WO1995033681A1 - Oxygen generating method based on pressure variation adsorption separation - Google Patents

Oxygen generating method based on pressure variation adsorption separation Download PDF

Info

Publication number
WO1995033681A1
WO1995033681A1 PCT/JP1995/001083 JP9501083W WO9533681A1 WO 1995033681 A1 WO1995033681 A1 WO 1995033681A1 JP 9501083 W JP9501083 W JP 9501083W WO 9533681 A1 WO9533681 A1 WO 9533681A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
oxygen
cylinder
pressure
gas
Prior art date
Application number
PCT/JP1995/001083
Other languages
French (fr)
Japanese (ja)
Inventor
Shin Hayashi
Masato Kawai
Original Assignee
Nippon Sanso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sanso Corporation filed Critical Nippon Sanso Corporation
Publication of WO1995033681A1 publication Critical patent/WO1995033681A1/en
Priority to US09/056,377 priority Critical patent/US5985003A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases

Definitions

  • the present invention relates to a method for generating oxygen by a pressure fluctuation adsorption separation method, and more specifically, a mixed gas containing oxygen and nitrogen as main components by a pressure fluctuation adsorption method using an adsorbent that selectively adsorbs nitrogen.
  • a method for generating oxygen with a purity of about 90% from air.
  • an oxygen generation method using a pressure fluctuation adsorption method (hereinafter referred to as an oxygen PSA method) is widely used.
  • This oxygen PSA method is generally performed using an apparatus equipped with a plurality of adsorption columns filled with zeolite, which selectively adsorbs nitrogen as an adsorbent (oxygen PSA apparatus).
  • oxygen PSA apparatus For each adsorption column, concentrated oxygen is continuously generated by alternately repeating the adsorption process of operating at a relatively high pressure and the regeneration process of operating at a relatively low pressure.
  • oxygen PSA oxygen is concentrated and separated from air by using the high selective adsorption characteristics of zeolite for nitrogen, but oxygen and argon have almost the same adsorption characteristics for zeolite. Therefore, the maximum concentration of oxygen separated and concentrated was approximately 95% because it contained argon.
  • the points of interest for improving the performance of the oxygen PSA method are to increase the amount of oxygen generated per adsorbent used to reduce the size of the device, and to reduce the unit power consumption. There are two points to raise the product oxygen recovery rate.
  • the oxygen PSA method basically includes the adsorption step and the regeneration step, but in order to increase the oxygen recovery rate, a pressure recovery step, a repressurization step, etc. are added to this basic step.
  • a co-current depressurization step is performed to utilize the concentrated oxygen remaining in the adsorption column as a product or a purge gas.
  • purging is performed with a part of the product gas in the regeneration process to promote the desorption of nitrogen from the adsorbent.
  • This purging operation reduces the partial pressure of the gaseous easily adsorbed components by supplying a part of the product gas from the product outlet end when the pressure in the adsorption cylinder decreases due to the pressure reduction. This method promotes desorption, and is adopted regardless of the normal pressure regeneration and vacuum regeneration processes.
  • conventional methods include, for example, the method described in Japanese Patent Application Laid-Open No. 63-144004, The pressure equalization process (simultaneous upper and lower pressure equalization) in which two adsorption cylinders are connected to collect gas from both the upper part (product gas outlet) and the lower part (source gas inlet) of each adsorption cylinder at the same time.
  • the pressure equalization process Simultaneous upper and lower pressure equalization
  • two adsorption cylinders are connected to collect gas from both the upper part (product gas outlet) and the lower part (source gas inlet) of each adsorption cylinder at the same time.
  • a large amount of gas can be recovered, but in the adsorption column on the gas receiving side, a relatively oxygen-enriched gas is recovered at the top of the column, and air or some nitrogen rather than air is collected at the bottom of the column. Minute higher gas is recovered. Therefore, in this method, the product recovery rate is high, but the amount of oxygen generated per adsorbent is low.
  • Japanese Patent Application Laid-Open No. 63-144401 discloses that, in the pressure equalization step, two cylinders are connected in the same manner as described above, and simultaneously from both the upper and lower parts of the cylinder. At this time, gas is collected. At this time, the lower line uses a vacuum exhaust line to exhaust part of the gas collected from the lower part, and adjusts the amount of gas collected from the lower part of the cylinder.
  • This method has a problem that the product recovery rate is not so high because the amount of gas recovered is smaller than the above method, and the receiving cylinder has a low pressure rise due to recovery.
  • the amount of oxygen required for oxygen charging is increased, and the cylinder in the adsorption process during oxygen generation There was a problem that the adsorption pressure was lowered.
  • an object of the present invention is to provide a pressure fluctuation adsorption type oxygen generation method that can increase the amount of generated oxygen while maintaining a high product recovery rate and can reduce the power consumption unit.
  • the pressure fluctuation adsorption type oxygen generation method of the present invention comprises: an adsorption step in which a plurality of adsorption columns filled with zeolite as an adsorbent are each performed at a relatively high pressure;
  • the pressure fluctuation adsorption separation method which separates oxygen and nitrogen from a mixed gas containing oxygen and nitrogen as the main component, to generate oxygen
  • an outlet end of the adsorption cylinder after the adsorption step is communicated with an outlet end of the adsorption cylinder after the regeneration step, and a gas remaining in the adsorption cylinder after the adsorption step is regenerated.
  • the adsorption cylinder for introducing the mixed gas is an adsorption cylinder after the regeneration step, and the primary pressurization step is performed by introducing the mixed gas at substantially atmospheric pressure.
  • the adsorbing cylinder into which the adsorbing step has been completed is an adsorbing cylinder that has completed the adsorbing step, and the mixed gas is introduced at substantially the same pressure as in the adsorbing step. It is characterized by simultaneous evacuation.
