above problems in joining aluminum-based materials having a strong oxide film.
The purpose of the aluminum-based material is that it can be bonded at a low temperature without using a flux for removing an oxide film, eliminates the need for a flux cleaning step after bonding, and can reduce costs. It is to provide a joining method. Furthermore, it is providing the joining structure of the aluminum-type material which applied such a method.

本発明者らは、上記目的の達成に向けて鋭意検討を重ねた結果、中間材として、Alよりも酸化されやすい元素、すなわち酸化の標準生成自由エネルギーがAlよりも小さい元素を含む金属ガラスを接合面に介在させることによって上記課題が解決できることを見出し、本発明を完成するに到った。   As a result of intensive studies aimed at achieving the above object, the present inventors have, as an intermediate material, a metal glass containing an element that is more easily oxidized than Al, that is, an element whose standard free energy of formation is lower than that of Al. The present inventors have found that the above problems can be solved by interposing them on the joint surface, and have completed the present invention.

すなわち、本発明は上記知見に基づくものであって、本発明のアルミニウム系材料の接合方法においては、アルミニウム又はアルミニウム合金から成る被接合材の間に、酸化の標準生成自由エネルギーがAlよりも小さい元素を含有する金属ガラスから成る中間材を介在させ、この状態で、上記金属ガラスの過冷却液体領域温度に加熱しながら、加圧することにより接合することを特徴としている。   That is, the present invention is based on the above knowledge, and in the joining method of the aluminum-based material of the present invention, the standard free energy for formation of oxidation is smaller than that of Al between the materials to be joined made of aluminum or aluminum alloy. An intermediate material made of metallic glass containing an element is interposed, and in this state, joining is performed by applying pressure while heating to the supercooled liquid region temperature of the metallic glass.

また、本発明のアルミニウム系材料の接合構造は、アルミニウム又はアルミニウム合金から成る被接合材の新生面同士が上記のような金属ガラスから成る中間材を介して接合されていることを特徴とする。   Moreover, the joining structure of the aluminum-type material of this invention is characterized by joining the new surfaces of the to-be-joined material which consists of aluminum or aluminum alloy through the intermediate material which consists of the above metal glasses.

本発明によれば、アルミニウム系材料同士の接合面に、酸化の標準生成自由エネルギーがAlよりも小さい元素を含有する金属ガラスから成る中間材を介在させ、この金属ガラスの過冷却液体領域温度に加熱して接合するようにしている。したがって、フラックスの使用と接合後の洗浄が不要となり、しかも母材が焼きなまされることのない低温で、新生面同士が直接接合され、高い継手強度の確保とコストの削減が可能になる。   According to the present invention, an intermediate material made of a metallic glass containing an element whose standard free energy of oxidation is smaller than that of Al is interposed between the joining surfaces of the aluminum-based materials, and the temperature of the supercooled liquid region of the metallic glass is increased. It is heated and joined. Therefore, the use of flux and cleaning after joining are unnecessary, and the new surfaces are directly joined at a low temperature at which the base material is not annealed, so that high joint strength can be secured and costs can be reduced.

(a)〜(e)は本発明によるアルミニウム系材料の接合メカニズム及び接合過程を示す説明図である。(A)-(e) is explanatory drawing which shows the joining mechanism and joining process of the aluminum-type material by this invention. 本発明の実施例において用いたアルミニウム系材料の接合要領を示す説明図である。It is explanatory drawing which shows the joining procedure of the aluminum-type material used in the Example of this invention. 本発明の実施例において接合に用いた高周波加熱装置の全体を示す写真である。It is a photograph which shows the whole high frequency heating apparatus used for joining in the Example of this invention. 本発明の実施例1により得られた接合界面のSEM観察像及びEDXマッピング画像である。It is the SEM observation image and EDX mapping image of the joining interface obtained by Example 1 of this invention. 本発明の実施例2により得られた接合界面のSEM観察像及びEDXマッピング画像である。It is the SEM observation image and EDX mapping image of the joining interface obtained by Example 2 of this invention.

