JPH0583286B2 - - Google Patents

Info

Publication number
JPH0583286B2
JPH0583286B2 JP2107749A JP10774990A JPH0583286B2 JP H0583286 B2 JPH0583286 B2 JP H0583286B2 JP 2107749 A JP2107749 A JP 2107749A JP 10774990 A JP10774990 A JP 10774990A JP H0583286 B2 JPH0583286 B2 JP H0583286B2
Authority
JP
Japan
Prior art keywords
gas
adsorber
sub
main
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2107749A
Other languages
Japanese (ja)
Other versions
JPH047013A (en
Inventor
Juji Horii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2107749A priority Critical patent/JPH047013A/en
Publication of JPH047013A publication Critical patent/JPH047013A/en
Publication of JPH0583286B2 publication Critical patent/JPH0583286B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、圧力スイング吸着法(以下、PSA
と称す。)を用いることにより、原料ガス中から
目的成分ガスを取出し、高純度で回収するための
方法および装置に関するものである。 〔従来の技術〕 従来、原料ガス中から目的成分ガスを取出し、
回収する手段として、吸着剤による特定ガスの吸
着機能を利用したPSAが広く知られている。こ
のPSAは、一酸化炭素および窒素を主成分とす
る転炉ガスから一酸化炭素を濃縮回収する場合
や、二酸化炭素および窒素を主成分とする燃焼排
ガスから二酸化炭素を濃縮回収する場合等に好適
に利用されている。 第8図は、このPSAを行うための従来装置の
一例を示したものである。この装置は、原料ガス
送風機80、吸着器82,82、真空ポンプ8
4、製品ガス貯槽86等を備え、各通路の適所に
自動弁87〜97が配設されている。 この装置において、次に説明する4つの工程を
順次行い、繰返すことにより、製品ガスの精製が
行われる。ここでは、例として一方の吸着器81
で行われる工程について説明する。 吸着工程 原料ガス送風機80の作動により、自動弁87
を通じて吸着器81内に原料ガスを供給する。こ
こで吸着されなかつたガスは、自動弁95を通じ
て装置外へ廃棄する。 洗浄(パージ)工程 製品ガス貯槽86に貯蔵されている製品ガスの
一部を、洗浄ガス供給管98および自動弁91を
通じて吸着器81に供給し、このガスによつて、
吸着器81内の非目的成分、具体的には吸着剤外
表面等の死空間に滞留している非目的成分ガスを
追い出す。この洗浄工程において、主吸着器81
から排出される洗浄排ガスは、原料ガスと比べる
と目的成分に富んでいるので、これを再回収、す
なわち自動弁93および洗浄排ガス回収管99を
通じて原料ガス送風機80の上流側に戻し、他の
吸着器82での吸着に用いる。 脱着工程 真空ポンプ84の作動により、自動弁89を通
じて吸着器81内のガスを吸引し、吸着器81内
を減圧する。これにより、吸着剤に吸着された目
的成分ガスが脱着され、製品ガスとして回収され
る。 昇圧工程 自動弁95,96を開き、吸着器82内のガス
を吸着器81内に送り込むことにより、吸着器8
1内を昇圧する。 以上、一般にPSAで行われる工程を示したが、
さらに特開昭62−61616号公報では、高純度ガス
の分離方法として、上記脱着工程を初期工程、中
期工程、末期工程に分け、中期工程で脱着された
がガスのみを製品ガスとして回収するものが開示
されている。この方法によれば、比較的純度の低
い脱着初期および脱着末期の回収ガスを洗浄用と
して利用し、比較的純度の高い脱着中期の回収ガ
スのみを製品ガスとして回収することにより、製
品ガスの高純度化を図ることができる。 〔発明が解決しようとする課題〕 上記第8図に基づいて説明した従来方法には、
次のような問題点がある。 (1) 上記方法では、回収ガスの純度を高めるため
に、吸着剤外表面等から非目的ガスを追出す洗
浄工程を行つているが、このような洗浄工程で
は製品ガスの一部(実際には回収量の半分以
上)を装置内で循環させなければならないの
で、洗浄工程を行わない場合に比べ、装置全体
の動力費が倍以上となる。 (2) まだ洗浄工程が行われていない状態では、各
主吸着器81,82内に多分の非目的成分が含
まれているので、装置始動時から直ちに高純度
の製品ガスを得ることは困難であり、実際には
吸脱着サイクルを繰返し実行することにより
徐々にガスの純度を高めなければならない。従
つて、高純度ガスを得るまでには比較的長い時
間を要し、また動力費の節減も困難になる。 (3) 上記方法では、製品ガスの一部を洗浄ガスと
して吸着器に循環させる一方、この洗浄工程で
の排ガスを再回収して吸着器に供給するように
しているが、このような再回収を行つても、こ
の再回収ガスに含まれる目的成分を100%取出
すことは不可能であり、製品回収率の低下は免
れ得ない。 一方、上記特開昭62−61616号公報の方法によ
れば、脱着されたガスの純度が最も高くなる脱着
中期の回収ガスのみを製品ガスとして取出すこと
により、製品の高純度化を図ることができるが、
脱着初期および末期において回収されるガスも、
原料ガスと比べると目的成分ガスに富んでおり、
このような回収ガスを製品として取出さずに廃棄
し、あるいは洗浄ガスとして循環させることは製
品回収率の低下につながり、経済性を損うことに
なる。 本発明は、このような事情に鑑み、洗浄工程の
削減あるいは廃止を図りながら、回収される製品
ガスの純度を高純度に維持し、これによつて動力
費の削減や製品回収率の向上を図ることができる
高純度ガスの精製方法および装置を提供すること
を目的とする。 〔課題を解決するための手段〕 本発明は、吸着剤を有する主吸着器内に原料ガ
スを通してこの原料ガス中の目的成分を選択的に
吸着させる吸着工程と、上記主吸着器内を減圧す
ることにより上記吸着剤に吸着されたガスを脱着
する脱着工程とを順次行い、この脱着したガスを
回収する高純度ガスの精製方法において、上記脱
着工程の初期では主吸着器の吸着剤から脱着され
たガスを吸着剤を有する副吸着器に導いて上記ガ
ス中の目的成分を吸着させ、この脱着工程初期の
終了時から脱着工程終了時までの期間では主吸着
器から脱着されたガスを製品ガスとして回収し、
上記脱着工程の後は副吸着器内を減圧してこの副
吸着器内の吸着剤に吸着されたガスを脱着し、こ
のガスを製品ガスとして回収するものである(請
求項1)。 ここで、脱着工程初期の終了時から脱着工程終
了時までの期間では、主吸着器から脱着されたガ
スを直接製品ガスとして回収するようにしてもよ
いし、上記ガスを副吸着器に通した後に回収する
ようにしてもよい。 また本発明は、上記方法を実施するための装置
として、原料ガス中の目的成分を選択的に吸着す
る吸着剤を有する主吸着器と、この主吸着器に原
料ガスを供給する原料ガス供給手段と、上記主吸
着器内を減圧してガスを脱着させる脱着手段とを
備えた高純度ガスの精製装置において、上記主吸
着器の出口側に接続され、この主吸着器から脱着
されたガス中の上記目的成分を選択的に吸着する
吸着剤を有する副吸着器と、この副吸着器内を減
圧してガスを脱着させる副脱着手段と、この副吸
着器の出口側の通路を同副吸着器から排出された
ガスを回収側へ送る通路と廃棄側へ送る通路とに
選択的に切換える通路手段とを備えたものである
(請求項2)。 〔作用〕 上記構成によれば、脱着工程初期では、主吸着
器から脱着されたガスがそのまま副吸着器に導か
れ、上記ガス中の目的成分が吸着される。その
後、脱着工程が進んで主吸着器からの脱着ガスの
純度が高くなると、このガスは直接あるいは副吸
着器等を通じて製品ガスとして回収される。そし
て、この脱着工程終了後、上記副吸着器を減圧す
ることにより、この副吸着器で吸着されていたガ
スが脱着され、製品ガスとして回収される。 〔実施例〕 第1図〜第6図は、本発明方法を実施するため
の一実施例装置の全体構成を示したものである。 この装置は、原料ガス送風機(原料ガス供給手
段)10、主吸着器11,12、真空ポンプ(脱
着手段および副脱着手段として兼用)14、およ
び製品ガス貯槽16を備え、各主吸着器11,1
2は、原料ガス中の目的成分を選択的に吸着する
吸着剤を内蔵している。 原料ガス送風機10は、自動弁19,20を
各々介して主吸着器11,12の入口に接続さ
れ、真空ポンプ14も自動弁23,24を介して
主吸着器11,12の入口に各々接続されてい
る。各主吸着器11,12の出口は、自動弁2
7,28を各々介して廃ガス排出管30に接続さ
れるとともに、自動弁31,32および洗浄排ガ
ス回収管34を介して上記原料ガス送風機10の
上流側に接続されている。製品ガス貯槽16は、
上記真空ポンプ14の下流側に配置されるととも
に、洗浄ガス供給管36および自動弁37,38
を介して各主吸着器11,12の入口側に接続さ
れている。 さらに、この装置の特徴として、上記真空ポン
プ14と製品ガス貯槽16との間には副吸着器4
0が設けられている。この副吸着器40も、上記
主吸着器11,12と同様に、原料ガス中の目的
成分のみを選択的に吸着する吸着剤を内蔵してい
る。 この副吸着器40と真空ポンプ14との間に
は、自動弁42〜44が配設されている。副吸着
器40の出口側通路管は、製品ガス貯槽16へつ
ながる製品ガス回収管46と、廃棄側へつながる
廃棄管47とに分岐しており、各管46,47に
は、通路切換用の自動弁(通路切換手段)50,
51が配設されている。また、上記真空ポンプ1
4と製品ガス貯槽16とはバイパス管54によつ
て直結されており、このバイパス管54の途中に
も自動弁56が配設されている。 次に、この装置により行われる製品ガス(高純
度ガス)の精製工程を説明する。この装置では、
第7図に示されるように、各主吸着器11,12
について4つの工程が互いに位相をずらしながら
順次実行されるとともに、副吸着器40で吸脱着
工程が交互に行われることにより、高純度ガスの
精製が行われるが、ここでは主吸着器11で行わ
れる工程を主にして説明を進める。 吸着工程(第1図) 自動弁19を開き、原料ガス送風機10を作動
させて原料ガスを主吸着器11内に供給する。こ