  • FIG. 1 is a system diagram showing an example of the oxygen PSA device.
  • FIG. 2 is a process chart showing a first embodiment of the present invention.
  • FIG. 3 is a process chart showing a second embodiment of the present invention.
  • FIG. 4 is a process chart showing a third embodiment of the present invention.
  • FIG. 5 is a process chart showing a fourth embodiment of the present invention.
  • FIG. 1 shows an example of an oxygen PSA apparatus for carrying out the method of the present invention, which has three adsorption cylinders A, B, and C each filled with zeolite as an adsorbent, and The figure shows a three-cylinder oxygen PSA device that separates and generates oxygen from air, which is a mixed gas containing nitrogen and nitrogen as a main component.
  • This oxygen PSA apparatus includes the three adsorption cylinders A, B, and C, a blower 1 that raises air as a raw material to a predetermined pressure and supplies the air to the adsorption cylinder, and evacuates the interior of the adsorption cylinder.
  • a vacuum pump 2 a product storage tank 3 for temporarily storing product oxygen derived from the adsorption column, flow control valves 4 and 5 for controlling a gas flow rate in a regeneration process and a pressurization process, and a product oxygen gas supply amount.
  • the flow control valve 6 to be controlled and a number of automatic valves 11, 12, 13, 14, 15, 16, 17 (for each adsorption)
  • the valves attached to the cylinders are labeled a, b, and c corresponding to the respective adsorption cylinders A, B, and C.) and an air inlet pipe for introducing air at atmospheric pressure into the adsorption cylinder. 8 and.
  • the oxygen PSA device is configured to open and close the plurality of automatic valves in a predetermined order to continuously generate oxygen gas. For example, by repeating the nine steps shown in FIG. A mixed gas containing oxygen and nitrogen as main components, for example, oxygen and nitrogen in the air is separated to generate product oxygen.
  • step 1 is a state in which the adsorption cylinder A is switched to the adsorption step, the adsorption cylinder B is switched to the pressure recovery step after the regeneration step is completed, and the adsorption cylinder C is switched to the pressure recovery step after the adsorption step is completed.
  • oxygen and nitrogen are separated in the adsorption column A.
  • the raw material air which has been pressurized to a predetermined pressure, for example, 500 mmAq (about 800 Torr) by the blower 1, is introduced into the adsorption column A, and the nitrogen in the air is transferred to the zeolite filled in the column. Adsorbs and separates from oxygen, and oxygen, a non-adsorbed component, becomes product oxygen Derived.
  • a predetermined pressure for example, 500 mmAq (about 800 Torr) by the blower 1
  • step 2 adsorber A continuously receives pressurized raw material air from the lower part of the cylinder and generates product oxygen from the top of the cylinder, and adsorber B generates from adsorber A This is a secondary pressurization step of receiving a part of the product oxygen from the top of the cylinder.
  • the adsorption cylinder C is a vacuum regeneration step in which the gas in the cylinder is exhausted by the vacuum pump 2 and the pressure in the cylinder is reduced to desorb the nitrogen adsorbed by the adsorbent.
  • step 3 the adsorption cylinder A is in the adsorption step continuously, and the adsorption cylinder B is successively pressurized to the pressure during the adsorption step, that is, the pressure substantially equal to the adsorption pressure, in the secondary pressurization step .
  • the adsorption cylinder C receives a part of the product oxygen generated from the adsorption cylinder A from the top of the cylinder while evacuation is performed when the degree of vacuum becomes relatively high due to the evacuation of the vacuum pump 2.
  • a purge state purge regeneration step
  • adsorption column A is in the same pressure recovery step as adsorption column C in step 1
  • adsorption column B is in the same adsorption step as adsorption column A in step 1
  • adsorption column C is the same as adsorption column B in step 1. It becomes primary pressurization.
  • the adsorption cylinder A becomes a vacuum regeneration step
  • the adsorption cylinder C becomes a secondary pressurization step.
  • the adsorption cylinder A becomes a purge regeneration step.
  • Steps 7, 8, and 9 the state of the adsorption cylinder A in Steps 1 to 3 is indicated by the adsorption cylinder C, the state of the adsorption cylinder B is indicated by the adsorption cylinder A, and the state of the adsorption cylinder C is indicated by the adsorption cylinder B. After completing step 9, return to step 1.
  • the steps 1 to 9 are performed in each adsorption column, and the process returns to the step 1 from the step 9 and is repeated to continuously generate oxygen.
  • the time of each process is set to 60 seconds of cycle time. Normally, processes 1, 4, and 7 are 5 to 10 seconds, and processes 2, 5, and 8 t 10-1 5 seconds, Steps 3, 6, and 9 are 40 to 45 seconds.
  • the pressure in each step is usually 500 mmAq (approximately 800 Torr), the vacuum regeneration pressure is 200 Torr, and the final pressure in the primary pressurization step is 500 T orr, The final pressure in the secondary pressurization step is about 760 T orr.
  • an adsorption cylinder having a relatively high in-cylinder pressure after the adsorption step and an adsorption cylinder having a in-cylinder pressure lower than the atmospheric pressure after the regeneration step are both used.
  • the gas at the upper part of the adsorption cylinder after the adsorption step is collected from the top of the adsorption cylinder after the regeneration step, and the air at atmospheric pressure is discharged from the lower part of the adsorption cylinder after the adsorption step.
  • the gas rich in oxygen in the adsorption cylinder after the adsorption step can be recovered in the adsorption cylinder after the regeneration step, and the pressure of the adsorption cylinder can be efficiently increased. It can be carried out.
  • the adsorption cylinder that has completed the regeneration step it is necessary for the adsorption cylinder that has completed the regeneration step to pressurize the inside of the cylinder to a pressure as close as possible to the adsorption pressure in the primary pressurization step and the secondary pressurization step before starting the next adsorption step.