以下に、本発明のアルミニウム系材料の接合方法や、これによって得られる接合構造について、さらに詳細、かつ具体的に説明する。   Below, the joining method of the aluminum-type material of this invention and the joining structure obtained by this are demonstrated further in detail and concretely.

本発明のアルミニウム系材料の接合方法においては、上記したように、酸化の標準生成自由エネルギーがAlよりも小さい元素を含有する金属ガラスを中間材として被接合材の接合面間に介在させ、この状態で、上記金属ガラスが過冷却液体状態となる温度に加熱し、加圧して接合するようにしている。   In the aluminum-based material joining method of the present invention, as described above, a metal glass containing an element whose standard free energy of oxidation is smaller than that of Al is interposed between the joining surfaces of the materials to be joined. In this state, the metal glass is heated to a temperature at which it becomes a supercooled liquid state, and is pressurized and bonded.

すなわち、中間材としての金属ガラスには、酸化の標準生成自由エネルギーがAlよりも小さい元素、つまりAlよりも酸化されやすい元素が含まれている。したがって、接合プロセスにおいて、アルミニウム系材料の表面に生成している酸化皮膜(Al)が当該元素により還元され、被接合材の新生面が露出し、強固な接合界面が形成されることになる。
加えて、金属ガラスには、その融点に対して極めて低温の領域において過冷却液体状態となる特性がある。しかも、このような過冷却液体状態においては、通常の固相の状態よりも、上記元素による還元反応が起こり易くなり、アルミニウム系材料表面の酸化皮膜がより効果的に還元除去されることになる。
In other words, the metal glass as the intermediate material contains an element whose standard free energy for oxidation is smaller than that of Al, that is, an element that is more easily oxidized than Al. Therefore, in the bonding process, the oxide film (Al 2 O 3 ) generated on the surface of the aluminum-based material is reduced by the element, the new surface of the material to be bonded is exposed, and a strong bonding interface is formed. Become.
In addition, the metal glass has a characteristic of being in a supercooled liquid state in a region extremely low in temperature with respect to its melting point. Moreover, in such a supercooled liquid state, the reduction reaction by the above elements is more likely to occur than in the normal solid state, and the oxide film on the surface of the aluminum-based material is more effectively reduced and removed. .

また、過冷却液体状態の金属ガラスは、固相状態よりも変形の自由度に富むことから、過冷却液体状態では、被接合材との密着度が増し、中間材と被接合材の原子間距離の短縮が可能となる。
さらに、通常の固相状態に比べて、過冷却液体状態では、上記のように変形の自由度に富んでいるため、原子の移動が生じ易くなり、拡散も容易となる結果、良好な接合継手が得られるようになる。
In addition, since the metallic glass in the supercooled liquid state has a higher degree of freedom of deformation than the solid phase state, in the supercooled liquid state, the degree of adhesion with the material to be joined increases, and the intermediate material and the material to be joined are interatomic. The distance can be shortened.
Furthermore, in the supercooled liquid state, as compared with the normal solid phase state, the degree of freedom of deformation is high as described above, so that the movement of atoms is likely to occur and diffusion is facilitated. Can be obtained.

このように、金属ガラスにおいては、その融点よりも極めて低温で過冷却状態状態となる現象が生じることから、中間材として金属ガラスを用い、この現象を利用することによって、より低温での接合が可能となる。
したがって、被接合材に対する熱影響や、熱的改質の影響が生じず、強固な継手強度を確保でき、熱応力や熱衝撃が問題となるような複雑形状の部品など、製造工程の制約から接合プロセス温度の上限が存在するような継手構造にも、本発明方法を適用することができる。
In this way, in the metal glass, a phenomenon of being in a supercooled state occurs at a temperature extremely lower than its melting point. Therefore, by using the metal glass as an intermediate material and utilizing this phenomenon, bonding at a lower temperature can be achieved. It becomes possible.
Therefore, there are no thermal effects on the materials to be joined or thermal modification effects, and it is possible to secure strong joint strength, and because of restrictions on the manufacturing process, such as parts with complicated shapes that cause thermal stress and thermal shock. The method of the present invention can also be applied to a joint structure in which an upper limit of the joining process temperature exists.