れにより、原料ガス中の目的成分が主吸着器11
内の吸着剤に吸着され、吸着されなかつたガスは
自動弁27を通じて廃ガス排出管30から装置外
へ廃棄される。 洗浄工程(第2図) 自動弁37を開き、製品ガス貯槽16に貯留さ
れている製品ガスを洗浄ガスとして主吸着器11
内に略大気圧下で送り込む。この洗浄ガスによつ
て、吸着剤外表面等の死空間に滞留している非目
的成分ガスを追い出される。このとき主吸着器1
1から排出される洗浄排ガスは、自動弁31およ
び洗浄排ガス回収管34を通じて原料ガス送風機
10の上流側へ戻されることにより再回収され、
再び主吸着器12での吸着に供される。 脱着工程(第3図および第4図) 初期(第3図) 自動弁23を開き、真空ポンプ14を作動さ
せて主吸着器11内を減圧し、脱着を行うとと
もに、自動弁42,44を開き、主吸着器11
から脱着されたガスを副吸着器40内に送り込
む。この副吸着器40により、脱着ガス中に含
まれる目的成分ガスが吸着される。 この脱着工程の初期の段階では、主吸着器1
1から排出される脱着ガス中にはまだ非目的ガ
スが多く含まれているため、副吸着器40でも
吸着されなかつた残りのガスは、製品ガスとし
て充分な純度は有していない。従つて、この初
期の段階では、自動弁50を閉じ、自動弁51
のみを開くことによつて、上記副吸着器40か
ら排出されるガスを廃棄管47を通じて装置外
部へ廃棄する。 初期終了後(第4図) 上記脱着工程初期が終わり、脱着が進行する
と、この脱着ガス中に含まれる非目的成分は少
量となり、この脱着ガスは充分な純度を有する
状態となる。このため、副吸着器40で吸着さ
れなかつたガス、すなわち副吸着器40から排
出されるガスも製品ガスとして利用に耐え得る
純度をもつ。従つて、この期間では自動弁51
を閉じ、自動弁51のみを開くことにより、副
吸着器40から排出されたガスを製品ガスとし
て回収する。 このように、脱着工程初期が終了した後は、副
吸着器40で目的成分の吸着が行われなくても製
品ガスの回収が可能であるので、副吸着器40の
吸着剤が破過状態となつても差支えない。従つ
て、副吸着器40の吸着剤は、少なくとも脱着工
程初期で良好な吸着を行うことができるだけの吸
着量を有しておればよい。 副吸着器40の脱着工程(第5図) 自動弁42,43を開き、真空ポンプ14を作
動させることにより、副吸着器40内を減圧し、
吸着されているガスの脱着を行う。これととも
に、自動弁56を開くことにより、上記副吸着器
40から脱着されたガスをバイパス管54を通じ
て製品ガス回収管46に送り込み、上記脱着ガス
を製品ガスとして回収する。 なお、このような副吸着器40の脱着工程が行
われている間、自動弁27,28を開き、主吸着
器12内のガスを主吸着器11内に供給すること
により主吸着器11の昇圧を行い、その後上記吸
着工程に戻る。 以上のように、この装置では、主吸着器11,
12の出口側に副吸着器40を設け、この副吸着
器40でも目的成分の吸着を行うようにしている
ので、従来のように洗浄工程に頼ることなく、ま
た製品回収率を下げることなく、高純度のガスを
精製するとができる。このため、上記洗浄工程の
消滅、場合によつては洗浄工程の廃止を実現する
ことができる。洗浄工程を廃止する場合には、第
1図〜第5図において破線で示される要素、すな
わち洗浄ガス供給管36、洗浄ガス回収管34、
および各自動弁31,32,37,38を省略す
ることができる。 しかも、この方法では、吸着工程初期が終了し
た時点、すなわち、主吸着器11から吸引される
脱着ガスの純度が十分に高くなつた時点からは、
副吸着器40を通過するガスをも製品ガスとして
回収し、主吸着器11の脱着工程後期と副吸着器
40の脱着工程の双方で製品ガスを回収するよう
にしているので、上記主吸着器11の脱着工程で
製品ガスを回収する分、副吸着器40の脱着によ
り回収しなければならないガス量は少なくて済
む。従つて、この副吸着器40の脱着に要する動
力を極力削減することにより、従来のように洗浄
工程の実行によつて製品ガスの高純度化を図る方
法に比べ、動力費の大幅な節減を図ることができ
る。 次に、実験データを示す。前記第8図の従来装
置において、次頁の第1表に示される条件で運転
を行い、一酸化炭素の回収を行つたところ、運転
開始から約2.75時間経過した後に。純度98.7%の
製品ガスを製品回収率67%で安定して得ることが
できた。
[Industrial Application Field] The present invention is based on the pressure swing adsorption method (hereinafter referred to as PSA
It is called. The present invention relates to a method and apparatus for extracting a target component gas from a source gas and recovering it with high purity by using the following method. [Conventional technology] Conventionally, target component gas is extracted from raw material gas,
As a means of recovery, PSA, which utilizes the ability of an adsorbent to adsorb a specific gas, is widely known. This PSA is suitable for concentrating and recovering carbon monoxide from converter gas whose main components are carbon monoxide and nitrogen, and when concentrating and recovering carbon dioxide from combustion exhaust gas whose main components are carbon dioxide and nitrogen. It is used for. FIG. 8 shows an example of a conventional device for performing this PSA. This device includes a raw material gas blower 80, adsorbers 82, 82, and a vacuum pump 8.
4. A product gas storage tank 86 and the like are provided, and automatic valves 87 to 97 are provided at appropriate positions in each passage. In this apparatus, the product gas is purified by sequentially performing and repeating the four steps described below. Here, as an example, one of the adsorbers 81
The steps performed in this section will be explained. Adsorption process Automatic valve 87 is activated by the operation of raw material gas blower 80.
The raw material gas is supplied into the adsorber 81 through the adsorbent. The gas that is not adsorbed here is disposed of outside the apparatus through an automatic valve 95. Cleaning (Purge) Step A part of the product gas stored in the product gas storage tank 86 is supplied to the adsorber 81 through the cleaning gas supply pipe 98 and the automatic valve 91, and with this gas,
Non-target components in the adsorber 81, specifically non-target component gases staying in dead spaces such as the outer surface of the adsorbent, are expelled. In this cleaning process, the main adsorber 81
Since the cleaning exhaust gas discharged from the source gas is rich in target components compared to the raw material gas, it is recovered again, that is, returned to the upstream side of the raw material gas blower 80 through the automatic valve 93 and the cleaning exhaust gas recovery pipe 99, and is used for other adsorption. It is used for adsorption in the vessel 82. Desorption step The vacuum pump 84 is activated to suck the gas inside the adsorber 81 through the automatic valve 89 and reduce the pressure inside the adsorber 81 . As a result, the target component gas adsorbed by the adsorbent is desorbed and recovered as a product gas. Pressure increase process By opening the automatic valves 95 and 96 and sending the gas in the adsorber 82 into the adsorber 81, the adsorber 8