  • the gas rich in oxygen is recovered at the upper part of the adsorption cylinder after the regeneration step, and the air is sucked in from the lower part of the adsorption cylinder to recover the gas.
  • the pressure in the adsorption column can be sufficiently increased while the gas amount is required and sufficient. Therefore, the pressure in the adsorption column at the time of entering the secondary pressurization step using a part of the product oxygen can be made higher than before, and the amount of product oxygen used can be reduced.
  • the adsorption operation of the adsorption column in the adsorption step can be performed in a stable state, and the amount of product oxygen generated can be increased.
  • the air sucked into the adsorption cylinder in the primary pressurization step is air having the same composition as the raw material mixed gas, and this air is separated from the negative pressure in the cylinder and the atmospheric pressure without passing through the blower 1. Since the air is sucked into the adsorption cylinder due to the pressure difference, compression power is required by using the blower 1, and the actual amount of treated air is larger than that of the conventional blower. However, power costs can be reduced and the amount of product oxygen generated can be increased.
  • FIG. 3 is a process diagram showing a second embodiment of the present invention.
  • air is sucked until the in-cylinder pressure becomes close to the atmospheric pressure. Is to be continued.
  • the same as the first embodiment is used. A detailed description of such parts will be omitted.
  • the adsorption column A receives the raw air from the blower 1 to generate product oxygen and the adsorption column A receives the raw air from the blower 1, and the pressure after the adsorption column B completes the regeneration step.
  • the recovery step is a pressure recovery step after the adsorption cylinder C has completed the adsorption step.
  • the adsorption cylinder B collects the oxygen-rich gas at the outlet side of the adsorption cylinder C at the outlet side, and at the inlet side.
  • the process 2 is in the adsorption process, where the adsorption tube A is the adsorption process, the adsorption tube B is the secondary pressurization process, and the adsorption tube C is vacuum.
  • This is a vacuum regeneration step in which gas in the cylinder is exhausted by the pump 2.At this time, in the adsorption cylinder B, a part of the product oxygen is received from the top of the cylinder, and air is sucked in from the lower part of the cylinder. ing. Therefore, in the adsorption cylinder B, secondary pressurization is performed by the product oxygen in the upper part of the cylinder and the air in the lower part of the cylinder.
  • step 3 the adsorption cylinder A is in the adsorption step continuously, and the adsorption cylinder B is in the secondary pressurization step, but in the adsorption cylinder B, air is sucked in from the lower part of the cylinder according to the in-cylinder pressure. Is stopped, and pressurization is performed only by receiving product oxygen from the top of the cylinder.
  • adsorption cylinder C is in a purge regeneration process that evacuates while receiving a part of the product oxygen from the top of the cylinder.
  • step 4 the adsorption column A is subjected to the same pressure recovery step as the adsorption column C in step 1, and the adsorption column B is subjected to the same adsorption step as the adsorption column A in step 1.
  • C has the same primary pressurization as the adsorption cylinder B in step 1, in step 5, adsorption cylinder A performs the vacuum regeneration step, adsorption cylinder C performs the secondary pressurization step, and in step 6, adsorption cylinder A purges It is a regeneration process.
  • step 7, 8, 9 adsorption column C the state of the adsorption column A in step 1-3, the adsorption column A the status of the adsorption column B is, adsorption column B force 5 the state of the adsorption column C, respectively After completing step 9, return to step 1.
  • the air suction is continued until the in-cylinder pressure becomes close to the atmospheric pressure, so that the air suction amount is larger than in the first embodiment. Therefore, the amount of product oxygen required for pressurization can be further reduced, and the amount of product oxygen generated can be further increased.
  • the pressure at which the suction of air is stopped can be near atmospheric pressure, but it is usually 600 to 700 T Orr is appropriate.
  • FIG. 4 is a process diagram showing a third embodiment of the present invention.
  • the recovered gas is discharged to the adsorption cylinder on the suction side.
  • the introduction of raw air was continued (steps 1, 4, and 7).
  • the pressure in the adsorption cylinder can be maintained at the adsorption pressure, and the nitrogen from the adsorbent can be maintained. Since the desorption of water can be suppressed, the pressure of the adsorption column on the receiving side can be sufficiently increased while preventing nitrogen from being mixed into the gas collected from the upper portion of the adsorption column into the adsorption column after the regeneration step. It can be carried out.
  • FIG. 5 is a process diagram showing a fourth embodiment of the present invention.
  • the cylinder in the adsorption cylinder on the recovered gas discharge side after the adsorption step is completed.
  • the vacuum evacuation from the lower part of the cylinder is started simultaneously (steps 1, 4, and 7).
  • the idle time of the vacuum pump can be eliminated and the efficiency can be improved.
  • the number of adsorption tubes used is not limited to three, but may be two or four or more.
  • the present invention can also be applied to an apparatus using an adsorption cylinder.
  • the adsorbent used is a zeolite that preferentially adsorbs a larger amount of nitrogen than oxygen, for example, so-called MS-5A, MS-10X, MS-13X, mordenite.
  • zeolite obtained by ion-exchanging metals in zeolite can be used so as to have pores capable of adsorbing nitrogen at a sufficiently high adsorption rate.
  • the mixed gas containing oxygen and nitrogen as main components is not limited to air, and a mixed gas having an arbitrary composition can be used.
  • the above-described air introduction pipe may be connected to a mixed gas generating section or a storage tank serving as a raw material.
  • the adsorber cylinder has an inner diameter of 15.5 mm x 1.6 m in height.
  • a 1.6 mm diameter pellet with a sieve 5A was used.
  • the operating conditions were an adsorption pressure of 500 mm Aq and a vacuum regeneration pressure of 200 Torr.