また、本発明方法においては、酸化皮膜除去のためにフラックスを使用しないため、これが接合界面に残存して接合界面の健全性を損なうようなことも、フラックスの残存による腐食も生じることがない。そして、接合後の洗浄工程も不要となり、生産工数の低減、洗浄装置の省略によりコストの低減につながり、産業用途の拡張性が大きい。   Further, in the method of the present invention, no flux is used for removing the oxide film, so that it remains at the joining interface and the soundness of the joining interface is not impaired, and corrosion due to the remaining flux does not occur. And the cleaning process after joining becomes unnecessary, it leads to cost reduction by reduction of production man-hours and omission of a cleaning device, and the expandability of industrial applications is great.

本発明において、酸化の標準生成自由エネルギーがAlよりも小さい元素としては、例えば、La、Ce、Prを挙げることができる。
すなわち、各金属の酸化の標準生成自由エネルギーについては、2823Kにおいて、Alが−497kJ/mol−Oであるのに対し、La、CeO、Ce、Prのそれは、それぞれ−928kJ/mol−O、−775kJ/mol−O、−900kJ/mol−O、−989kJ/mol−Oであることが知られている。
In the present invention, examples of the element whose standard free energy for formation of oxidation is smaller than that of Al include La, Ce, and Pr.
That is, regarding the standard free energy of formation of oxidation of each metal, Al 2 O 3 is −497 kJ / mol-O 2 at 2823 K, whereas La 2 O 3 , CeO 2 , Ce 2 O 3 , Pr 2. It is known that that of O 3 is −928 kJ / mol-O 2 , −775 kJ / mol-O 2 , −900 kJ / mol-O 2 , and −989 kJ / mol-O 2 , respectively.

したがって、上記中間材としては、これら元素の少なくとも1種の金属を主成分として含有する金属ガラスを用いることが望ましい。なお、この場合の「主成分」とは、材料中に最も多く含まれる成分を意味するものとする。
また、上記「酸化の標準生成自由エネルギー」とは、接合プロセス温度におけるもの、すなわち中間材としての金属ガラスが過冷却液体状態となる温度における標準生成自由エネルギーであることは言うまでもない。
Therefore, it is desirable to use a metallic glass containing at least one of these elements as a main component as the intermediate material. In this case, the “main component” means a component that is contained most in the material.
In addition, it is needless to say that the “standard generation free energy of oxidation” is the standard generation free energy at the bonding process temperature, that is, the temperature at which the metal glass as the intermediate material becomes a supercooled liquid state.

図1(a)〜(e)は、本発明方法によるアルミニウム系材料の接合過程を示す説明図である。
図1(a)に示すように、まず、アルミニウム合金から成る被接合材1,2の間に、中間材3として、この例では、La系金属ガラスLa55Al25Ni20(ガラス転位温度Tg=480K、結晶化温度Tx=551K、過冷却液体領域温度:480〜551K)を挟持した状態に準備する。このとき、上記被接合材1,2の表面には、Alから成る酸化皮膜Fが生成している。
FIGS. 1A to 1E are explanatory views showing a joining process of an aluminum-based material according to the method of the present invention.
As shown in FIG. 1A, first, as an intermediate material 3 between materials to be joined 1 and 2 made of an aluminum alloy, in this example, a La-based metal glass La 55 Al 25 Ni 20 (glass transition temperature Tg). = 480K, crystallization temperature Tx = 551K, supercooled liquid region temperature: 480 to 551K). At this time, an oxide film F made of Al 2 O 3 is formed on the surfaces of the materials 1 and 2 to be bonded.

加熱を開始し、La系金属ガラスから成る中間材3がそのガラス転移温度Tg(480K)に達すると中間材3は過冷却液体状態となる。
これによって中間材3に含まれるLaの反応性が高まり、図1(b)に示すように、Laが被接合材1,2の表面の酸化皮膜Fを効率的に還元し、還元反応の進行によりAlが分解され、図1(c)に示すように、被接合材1,2の新生面が露出される。
When heating is started and the intermediate material 3 made of La-based metallic glass reaches its glass transition temperature Tg (480 K), the intermediate material 3 enters a supercooled liquid state.
As a result, the reactivity of La contained in the intermediate material 3 is increased, and as shown in FIG. 1 (b), La efficiently reduces the oxide film F on the surfaces of the materials to be bonded 1 and 2, and the reduction reaction proceeds. As a result, Al 2 O 3 is decomposed, and the new surfaces of the materials 1 and 2 are exposed as shown in FIG.