Increase the pressure inside 1. The above shows the processes generally performed in PSA,
Furthermore, JP-A-62-61616 discloses a method for separating high-purity gases, in which the desorption process is divided into an initial process, a middle process, and a final process, and only the gas desorbed in the middle process is recovered as a product gas. is disclosed. According to this method, the recovered gas at the early and final stages of desorption, which has relatively low purity, is used for cleaning, and only the recovered gas at the middle stage of desorption, which has relatively high purity, is recovered as product gas. Purification can be achieved. [Problem to be solved by the invention] The conventional method explained based on FIG.
There are the following problems. (1) In the above method, in order to increase the purity of the recovered gas, a cleaning process is performed to expel non-target gas from the outer surface of the adsorbent, etc., but in this cleaning process, a part of the product gas (actually Because more than half of the recovered amount must be circulated within the device, the power cost for the entire device is more than double that of a case where no cleaning step is performed. (2) If the cleaning process has not been performed yet, each main adsorber 81, 82 contains many non-target components, so it is difficult to obtain high-purity product gas immediately from the start of the device. In reality, it is necessary to gradually increase the purity of the gas by repeatedly performing adsorption/desorption cycles. Therefore, it takes a relatively long time to obtain high-purity gas, and it is also difficult to reduce power costs. (3) In the above method, part of the product gas is circulated to the adsorber as cleaning gas, while the exhaust gas from this cleaning process is recovered and supplied to the adsorber. Even if this is done, it is impossible to extract 100% of the target components contained in this re-recovered gas, and a decrease in product recovery rate is inevitable. On the other hand, according to the method disclosed in JP-A No. 62-61616, it is possible to improve the purity of the product by extracting only the recovered gas in the middle stage of desorption, when the purity of the desorbed gas is highest, as product gas. You can, but
The gas recovered during the initial and final stages of desorption also
Compared to the raw material gas, it is rich in target component gas,
Discarding such recovered gas without taking it out as a product or circulating it as a cleaning gas will lead to a decrease in product recovery rate and impair economic efficiency. In view of these circumstances, the present invention maintains the purity of the recovered product gas at a high level while reducing or eliminating the cleaning process, thereby reducing power costs and improving the product recovery rate. An object of the present invention is to provide a method and apparatus for purifying high-purity gas. [Means for Solving the Problems] The present invention includes an adsorption step in which a raw material gas is passed through a main adsorber having an adsorbent and a target component in the raw material gas is selectively adsorbed, and the pressure inside the main adsorber is reduced. In a high-purity gas purification method that sequentially performs a desorption step of desorbing the gas adsorbed on the adsorbent and recovers the desorbed gas, in the early stage of the desorption step, the desorption step of desorbing the gas adsorbed on the adsorbent is performed. The target components in the gas are adsorbed by introducing the desorbed gas into a sub-adsorber having an adsorbent, and during the period from the end of the initial desorption process to the end of the desorption process, the gas desorbed from the main adsorption unit is used as product gas. collected as
After the desorption step, the pressure inside the sub-adsorber is reduced to desorb the gas adsorbed by the adsorbent in the sub-adsorber, and this gas is recovered as a product gas (Claim 1). Here, during the period from the initial end of the desorption process to the end of the desorption process, the gas desorbed from the main adsorber may be directly recovered as product gas, or the gas may be passed through the sub-adsorber. It may be collected later. The present invention also provides an apparatus for carrying out the above method, including a main adsorber having an adsorbent that selectively adsorbs target components in the raw material gas, and a raw material gas supply means for supplying the raw material gas to the main adsorber. and a desorption means for depressurizing the inside of the main adsorber to desorb the gas, which is connected to the outlet