  • the cycle time is 60 seconds, the step corresponding to step 1 is 5 to 10 seconds, the step corresponding to step 2 is 10 15 seconds, and the step corresponding to step 3 is 40 to 45 seconds. Seconds. Table 1 shows the experimental results.
  • the raw material gas or a mixed gas having substantially the same composition as the raw material gas is introduced into the adsorption column, so that the regeneration step
  • the adsorption column can be sufficiently pressurized while preventing nitrogen from flowing into the completed adsorption column, and the amount of product oxygen used for pressurization can be reduced to increase the amount of product oxygen generated. Can be.
  • the power is reduced compared to the processing amount. Costs can be reduced.
  • the raw material gas is air
  • the air taken into the adsorption column is sent at atmospheric pressure, which can be excluded from the raw material supply amount by the blower, and therefore, the oxygen recovery rate is substantially remarkable. Can be increased.

Abstract

This invention provides a pressure variation adsorption type oxygen generating method, which increases the rates of oxygen generation and material recovery and reduces power unit. This method comprises the steps of connecting an outlet end of an adsorption cylinder in which an adsorption step has been finished with an outlet end of an adsorption cylinder in which a regeneration step has been finished, recovering a residual gas from the former adsorption cylinder to the latter adsorption cylinder, and introducing a mixed gas, the composition of which is substantially identical with that of a raw gas, into an inlet end of at least one of these cylinders.

Description

明 細 書 圧力変動吸着分離法による酸素発生方法 技術分野  Description Oxygen generation method by pressure fluctuation adsorption separation method
本発明は、 圧力変動吸着分離法による酸素発生方法に関し、 詳しく は、 窒素を 選択的に吸着する吸着剤を用いた圧力変動吸着法によ り、 酸素と窒素とを主成分 とする混合ガス、 例えば空気から、 純度 9 0 %程度の酸素を発生する方法に関す る。  The present invention relates to a method for generating oxygen by a pressure fluctuation adsorption separation method, and more specifically, a mixed gas containing oxygen and nitrogen as main components by a pressure fluctuation adsorption method using an adsorbent that selectively adsorbs nitrogen. For example, it relates to a method for generating oxygen with a purity of about 90% from air.
背景技術 Background art
酸素と窒素とを主成分とする混合ガス、 例えば空気を処理して濃縮酸素を発生 させる方法と して、 圧力変動吸着式による酸素発生方法 (以下、 酸素 P S A法と いう ) が広く行われている。 この酸素 P S A法は、 一般に、 窒素を選択的に吸着 するゼォライ トを吸着剤と して充填した複数の吸着筒を備えた装置 (酸素 P S A 装置) を使用して行われるもので、 基本的には、 各吸着筒について、 相対的に高 い圧力で操作を行う吸着工程と、 相対的に低い圧力で操作を行う再生工程とを交 互に繰返すことによ り、 連続的に濃縮酸素を発生するよう に構成されている。 このよう な酸素 P S A装置においては、 ゼォライ トの窒素に対する高い選択吸 着特性を利用して空気から酸素を濃縮分離するが、 酸素とアルゴンとがゼォライ トに対して略同一の吸着特性を持つことから、 分離濃縮された酸素はアルゴンを 含むため、 その最高濃度は概ね 9 5 %であった。  As a method of generating concentrated oxygen by treating a mixed gas containing oxygen and nitrogen as main components, for example, air, an oxygen generation method using a pressure fluctuation adsorption method (hereinafter referred to as an oxygen PSA method) is widely used. I have. This oxygen PSA method is generally performed using an apparatus equipped with a plurality of adsorption columns filled with zeolite, which selectively adsorbs nitrogen as an adsorbent (oxygen PSA apparatus). For each adsorption column, concentrated oxygen is continuously generated by alternately repeating the adsorption process of operating at a relatively high pressure and the regeneration process of operating at a relatively low pressure. It is configured to In such an oxygen PSA system, oxygen is concentrated and separated from air by using the high selective adsorption characteristics of zeolite for nitrogen, but oxygen and argon have almost the same adsorption characteristics for zeolite. Therefore, the maximum concentration of oxygen separated and concentrated was approximately 95% because it contained argon.
一方、 酸素を用いる側の条件と して、 金属の切断に酸素を用いる場合は、 9 9 . 5 %程度の酸素濃度がないと、 切断ス ピードや切断面の点で問題があ り、 また 、 病院等で用いられる医療用の酸素は、 薬事法で 9 9 . 5 %以上の酸素濃度が必 要と指定されている。 しかし、 電気炉を用いた製鋼等では 9 5 %以下の酸素濃度 で十分であ り、 その他、 大部分の酸素の用途においては、 9 0 %前後の酸素濃度 で十分なため、 酸素 P S A法の適用範囲は極めて広いといえる。 このよう なこ と から、 酸素濃度が 9 0 %前後で良く 、 しかも大量の酸素を消費するユーザーにお いては、 よ り安価な酸素を得るために、 P S A法に対して様々な改良を行ってき た。 On the other hand, when oxygen is used for cutting metal as a condition on the side using oxygen, if there is no oxygen concentration of about 99.5%, there is a problem in terms of cutting speed and cut surface, and Medical oxygen used in hospitals, etc. is specified by the Pharmaceutical Affairs Law as requiring an oxygen concentration of 99.5% or more. However, an oxygen concentration of 95% or less is sufficient for steelmaking using an electric furnace, and for most other oxygen applications, an oxygen concentration of around 90% is sufficient. The application range can be said to be extremely wide. For this reason, various improvements have been made to the PSA method in order to obtain oxygen at a lower cost for users with an oxygen concentration of around 90% and for consuming a large amount of oxygen. Was.