被接合材1,2の新生面が露出し、溶融状態の中間材3に直接接触すると、図1(d)に示すように、これらの間で拡散反応が生じる。
このとき、中間材3は、過冷却液体状態であることによって、通常の固相の状態よりも変形の自由度に富むことから、軽い加圧でも密着度が増し、原子間距離が小さくなる結果、原子の移動が生じやすくくなって拡散も容易に進行し、図1(e)に示すように、接合が完了する。
When the new surfaces of the materials to be bonded 1 and 2 are exposed and directly contact the molten intermediate material 3, a diffusion reaction occurs between them as shown in FIG. 1 (d).
At this time, since the intermediate material 3 is in a supercooled liquid state, the degree of freedom of deformation is greater than that in the normal solid phase state, so that the adhesion increases even with light pressure and the interatomic distance decreases. Then, the movement of the atoms becomes easy to occur and the diffusion easily proceeds, and the bonding is completed as shown in FIG.

これにより、アルミニウム合金製の被接合材1,2の新生面同士がLaを主成分として含有する金属ガラスから成る中間材3を介して接合された接合構造が得られる。   Thereby, the joining structure by which the new surfaces of the to-be-joined materials 1 and 2 made from an aluminum alloy were joined via the intermediate material 3 which consists of metallic glass which contains La as a main component is obtained.

本発明方法により得られたアルミニウム合金継手における中間材については、適用部位によっては非晶質の金属ガラスのままでも差し支えない。
しかし、金属ガラスは、ガラス転位温度Tg〜結晶化温度Txの過冷却液体領域では、変形抵抗(強度)が低下することから、必要に応じて、結晶化温度Tx以上、アルミニウム系材料から成る母材の焼きなまし温度以下の温度に加熱することによって、中間材を結晶化することができる。一旦結晶化した後は、温度に拘わらず結晶状態が維持され、これによって継手強度が向上する。
About the intermediate material in the aluminum alloy joint obtained by the method of the present invention, amorphous metal glass may be used depending on the application site.
However, since the deformation resistance (strength) is reduced in the supercooled liquid region between the glass transition temperature Tg and the crystallization temperature Tx, the metallic glass has a base composed of an aluminum-based material at a crystallization temperature Tx or higher as necessary. The intermediate material can be crystallized by heating to a temperature below the annealing temperature of the material. Once crystallized, the crystalline state is maintained regardless of the temperature, thereby improving the joint strength.

以下、本発明を実施例に基づいて、さらに具体的に説明する。なお、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. The present invention is not limited to these examples.

(実施例1)
図2に示すように、純アルミニウム材(A1050−H24)から成る直径15mm、厚さ2mmの円板状の被接合材1,2の間に、La系金属ガラスLa55Al25Ni20から成る厚さ30〜40μmの中間材3を挟み、台座S,Sの間で接合を行った。
なお、上記金属ガラスのガラス転位温度Tgは480K、結晶化温度Txは551K、過冷却液体領域温度は480〜551Kである。
Example 1
As shown in FIG. 2, the diameter 15mm made of pure aluminum material (A1050-H24), between the disc-shaped members to be joined 2 of the thickness of 2 mm, made of La-based metallic glass La 55 Al 25 Ni 20 The intermediate material 3 having a thickness of 30 to 40 μm was sandwiched, and the pedestals S and S were joined.
The metal glass has a glass transition temperature Tg of 480K, a crystallization temperature Tx of 551K, and a supercooled liquid region temperature of 480 to 551K.