side of the main adsorption device, and is connected to the outlet side of the main adsorber, and the gas desorbed from the main adsorption device is A sub-adsorber having an adsorbent that selectively adsorbs the target component, a sub-desorption means for depressurizing the inside of the sub-adsorber to desorb the gas, and a passage on the outlet side of the sub-adsorber for desorbing the gas. The present invention is provided with passage means for selectively switching between a passage for sending the gas discharged from the container to the recovery side and a passage for sending it to the disposal side (claim 2). [Function] According to the above configuration, in the early stage of the desorption process, the gas desorbed from the main adsorption device is directly guided to the sub adsorption device, and the target component in the gas is adsorbed. Thereafter, as the desorption process progresses and the purity of the desorbed gas from the main adsorber becomes high, this gas is recovered as a product gas either directly or through a sub-adsorber or the like. After this desorption step is completed, the sub-adsorber is depressurized, whereby the gas adsorbed by the sub-adsorber is desorbed and recovered as a product gas. [Embodiment] FIGS. 1 to 6 show the overall configuration of an embodiment of an apparatus for carrying out the method of the present invention. This device includes a raw material gas blower (raw material gas supply means) 10, main adsorbers 11 and 12, a vacuum pump (also used as a desorption means and a sub-desorption means) 14, and a product gas storage tank 16. 1
2 contains an adsorbent that selectively adsorbs target components in the raw material gas. The raw material gas blower 10 is connected to the inlets of the main adsorbers 11 and 12 via automatic valves 19 and 20, respectively, and the vacuum pump 14 is also connected to the inlets of the main adsorbers 11 and 12 via automatic valves 23 and 24, respectively. has been done. The outlet of each main adsorber 11, 12 is connected to an automatic valve 2.
7 and 28, respectively, and is connected to the upstream side of the source gas blower 10 via automatic valves 31 and 32 and a cleaning exhaust gas recovery pipe . The product gas storage tank 16 is
Located downstream of the vacuum pump 14, the cleaning gas supply pipe 36 and automatic valves 37, 38
It is connected to the inlet side of each main adsorber 11, 12 via. Furthermore, as a feature of this device, a sub-adsorption device 4 is provided between the vacuum pump 14 and the product gas storage tank 16.
0 is set. Similar to the main adsorbers 11 and 12, this sub-adsorber 40 also contains an adsorbent that selectively adsorbs only the target component in the raw material gas. Automatic valves 42 to 44 are disposed between the sub-adsorber 40 and the vacuum pump 14. The outlet side passage pipe of the sub-adsorber 40 branches into a product gas recovery pipe 46 connected to the product gas storage tank 16 and a waste pipe 47 connected to the waste side, and each pipe 46, 47 has a passage switching pipe. Automatic valve (passage switching means) 50,
51 are arranged. In addition, the vacuum pump 1
4 and the product gas storage tank 16 are directly connected by a bypass pipe 54, and an automatic valve 56 is also disposed in the middle of this bypass pipe 54. Next, a process of purifying product gas (high purity gas) performed by this apparatus will be explained. With this device,
As shown in FIG. 7, each main adsorber 11, 12
High-purity gas is purified by sequentially performing four steps with different phases from each other, and by alternately performing adsorption and desorption steps in the sub-adsorber 40. The explanation will mainly focus on the process involved. Adsorption step (FIG. 1) The automatic valve 19 is opened, the raw material gas blower 10 is operated, and the raw material gas is supplied into the main adsorber 11. As a result, the target component in the raw material gas is transferred to the main adsorber 11.
The gas that is adsorbed by the adsorbent inside and not adsorbed is disposed of outside the apparatus from the waste gas discharge pipe 30 through the automatic valve 27. Cleaning process (Fig. 2) Open the automatic valve 37 and use the product gas stored in the product gas storage tank 16 as cleaning gas to the main adsorber 11.
into the tank under approximately atmospheric pressure. With this cleaning gas, non-target component gases staying in dead spaces such as on the outer surface of the adsorbent are expelled. At this time, the main adsorber 1
The cleaning exhaust gas discharged from 1 is recovered again by being returned to the upstream side of the raw material gas blower 10 through the automatic valve 31 and the cleaning exhaust gas recovery pipe 34,