酸素 P S A法の性能を向上させるための着目ポイ ン ト と しては、 装置の小型化 のために使用する吸着剤の剤当た り酸素発生量を大き く すること、 動力原単位を 下げるために製品酸素回収率を高く するこ と、 の 2点が挙げられる。  The points of interest for improving the performance of the oxygen PSA method are to increase the amount of oxygen generated per adsorbent used to reduce the size of the device, and to reduce the unit power consumption. There are two points to raise the product oxygen recovery rate.
酸素 P S A法は、 前述のよう に、 吸着工程と再生工程とを基本工程と している が、 酸素回収率を高くするため、 この基本工程に、 圧力回収工程や再加圧工程等 を追加するよ όに している。 また、 圧力回収工程の代わり に、 並流減圧工程を行 つて吸着筒内に残留する濃縮された酸素分を製品あるいはパージ用ガス と して利 用するこ とも行われており 、 さ らに、 吸着剤当た りの酸素発生量を大き く するた め、 再生工程において製品ガスの一部によ りパージ操作を行い、 吸着剤からの窒 素の脱着を促進することも行われている。 このパージ操作は、 減圧によって吸着 筒内の圧力が低下した段階で製品ガスの一部を製品出口端よ り供給する こ とによ り、 気相の易吸着成分の分圧を下げ、 窒素の脱着を促進させる方法であ り、 常圧 再生、 真空再生のプロセスに関係な く採用されている。  As described above, the oxygen PSA method basically includes the adsorption step and the regeneration step, but in order to increase the oxygen recovery rate, a pressure recovery step, a repressurization step, etc. are added to this basic step. Yeah. In addition, instead of the pressure recovery step, a co-current depressurization step is performed to utilize the concentrated oxygen remaining in the adsorption column as a product or a purge gas. In order to increase the amount of oxygen generated per adsorbent, purging is performed with a part of the product gas in the regeneration process to promote the desorption of nitrogen from the adsorbent. This purging operation reduces the partial pressure of the gaseous easily adsorbed components by supplying a part of the product gas from the product outlet end when the pressure in the adsorption cylinder decreases due to the pressure reduction. This method promotes desorption, and is adopted regardless of the normal pressure regeneration and vacuum regeneration processes.
酸素 P S A法の性能を向上させるために、 従来行われている方法と しては、 例 えば、 特開昭 6 3 — 1 4 4 1 0 4号公報に記載されたものでは、 圧力回収工程に おいて、 2個の吸着筒を連結して各吸着筒の上部 (製品ガス出口部) 及び下部 ( 原料ガス入口部) の両方から同時にガスの回収を行う均圧工程 (上下同時均圧) を採用している。 この場合、 多量のガスを回収できるが、 ガスの受取側の吸着筒 では、 筒の上部に比較的酸素の濃縮されたガスが回収され、 筒の下部に空気ある いは空気よ り幾分窒素分の高いガスが回収される。 このため、 この方法では、 製 品回収率は高いが、 吸着剤の剤当た りの酸素発生量は低く なる。  In order to improve the performance of the oxygen PSA method, conventional methods include, for example, the method described in Japanese Patent Application Laid-Open No. 63-144004, The pressure equalization process (simultaneous upper and lower pressure equalization) in which two adsorption cylinders are connected to collect gas from both the upper part (product gas outlet) and the lower part (source gas inlet) of each adsorption cylinder at the same time. Has adopted. In this case, a large amount of gas can be recovered, but in the adsorption column on the gas receiving side, a relatively oxygen-enriched gas is recovered at the top of the column, and air or some nitrogen rather than air is collected at the bottom of the column. Minute higher gas is recovered. Therefore, in this method, the product recovery rate is high, but the amount of oxygen generated per adsorbent is low.
さ らに、 特開昭 6 3— 1 4 4 1 0 3号公報に記載されたものは、 均圧工程の際 に、 上記同様に 2筒を連結して筒の上部及び下部の両方から同時にガスの回収を 行うが、 このとき、 下部ライ ンは真空排気ライ ンを使って下部から回収されるガ スの一部を排気し、 筒下部からの回収量を調整している。 この方法では、 上記方 法に比較してガス回収量が少な く なるため、 製品回収率は余り高く ないという問 題と ともに、 受入れ側の筒では回収による昇圧が少ないため、 次の加圧工程で必 要とする酸素充圧のための酸素量が多く な り、 酸素発生中の吸着工程にある筒の 吸着圧力を下げて しまう という問題があった。 Further, the one described in Japanese Patent Application Laid-Open No. 63-144401 discloses that, in the pressure equalization step, two cylinders are connected in the same manner as described above, and simultaneously from both the upper and lower parts of the cylinder. At this time, gas is collected. At this time, the lower line uses a vacuum exhaust line to exhaust part of the gas collected from the lower part, and adjusts the amount of gas collected from the lower part of the cylinder. This method has a problem that the product recovery rate is not so high because the amount of gas recovered is smaller than the above method, and the receiving cylinder has a low pressure rise due to recovery. The amount of oxygen required for oxygen charging is increased, and the cylinder in the adsorption process during oxygen generation There was a problem that the adsorption pressure was lowered.
すなわち、 酸素 P S A法において、 製品回収率を高く保ち、 しかも、 吸着剤の 剤当たりの酸素発生量を高くする という ことは、 二律相反する要求であるため、 両者を両立させ得るようなプロセスは、 未だに開発されていなかった。  In other words, in the oxygen PSA method, maintaining a high product recovery rate and increasing the amount of oxygen generated per adsorbent is a conflicting requirement. , Had not yet been developed.