接合装置としては、図3に示すように、真空チャンバー内に試験片設置部と加圧部を備え、チャンバー内温度を熱電対によって検出して制御することができる高周波加熱装置を用いた。
接合条件としては、接合温度を540K、ひずみ速度を10−3/s(標点間距離:4mm)とし、真ひずみ速度一定で変位量0.7mmまで押し込んだ。
As the bonding apparatus, as shown in FIG. 3, a high-frequency heating apparatus provided with a test piece installation section and a pressurizing section in a vacuum chamber and capable of detecting and controlling the temperature in the chamber with a thermocouple was used.
As joining conditions, the joining temperature was 540 K, the strain rate was 10 −3 / s (distance between gauge points: 4 mm), and the true strain rate was constant and the displacement was pushed to 0.7 mm.

接合完了後、接合継手から試験片を切り出し、接合断面をSEM観察すると共に、Al,La,Ni及びOについてエネルギー分散X線分析(EDX)を実施した。
その結果、図4に示すように、接合界面に酸化物や他の成分によるコンタミは検出されなかった。また、接合界面においては、未接合領域である空隙など確認されず、良好な接合界面が得られた。
After the joining was completed, a test piece was cut out from the joined joint, and the joining cross section was observed by SEM, and energy dispersive X-ray analysis (EDX) was performed on Al, La, Ni, and O.
As a result, as shown in FIG. 4, no contamination due to oxides or other components was detected at the bonding interface. Moreover, in the joining interface, the void which is an unjoined area | region was not confirmed but the favorable joining interface was obtained.

なお、上記被接合材1,2を中間材3を介して接合した後、得られた継手を上記金属ガラスのガラス転位温度Tgである480K以上の温度に10分間保持することによって、中間材3を結晶化できることが確認された。   In addition, after joining the said to-be-joined materials 1 and 2 via the intermediate material 3, the intermediate material 3 is hold | maintained for 10 minutes at the temperature more than 480K which is the glass transition temperature Tg of the said metal glass. It was confirmed that can be crystallized.

(実施例2)
上記同様の被接合材1,2を接合するに際し、中間材3として、La系金属ガラスであるLa55Al20Cu25(ガラス転位温度Tg=423K、結晶化温度Tx=487K、過冷却液体領域温度:423〜487K)を使用し、接合温度を473Kとしたこと以外は、実施例1と同様の操作を繰り返し、本例の接合継手を得た。
(Example 2)
When joining the same materials 1 and 2 to be joined, La 55 Al 20 Cu 25 which is La-based metallic glass (glass transition temperature Tg = 423K, crystallization temperature Tx = 487K, supercooled liquid region) The same operation as in Example 1 was repeated except that the bonding temperature was set to 473 K using the temperature: 423 to 487 K) to obtain a bonded joint of this example.

そして、接合断面のSEM観察及びエネルギー分散X線分析(Al,La,Cu、O)を実施した結果、同様に母材破断すると共に、接合界面に酸化物やコンタミは検出されなかった。SEM観察像と上記元素のEDXマッピング画像を図5に示す。
接合界面において、未接合領域である空隙などは確認されず、良好な接合界面が得られた。
As a result of conducting SEM observation and energy dispersive X-ray analysis (Al, La, Cu, O) of the bonded cross section, the base material was similarly broken, and no oxide or contamination was detected at the bonded interface. An SEM observation image and an EDX mapping image of the above elements are shown in FIG.
At the bonding interface, voids that were unbonded regions were not confirmed, and a good bonding interface was obtained.

(実施例3)
上記被接合材1,2を接合するに際し、中間材3として、Ce系金属ガラスであるCe70Al10Cu20(ガラス転位温度Tg=341K、結晶化温度Tx=408K、過冷却液体領域温度:341〜408K)を使用し、接合温度を380Kとしたことを除いて、実施例1と同様の操作を繰り返し、本例の接合継手を得た。
その結果、本例においても、接合界面における酸化物やコンタミの存在は検出されなかった。
(Example 3)
When joining the materials 1 and 2 to be joined, the intermediate material 3 is Ce 70 Al 10 Cu 20 which is a Ce-based metallic glass (glass transition temperature Tg = 341K, crystallization temperature Tx = 408K, supercooled liquid region temperature: 341 to 408K), and the same operation as in Example 1 was repeated except that the bonding temperature was 380K, to obtain a bonded joint of this example.
As a result, also in this example, the presence of oxide or contamination at the bonding interface was not detected.