It is again subjected to adsorption in the main adsorber 12. Desorption process (Figures 3 and 4) Initial stage (Figure 3) Open the automatic valve 23, operate the vacuum pump 14 to reduce the pressure inside the main adsorber 11, perform desorption, and open the automatic valves 42 and 44. Open, main adsorber 11
The gas desorbed from the adsorbent is fed into the sub-adsorber 40. This sub-adsorber 40 adsorbs the target component gas contained in the desorption gas. At the initial stage of this desorption process, the main adsorber 1
Since the desorption gas discharged from the adsorbent 1 still contains a large amount of non-target gas, the remaining gas that has not been adsorbed even in the sub-adsorber 40 does not have sufficient purity as a product gas. Therefore, at this initial stage, automatic valve 50 is closed and automatic valve 51 is closed.
By opening only the sub-adsorber 40, the gas discharged from the sub-adsorber 40 is disposed of to the outside of the apparatus through the waste pipe 47. After the initial completion (FIG. 4) When the initial stage of the desorption process is completed and desorption progresses, the amount of non-target components contained in the desorption gas becomes small, and the desorption gas has sufficient purity. Therefore, the gas not adsorbed by the sub-adsorber 40, that is, the gas discharged from the sub-adsorber 40, also has a purity sufficient to be used as a product gas. Therefore, during this period, the automatic valve 51
By closing the automatic valve 51 and opening only the automatic valve 51, the gas discharged from the sub-adsorber 40 is recovered as product gas. In this way, after the initial stage of the desorption process is completed, the product gas can be recovered even if the target component is not adsorbed in the sub-adsorber 40, so that the adsorbent in the sub-adsorber 40 is in a breakthrough state. It doesn't matter if you get old. Therefore, the adsorbent in the sub-adsorber 40 only needs to have an adsorption amount sufficient to perform good adsorption at least in the initial stage of the desorption process. Desorption process of the sub-adsorber 40 (Fig. 5) The pressure inside the sub-adsorber 40 is reduced by opening the automatic valves 42 and 43 and operating the vacuum pump 14,
Desorbs the adsorbed gas. At the same time, by opening the automatic valve 56, the gas desorbed from the sub-adsorber 40 is sent through the bypass pipe 54 to the product gas recovery pipe 46, and the desorbed gas is recovered as product gas. Note that while the desorption process of the sub-adsorber 40 is being performed, the automatic valves 27 and 28 are opened and the gas in the main adsorber 12 is supplied into the main adsorber 11, so that the main adsorber 11 is The pressure is increased, and then the process returns to the adsorption step. As described above, in this device, the main adsorber 11,
A sub-adsorber 40 is provided on the outlet side of the 12, and this sub-adsorber 40 also adsorbs the target component, so there is no need to rely on the washing process as in the past, and without reducing the product recovery rate. High purity gas can be purified. Therefore, the above-mentioned cleaning process can be eliminated, and in some cases, the cleaning process can be abolished. When the cleaning process is abolished, the elements indicated by broken lines in FIGS. 1 to 5, namely the cleaning gas supply pipe 36, the cleaning gas recovery pipe 34,
And each automatic valve 31, 32, 37, 38 can be omitted. Moreover, in this method, from the time when the initial stage of the adsorption process is completed, that is, from the time when the purity of the desorption gas sucked from the main adsorber 11 becomes sufficiently high,
The gas passing through the sub-adsorber 40 is also recovered as a product gas, and the product gas is recovered in both the latter stages of the desorption process of the main adsorber 11 and the desorption process of the sub-adsorber 40. Since the product gas is recovered in the desorption step 11, the amount of gas that must be recovered through desorption in the sub-adsorber 40 can be reduced. Therefore, by reducing the power required for desorption of the sub-adsorber 40 as much as possible, it is possible to significantly reduce power costs compared to the conventional method of purifying the product gas by performing a cleaning process. can be achieved. Next, experimental data will be shown. The conventional apparatus shown in FIG. 8 was operated under the conditions shown in Table 1 on the next page, and carbon monoxide was recovered approximately 2.75 hours after the start of operation. Product gas with a purity of 98.7% could be stably obtained with a product recovery rate of 67%.