発明の開示 Disclosure of the invention
そこで本発明は、 製品回収率を高く保ちながら、 酸素発生量を高める こ とがで き、 動力原単位の低減も図れる圧力変動吸着式酸素発生方法を提供する こ とを目 的と している。 - 上記した目的を達成するため、 本発明の圧力変動吸着式酸素発生方法は、 吸着 剤と してゼォライ ト を充填した複数の吸着筒を、 それぞれ相対的に高い圧力で行 う吸着工程と、 大気圧以下の圧力で行う再生工程とを交互に順次繰り返すことに よ り、 酸素と窒素を主成分とする混合ガスから酸素と窒素とを分離して酸素を発 生する圧力変動吸着分離法による酸素発生方法において、 前記吸着工程を終了し た吸着筒の出口端と、 前記再生工程を終了した吸着筒の出口端とを連通し、 吸着 工程を終了した吸着筒内に残留するガスを再生工程を終了した吸着筒内へ回収す る圧力回収工程を行う と同時に、 吸着工程を終了した吸着筒及び再生工程を終了 した吸着筒の少な く ともいずれか一方の入口端から前記混合ガスを吸着筒内に導 入することを特徴と している。  Accordingly, an object of the present invention is to provide a pressure fluctuation adsorption type oxygen generation method that can increase the amount of generated oxygen while maintaining a high product recovery rate and can reduce the power consumption unit. . -In order to achieve the above object, the pressure fluctuation adsorption type oxygen generation method of the present invention comprises: an adsorption step in which a plurality of adsorption columns filled with zeolite as an adsorbent are each performed at a relatively high pressure; The pressure fluctuation adsorption separation method, which separates oxygen and nitrogen from a mixed gas containing oxygen and nitrogen as the main component, to generate oxygen In the oxygen generation method, an outlet end of the adsorption cylinder after the adsorption step is communicated with an outlet end of the adsorption cylinder after the regeneration step, and a gas remaining in the adsorption cylinder after the adsorption step is regenerated. At the same time as performing the pressure recovery step of recovering the mixed gas into the adsorption cylinder that has completed the adsorption process, and at the same time, adsorbing the mixed gas from at least one of the inlet ends of the adsorption cylinder that has completed the adsorption process and the adsorption cylinder that has completed the regeneration process. Introduced into It is characterized in Rukoto.
また本発明は、 前記混合ガスを導入する吸着筒が再生工程を終了した吸着筒で あり、 前記混合ガスを略大気圧で導入することによ り 一次加圧工程を行う こと、 該一次加圧工程を終了した吸着筒に出口端から製品酸素の一部を供給する ととも に、 入口端から前記略大気圧の混合ガスの導入を継続する二次加圧工程を行う こ と、 前記混合ガスを導入する吸着筒が吸着工程を終了した吸着筒であ り 、 前記混 合ガスを吸着工程と略同じ圧力で導入すること、 前記吸着工程を終了した吸着筒 の圧力回収工程時に入口端からの真空排気を同時に行う こ とを特徴と している。 図面の簡単な説明  Further, according to the present invention, the adsorption cylinder for introducing the mixed gas is an adsorption cylinder after the regeneration step, and the primary pressurization step is performed by introducing the mixed gas at substantially atmospheric pressure. Performing a secondary pressurizing step of supplying a part of the product oxygen from the outlet end to the adsorption column after the step and continuing to introduce the mixed gas at substantially atmospheric pressure from the inlet end; The adsorbing cylinder into which the adsorbing step has been completed is an adsorbing cylinder that has completed the adsorbing step, and the mixed gas is introduced at substantially the same pressure as in the adsorbing step. It is characterized by simultaneous evacuation. BRIEF DESCRIPTION OF THE FIGURES
図 1 は酸素 P S A装置の一例を示す系統図である。  FIG. 1 is a system diagram showing an example of the oxygen PSA device.
図 2は本発明の第 1実施例を示す工程図である。  FIG. 2 is a process chart showing a first embodiment of the present invention.
図 3は本発明の第 2実施例を示す工程図である。 図 4は本発明の第 3実施例を示す工程図である。 FIG. 3 is a process chart showing a second embodiment of the present invention. FIG. 4 is a process chart showing a third embodiment of the present invention.
図 5は本発明の第 4実施例を示す工程図である。  FIG. 5 is a process chart showing a fourth embodiment of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を、 図面に示す実施例に基づいてさ らに詳細に説明する。  Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings.
まず、 図 1は、 本発明方法を実施するための酸素 P S A装置の一例を示すもの であって、 それぞれ吸着剤としてゼォライ トを充填した 3基の吸着筒 A , B , C を有し、 酸素と窒素を主成分とする混合ガスである空気から酸素を分離発生させ る 3筒式の酸素 P S A装置を示している。  First, FIG. 1 shows an example of an oxygen PSA apparatus for carrying out the method of the present invention, which has three adsorption cylinders A, B, and C each filled with zeolite as an adsorbent, and The figure shows a three-cylinder oxygen PSA device that separates and generates oxygen from air, which is a mixed gas containing nitrogen and nitrogen as a main component.
この酸素 P S A装置は、 前記 3基の吸着筒 A , B, Cと、 原料である空気を所 定圧力に昇圧して前記吸着筒に供給する送風機 1 と、 前記吸着筒内を真空排気す る真空ポンプ 2 と、 前記吸着筒から導出された製品酸素を一時貯留する製品貯槽 3 と、 再生工程や加圧工程の際のガス流量を制御する流量制御弁 4 , 5及び製品 酸素ガス供給量を制御する流量調節弁 6 と、 各吸着筒を吸着工程、 再生工程等に 切換えるための多数の自動弁 1 1, 1 2, 1 3 , 1 4, 1 5 , 1 6 , 1 7 (各吸 着筒に付随する弁には、 それぞれの吸着筒 A, B , Cに対応させて a, b , c を 付す。 ) と、 吸着筒内に大気圧状態の空気を導入するための空気導入管 1 8 とを 備えている。  This oxygen PSA apparatus includes the three adsorption cylinders A, B, and C, a blower 1 that raises air as a raw material to a predetermined pressure and supplies the air to the adsorption cylinder, and evacuates the interior of the adsorption cylinder. A vacuum pump 2, a product storage tank 3 for temporarily storing product oxygen derived from the adsorption column, flow control valves 4 and 5 for controlling a gas flow rate in a regeneration process and a pressurization process, and a product oxygen gas supply amount. The flow control valve 6 to be controlled and a number of automatic valves 11, 12, 13, 14, 15, 16, 17 (for each adsorption) The valves attached to the cylinders are labeled a, b, and c corresponding to the respective adsorption cylinders A, B, and C.) and an air inlet pipe for introducing air at atmospheric pressure into the adsorption cylinder. 8 and.