(実施例4)
同様に、上記被接合材1,2を接合するに際して、中間材3として、Pr系金属ガラスPr68Cu25Al(ガラス転位温度Tg=382K、結晶化温度Tx=402K、過冷却液体領域温度:382〜402K)を使用し、接合温度を392Kとしたことの他は、実施例1と同様の操作を繰り返し、本例の接合継手を得た。
その結果、本例においても、接合界面に酸化物やコンタミの存在が検出されることはなかった。
Example 4
Similarly, when joining the materials 1 and 2 to be joined, as the intermediate material 3, Pr-based metallic glass Pr 68 Cu 25 Al 7 (glass transition temperature Tg = 382 K, crystallization temperature Tx = 402 K, supercooled liquid region temperature) : 382-402K) and the joining temperature was set to 392K, the same operation as in Example 1 was repeated to obtain a joint joint of this example.
As a result, also in this example, the presence of oxide or contamination was not detected at the bonding interface.

以上のように、アルミニウム系材料から成る被接合材の接合面間に、LaやCe、Prを主成分として含有する金属ガラスを中間材として介在させることによって、酸化皮膜を除去するためのフラックスを使用することなく、アルミニウム系材料の融点よりも大幅に低い温度でアルミニウム系材料同士を高強度に接合できることが判明した。   As described above, by interposing a metallic glass containing La, Ce, and Pr as main components between the joining surfaces of the materials to be joined made of an aluminum-based material, a flux for removing the oxide film is provided. It has been found that aluminum materials can be joined with high strength at a temperature significantly lower than the melting point of aluminum materials without using them.

1 被接合材
2 被接合材
3 中間材
F 酸化皮膜
DESCRIPTION OF SYMBOLS 1 To-be-joined material 2 To-be-joined material 3 Intermediate material F Oxide film

Claims (6)

アルミニウム又はアルミニウム合金から成る被接合材の間に、酸化の標準生成自由エネルギーがAlよりも小さい元素を含有する金属ガラスから成る中間材を介在させた状態で、上記金属ガラスの過冷却液体領域温度に加熱すると共に、加圧して接合することを特徴とするアルミニウム系材料の接合方法。 The supercooled liquid region temperature of the above-mentioned metallic glass with an intermediate material made of metallic glass containing an element whose standard free energy of oxidation is smaller than that of Al interposed between the materials to be joined made of aluminum or an aluminum alloy A method for joining aluminum materials characterized by heating and pressurizing and joining. 接合した後、上記中間材を結晶化させることを特徴とする請求項1に記載の接合方法。   The joining method according to claim 1, wherein the intermediate material is crystallized after joining. 上記中間材がLa、Ce又はPrを主成分として含有していることを特徴とする請求項1又は2に記載の接合方法。 The joining method according to claim 1 , wherein the intermediate material contains La, Ce, or Pr as a main component. アルミニウム又はアルミニウム合金から成る被接合材の新生面同士が酸化の標準生成自由エネルギーがAlよりも小さい元素を含有する金属ガラスから成る中間材を介して接合されていることを特徴とするアルミニウム系材料の接合構造。   An aluminum-based material characterized in that new surfaces of materials to be joined made of aluminum or an aluminum alloy are joined to each other via an intermediate material made of metallic glass containing an element whose standard free energy of oxidation is smaller than that of Al. Junction structure. 上記中間材が結晶化していることを特徴とする請求項4に記載の接合構造。   The junction structure according to claim 4, wherein the intermediate material is crystallized. 上記中間材がLa、Ce及びPrを主成分として含有していることを特徴とする請求項4又は5に記載の接合構造。 The junction structure according to claim 4 or 5, wherein the intermediate material contains La, Ce, and Pr as main components.
JP2009031538A 2009-02-13 2009-02-13 Joining method and joining structure of aluminum-based material Active JP5398293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009031538A JP5398293B2 (en) 2009-02-13 2009-02-13 Joining method and joining structure of aluminum-based material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009031538A JP5398293B2 (en) 2009-02-13 2009-02-13 Joining method and joining structure of aluminum-based material

Publications (2)

Publication Number Publication Date
JP2010184283A JP2010184283A (en) 2010-08-26
JP5398293B2 true JP5398293B2 (en) 2014-01-29