【表】 ここで、洗浄時のガス量は製品ガスの全回収量
の1/2に相当するが、実際には製品の高純度化を
図るため、それ以上の洗浄ガス量が要求されるこ
とになる。 これに対し、第1図〜第5図に示される本発明
装置を次頁の第2表の条件で運転し、同じく一酸
化炭素ガスの純度が98.7%となるように通路切換
のタイミングを調節したところ、運転開始後1時
間以内に、上記純度をもつ製品ガスを回収率73%
で得ることができた。
[Table] Here, the amount of gas during cleaning is equivalent to 1/2 of the total amount of product gas recovered, but in reality, a larger amount of cleaning gas is required to achieve high purity products. become. In contrast, the apparatus of the present invention shown in Figures 1 to 5 is operated under the conditions shown in Table 2 on the next page, and the timing of passage switching is adjusted so that the purity of carbon monoxide gas is 98.7%. As a result, we achieved a recovery rate of 73% for product gas with the above purity within one hour of starting operation.
I was able to get it.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、主吸着器の脱着工程初
期においては、脱着されたガスをさらに副吸着器
に導き、こで目的成分を吸着させ、この脱着工程
初期が終了した後は、脱着されるガスを製品ガス
として回収し、さらに、脱着工程後に副吸着器の
脱着を行つて脱着ガスを製品ガスとして回収する
ようにしたものであるので、洗浄工程の削減ある
いは廃止を図りながら、製品ガスの純度を高純度
に維持することができ、これによつて動力費の削
減や製品回収率の向上を図ることができる効果が
ある。
As described above, in the present invention, at the initial stage of the desorption process in the main adsorber, the desorbed gas is further guided to the sub-adsorber, where the target component is adsorbed, and after this initial stage of the desorption process is completed, the desorbed gas is This system recovers the desorbed gas as product gas, and then desorbs the sub-adsorber after the desorption process and recovers the desorbed gas as product gas. The purity of the product can be maintained at a high level, which has the effect of reducing power costs and improving the product recovery rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における高純度ガス
精製装置において主吸着器の吸着工程時のガスの
流れを示す全体構成図、第2図は同装置において
主吸着器の洗浄工程時のガスの流れを示す全体構
成図、第3図は同装置において主吸着器の脱着工
程初期のガスの流れを示す全体構成図、第4図は
同装置において主吸着器の脱着工程初期終了後の
ガスの流れを示す全体構成図、第5図は同装置に
おいて主吸着器の昇圧工程時および副吸着器の脱
着工程時のガスの流れを示す全体構成図、第6図
は同装置において副吸着器の脱着工程時のガスの
流れの変形例を示す全体構成図、第7図は同装置
の各主吸着器および副吸着器において実行される
工程を示す工程図、第8図は従来の高純度精製装
置の一例を示す全体構成図である。 10……原料ガス送風機(原料ガス供給手段)、
11,12……主吸着器、14……真空ポンプ
(脱着手段および副脱着手段)、40……副吸着
器、46……製品ガス回収管、47……廃棄管、
50,51……自動弁(通路切換手段)。
Fig. 1 is an overall configuration diagram showing the flow of gas during the adsorption process in the main adsorber in a high-purity gas purification apparatus according to an embodiment of the present invention, and Fig. 2 shows the gas flow during the cleaning process in the main adsorber in the same apparatus. Figure 3 is an overall configuration diagram showing the flow of gas at the beginning of the desorption process in the main adsorber in the same equipment, and Figure 4 is a diagram showing the gas flow after the initial desorption process in the main adsorber in the same equipment. Figure 5 is an overall configuration diagram showing the gas flow during the pressure increase process of the main adsorber and the desorption process of the sub-adsorber in the same equipment, and Figure 6 is an overall configuration diagram showing the gas flow during the pressure increase process of the main adsorber and the desorption process of the sub-adsorber in the same equipment. Figure 7 is a process diagram showing the steps performed in each main adsorber and sub-adsorber of the same device, and Figure 8 is a conventional high-purity adsorption system. FIG. 1 is an overall configuration diagram showing an example of a purification device. 10... Raw material gas blower (raw material gas supply means),
11, 12...Main adsorption device, 14...Vacuum pump (desorption means and sub-desorption means), 40...Sub-adsorption device, 46...Product gas recovery pipe, 47...Disposal pipe,
50, 51... Automatic valve (passage switching means).