上記酸素 P S A装置は、 上記多数の自動弁を所定の順序で開閉して連続的に酸 素ガスを発生するものであ り、 例えば、 図 2に示す 9工程を繰り返して行う こ と によ り、 酸素と窒素を主成分とする混合ガス、 例えば空気中の酸素と窒素とを分 離して製品酸素を発生させる。  The oxygen PSA device is configured to open and close the plurality of automatic valves in a predetermined order to continuously generate oxygen gas. For example, by repeating the nine steps shown in FIG. A mixed gas containing oxygen and nitrogen as main components, for example, oxygen and nitrogen in the air is separated to generate product oxygen.
以下、 本発明の酸素発生方法の第 1実施例を、 上記酸素 P S A装置を用いた図 2 に示す工程図に基づいて説明する。  Hereinafter, a first embodiment of the oxygen generating method of the present invention will be described with reference to the process chart shown in FIG. 2 using the above oxygen PSA device.
まず、 工程 1 は、 吸着筒 Aが吸着工程、 吸着筒 Bが再生工程を終了した後の圧 力回収工程、 吸着筒 Cが吸着工程を終えた後の圧力回収工程に、 それぞれ切換え られた状態であ り、 吸着筒 Aで酸素と窒素との分離が行われている。  First, step 1 is a state in which the adsorption cylinder A is switched to the adsorption step, the adsorption cylinder B is switched to the pressure recovery step after the regeneration step is completed, and the adsorption cylinder C is switched to the pressure recovery step after the adsorption step is completed. In the adsorption column A, oxygen and nitrogen are separated.
すなわち、 送風機 1で所定圧力、 例えば 5 0 0 mmA q (約 8 0 0 T o r r ) に昇圧した原料空気が吸着筒 Aに導入され、 筒内に充填'されているゼォライ トに 空気中の窒素が吸着して酸素と分離し、 非吸着成分である酸素が製品酸素として 導出されている。 That is, the raw material air, which has been pressurized to a predetermined pressure, for example, 500 mmAq (about 800 Torr) by the blower 1, is introduced into the adsorption column A, and the nitrogen in the air is transferred to the zeolite filled in the column. Adsorbs and separates from oxygen, and oxygen, a non-adsorbed component, becomes product oxygen Derived.
また、 筒内圧力が大気圧よ り低い吸着筒 B と、 筒内圧力が相対的に高い吸着筒 Cとは、 両者の出口端同士を連通させる圧力回収が行われ 'ており、 吸着筒 C内の ガスが流量調節弁 5 (図 1 参照) で流量を調節されながら吸着筒 Bに出口側から 導入される とともに、 吸着筒 Bの入口側からは、 空気導入管 1 8から大気圧状態 の空気が吸入される。 これによ り、 吸着筒 Bにおいては、 吸着筒 C内の比較的酸 素分に富んだガスを吸着筒 Bの出口側に回収する とともに、 吸着筒 Bの入口側か ら原料である空気を送風機 1 による加圧無しに受け入れる一次加圧工程が行われ る。  In addition, for the adsorption cylinder B in which the in-cylinder pressure is lower than the atmospheric pressure and the adsorption cylinder C in which the in-cylinder pressure is relatively high, pressure recovery is performed so that the outlet ends of the adsorption cylinders communicate with each other. The gas inside is introduced into the adsorption column B from the outlet side while the flow rate is adjusted by the flow control valve 5 (see Fig. 1). Air is inhaled. As a result, in the adsorption cylinder B, the relatively oxygen-rich gas in the adsorption cylinder C is collected at the outlet of the adsorption cylinder B, and the air as the raw material is discharged from the entrance of the adsorption cylinder B. The primary pressurization process, which accepts without pressurization by blower 1, is performed.
工程 2では、 吸着筒 Aは、 引き続いて.加圧された原料空気を筒下部から受け入 れ、 筒頂部から製品酸素を発生する吸着工程にあ り、 吸着筒 Bは、 吸着筒 Aから 発生した製品酸素の一部を筒頂部から受け入れる二次加圧工程になる。 また、 吸 着筒 Cは、 真空ポンプ 2 によ り筒内のガスが排気され、 筒内の圧力が低下して吸 着剤に吸着されていた窒素分を脱着させる真空再生工程になる。  In step 2, adsorber A continuously receives pressurized raw material air from the lower part of the cylinder and generates product oxygen from the top of the cylinder, and adsorber B generates from adsorber A This is a secondary pressurization step of receiving a part of the product oxygen from the top of the cylinder. The adsorption cylinder C is a vacuum regeneration step in which the gas in the cylinder is exhausted by the vacuum pump 2 and the pressure in the cylinder is reduced to desorb the nitrogen adsorbed by the adsorbent.