Family

ID=42765258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009031538A Active JP5398293B2 (en) 2009-02-13 2009-02-13 Joining method and joining structure of aluminum-based material

Country Status (1)

Country Link
JP (1) JP5398293B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236463B2 (en) 2018-12-05 2023-03-09 株式会社クボタ Lift arm lifting mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102092343B1 (en) * 2012-07-13 2020-03-23 삼성전자주식회사 Sealing material and display device and menufacturing the display device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05131279A (en) * 1991-11-12 1993-05-28 Fukui Pref Gov Sangyo Shinko Zaidan Joining method for metal by using amorphous metal
JPH08215861A (en) * 1995-02-08 1996-08-27 Nisshin Steel Co Ltd Joining method for amorphous alloy thin strip
JPH1034356A (en) * 1996-07-24 1998-02-10 Sumitomo Metal Ind Ltd Method for welding metallic material
JP3862799B2 (en) * 1997-01-22 2006-12-27 オリンパス株式会社 Composite member manufacturing method and composite member
JP4414556B2 (en) * 2000-04-28 2010-02-10 新日本製鐵株式会社 Manufacturing method of clad material of ceramic and copper
JP4873544B2 (en) * 2006-05-10 2012-02-08 宮城県 Manufacturing method of joined body
JP2008095162A (en) * 2006-10-13 2008-04-24 Japan Science & Technology Agency Cerium based metal glass alloy having excellent oxidation resistance
JP2010131631A (en) * 2008-12-04 2010-06-17 Honda Motor Co Ltd Joining method of member and joined body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236463B2 (en) 2018-12-05 2023-03-09 株式会社クボタ Lift arm lifting mechanism

Also Published As

Publication number Publication date
JP2010184283A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
Zeng et al. Dissimilar laser welding of NiTi shape memory alloy and copper
TWI461252B (en) A bonding method, a bonding structure, an electronic device, an electronic device manufacturing method, and an electronic component
US9272361B2 (en) Method for joining metal materials
Nagaoka et al. Joint strength of aluminum ultrasonic soldered under liquidus temperature of Sn–Zn hypereutectic solder
JP6451866B2 (en) Junction structure and manufacturing method thereof
CN105108257B (en) A kind of transition liquid-phase assisted Solid-state connection method
CN105479030A (en) Active anti-corrosion SnZn base brazing filler metal, manufacturing method thereof and low-temperature ultrasonic brazing method of ceramic and/or composite material and aluminum and magnesium alloy
Wu et al. Vacuum diffusion bonding of TC4 titanium alloy and T2 copper by a slow cooling heat treatment
JP5284542B1 (en) Method for producing aluminum alloy clad material
JP5398293B2 (en) Joining method and joining structure of aluminum-based material
KR100787929B1 (en) Method of low temperature joining between ti-cu dissimilar metals using amorphous filler material
TWI465308B (en) Aluminum alloy welding method
JP2003305586A (en) Bonded joint consisting of different kind of metallic material and its manufacturing method
WO2018096068A1 (en) Method for joining and/or repairing substrates of titanium aluminide alloys
JP5398294B2 (en) Joining method and joining structure of aluminum-based material
US20160340242A1 (en) Method for connection of parts composed of materials that are difficult to solder
WO2018186385A1 (en) Cylindrical sputtering target, and production method therefor
JP6426883B2 (en) Method of manufacturing joined body excellent in corrosion resistance
JPWO2006098233A1 (en) Electronic component package, its lid, lid for the lid, and method for manufacturing the lid
JP4753430B2 (en) Friction welding method of steel and aluminum alloy
CN107827476A (en) A kind of ceramic solder and its method for welding
JP6419657B2 (en) Material for lid of electronic component package and manufacturing method thereof
JP4522678B2 (en) Thin Al-Cu bonded structure and manufacturing method thereof
JP2545048B2 (en) Solid phase bonding method
Wang et al. Fluxless wafer-to-wafer bonding in vacuum using electroplated Sn-rich Sn-Ag dual-layer structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R150 Certificate of patent or registration of utility model

Ref document number: 5398293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350