Claims (1)

【特許請求の範囲】 1 吸着剤を有する主吸着器内に原料ガスを通し
てこの原料ガス中の目的成分を選択的に吸着させ
る吸着工程と、上記主吸着器内を減圧することに
より上記吸着剤に吸着されたガスを脱着する脱着
工程とを順次行い、この脱着したガスを回収する
高純度ガスの精製方法において、上記脱着工程の
初期では主吸着器の吸着剤から脱着されたガスを
吸着剤を有する副吸着器に導いて上記ガス中の目
的成分を吸着させ、この脱着工程初期の終了時か
ら脱着工程終了時までの期間では主吸着器から脱
着されたガスを製品ガスとして回収し、上記脱着
工程の後は副吸着器内を減圧してこの副吸着器内
の吸着剤に吸着されたガスを脱着し、このガスを
製品ガスとして回収することを特徴とする吸着法
による高純度ガスの精製方法。 2 原料ガス中の目的成分を選択的に吸着する吸
着剤を有する主吸着器と、この主吸着器に原料ガ
スを供給する原料ガス供給手段と、上記主吸着器
内を減圧してガスを脱着させる脱着手段とを備え
た高純度ガスの精製装置において、上記主吸着器
の出口側に接続され、この主吸着器から脱着され
たガス中の上記目的成分を選択的に吸着する吸着
剤を有する副吸着器と、この副吸着器内を減圧し
てガスを脱着させる副脱着手段と、この副吸着器
の出口側の通路を同副吸着器から排出されたガス
を回収側へ送る通路と廃棄側へ送る通路とに選択
的に切換える通路切換手段とを備えたことを特徴
とする吸着法による高純度ガスの精製装置。
[Scope of Claims] 1. An adsorption step in which a raw material gas is passed into a main adsorber having an adsorbent to selectively adsorb a target component in this material gas, and an adsorption step in which the target component in the material gas is selectively adsorbed, and the adsorbent is absorbed by reducing the pressure inside the main adsorber. In a high-purity gas purification method that sequentially performs a desorption step in which the adsorbed gas is desorbed and then recovers the desorbed gas, in the early stage of the desorption step, the desorbed gas is removed from the adsorbent in the main adsorber. During the period from the end of the initial desorption process to the end of the desorption process, the gas desorbed from the main adsorption unit is recovered as a product gas, and the target component in the gas is adsorbed. After the process, the pressure inside the sub-adsorber is reduced to desorb the gas adsorbed by the adsorbent in this sub-adsorber, and this gas is recovered as a product gas. Purification of high-purity gas using an adsorption method. Method. 2. A main adsorber having an adsorbent that selectively adsorbs target components in the raw material gas, a raw material gas supply means for supplying the raw material gas to this main adsorber, and a method for depressurizing the inside of the main adsorber to desorb the gas. A high-purity gas purification apparatus equipped with a desorption means for desorbing the gas, the apparatus having an adsorbent connected to the outlet side of the main adsorption device to selectively adsorb the target component in the gas desorbed from the main adsorption device. A sub-adsorber, a sub-desorption means that depressurizes the inside of the sub-adsorber to desorb the gas, and a passage on the outlet side of the sub-adsorber as a passage for transporting the gas discharged from the sub-adsorber to the recovery side and disposal. 1. An apparatus for purifying high-purity gas using an adsorption method, characterized in that it is equipped with a passage switching means for selectively switching between a passage to the side and a passage to the other side.
JP2107749A 1990-04-23 1990-04-23 Method and device for producing highly pure gas by adsorption process Granted JPH047013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2107749A JPH047013A (en) 1990-04-23 1990-04-23 Method and device for producing highly pure gas by adsorption process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107749A JPH047013A (en) 1990-04-23 1990-04-23 Method and device for producing highly pure gas by adsorption process

Publications (2)

Publication Number Publication Date
JPH047013A JPH047013A (en) 1992-01-10
JPH0583286B2 true JPH0583286B2 (en) 1993-11-25

Family

ID=14466997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107749A Granted JPH047013A (en) 1990-04-23 1990-04-23 Method and device for producing highly pure gas by adsorption process

Country Status (1)

Country Link
JP (1) JPH047013A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681369A (en) * 1996-05-10 1997-10-28 Jordan Holding Company Apparatus and method for recovering volatile liquid
US8979982B2 (en) 2013-05-01 2015-03-17 Jordan Technologies, Llc Negative pressure vapor recovery system

Also Published As

Publication number Publication date
JPH047013A (en) 1992-01-10

Similar Documents

Publication Publication Date Title
JP3902416B2 (en) Gas separation method
WO2004076030A1 (en) Off-gas feed method and object gas purification system
JPH08294612A (en) Pressure swing adsorption method for fractionating multicomponent mixture
JPH0583286B2 (en)
JP2988696B2 (en) Shutdown method in concentrated oxygen recovery equipment by pressure swing
JPS61230715A (en) Method for concentrating and recovering gas by using psa apparatus
JP3015840B2 (en) Pressure swing adsorption method for separating and recovering carbon monoxide from a mixed gas containing carbon monoxide
JPH03242313A (en) Purification of carbon monoxide
JP2504448B2 (en) Pressure swing adsorption device
JPH0312307A (en) Method for enriching oxygen
WO1995033681A1 (en) Oxygen generating method based on pressure variation adsorption separation
KR100228239B1 (en) Apparatus and process for producing nitrogen using psa system depending on nitrogen concentration in the product
JPS62153388A (en) Concentration of methane
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas
JPH0112529B2 (en)
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JPH07110328B2 (en) Pressure swing adsorption type high-purity nitrogen production method and apparatus
JP2755407B2 (en) Pressure swing type gas separator
JPS624421A (en) Pressure swing adsorption method
JPH0517133Y2 (en)
JPS63107719A (en) Pressure swing adsorption method
JPS61149224A (en) Pressure swing adsorbing method
JPS62193623A (en) Method for taking out easily-adsorbing substance as high-purity gas
JPH0693968B2 (en) Pressure swing adsorption device for carbon dioxide recovery from source gas containing nitrogen oxides
JPS6287402A (en) Method of separating and recovering high-purity nitrogen form air