工程 3では、 吸着筒 Aは引き続いて吸着工程にあり、 吸着筒 Bは引き続いて二 次加圧工程で、 最終的に吸着工程時の圧力、 即ち吸着圧力と略同等の圧力まで加 圧される。 吸着筒 Cは、 真空ポンプ 2の排気が進んで比較的真空度が高く なつた 時点で真空排気を しつつ吸着筒 Aから発生した製品酸素の一部を筒頂.部から受け 入れる、 いわゆる排気パージの状態 (パージ再生工程) になる。  In step 3, the adsorption cylinder A is in the adsorption step continuously, and the adsorption cylinder B is successively pressurized to the pressure during the adsorption step, that is, the pressure substantially equal to the adsorption pressure, in the secondary pressurization step . The adsorption cylinder C receives a part of the product oxygen generated from the adsorption cylinder A from the top of the cylinder while evacuation is performed when the degree of vacuum becomes relatively high due to the evacuation of the vacuum pump 2. A purge state (purge regeneration step) is established.
工程 4では、 吸着筒 Aが工程 1 における吸着筒 Cと同じ圧力回収工程に、 吸着 筒 Bが工程 1 における吸着筒 Aと同じ吸着工程に、 吸着筒 Cが工程 1 における吸 着筒 B と同じ一次加圧になる。 以下、 工程 5では、 吸着筒 Aが真空再生工程、 吸 着筒 Cが二次加圧工程にな り、 工程 6では吸着筒 Aがパージ再生工程になる。 さ らに、 工程 7 , 8 , 9では、 工程 1 ~ 3における吸着筒 Aの状態を吸着筒 C が、 吸着筒 Bの状態を吸着筒 Aが、 吸着筒 Cの状態を吸着筒 Bが、 それぞれ行い 、 工程 9 を終える と工程 1 に戻る。  In step 4, adsorption column A is in the same pressure recovery step as adsorption column C in step 1, adsorption column B is in the same adsorption step as adsorption column A in step 1, and adsorption column C is the same as adsorption column B in step 1. It becomes primary pressurization. Hereinafter, in step 5, the adsorption cylinder A becomes a vacuum regeneration step, and the adsorption cylinder C becomes a secondary pressurization step. In step 6, the adsorption cylinder A becomes a purge regeneration step. Further, in Steps 7, 8, and 9, the state of the adsorption cylinder A in Steps 1 to 3 is indicated by the adsorption cylinder C, the state of the adsorption cylinder B is indicated by the adsorption cylinder A, and the state of the adsorption cylinder C is indicated by the adsorption cylinder B. After completing step 9, return to step 1.
このよう に工程 1 〜 9 をそれぞれの吸着筒で行い、 工程 9から工程 1 に戻って 繰り返すこ とで連続的な酸素発生が行われる。 各工程の時間は、 サイ クルタイ ム 6 0秒と して、 通常、 工程 1 , 4 , 7が 5 ~ 1 0秒、 工程 2, 5 , 8 t 1 0 - 1 5秒、 工程 3 , 6, 9が 4 0~ 4 5秒である。 また、 各工程の'圧力は、 通常、 吸 着圧力が 5 0 0 mmAq (約 8 0 0 T o r r ) 、 真空再生圧力が 2 0 0 T o r r 、 一次加圧工程の最終圧力が 5 0 0 T o r r、 二次加圧工程の最終圧力が 7 6 0 T o r r程度である。 As described above, the steps 1 to 9 are performed in each adsorption column, and the process returns to the step 1 from the step 9 and is repeated to continuously generate oxygen. The time of each process is set to 60 seconds of cycle time. Normally, processes 1, 4, and 7 are 5 to 10 seconds, and processes 2, 5, and 8 t 10-1 5 seconds, Steps 3, 6, and 9 are 40 to 45 seconds. In addition, the pressure in each step is usually 500 mmAq (approximately 800 Torr), the vacuum regeneration pressure is 200 Torr, and the final pressure in the primary pressurization step is 500 T orr, The final pressure in the secondary pressurization step is about 760 T orr.
本実施例に示すように、 圧力回収工程において、 吸着工程を終了した筒内圧力 が相対的に高い吸着筒と、 再生工程を終了した筒内圧力が大気圧よ り低い吸着筒 とを、 両者のそれそれの出口端同士を連通させ、 吸着工程を終了した吸着筒の上 部のガスを再生工程を終了した吸着筒内に筒頂部から回収し、 該吸着筒下部から は大気圧状態の空気を吸入するこ とによ り、 吸着工程を終了した吸着筒内の比較 的酸素分に富んだガスを再生工程を終了した吸着筒内に回収できるとともに、 該 吸着筒の加圧を効率よ く 行う こ とができる。  As shown in the present embodiment, in the pressure recovery step, an adsorption cylinder having a relatively high in-cylinder pressure after the adsorption step and an adsorption cylinder having a in-cylinder pressure lower than the atmospheric pressure after the regeneration step are both used. The gas at the upper part of the adsorption cylinder after the adsorption step is collected from the top of the adsorption cylinder after the regeneration step, and the air at atmospheric pressure is discharged from the lower part of the adsorption cylinder after the adsorption step. By inhaling the gas, the gas rich in oxygen in the adsorption cylinder after the adsorption step can be recovered in the adsorption cylinder after the regeneration step, and the pressure of the adsorption cylinder can be efficiently increased. It can be carried out.
すなわち、 再生工程を終了した吸着筒は、 次の吸着工程に入る前に、 前述の一 次加圧工程及び二次加圧工程で筒内をできるだけ吸着圧力に近い圧力まで加圧し ておく必要があるが、 上述のように、 一次加圧工程において、 再生工程を終了し た吸着筒の上部に酸素分に富んだガスを回収する とともに、 筒下部から空気を吸 入することによ り、 回収ガス量を必要十分な量と しながら該吸着筒内の圧力を十 分に高めることができる。 したがって、 製品酸素の一部を使用する二次加圧工程 に入る際の吸着筒内の圧力を従来よ りも高くすることができ、 製品酸素の使用量 を低減することができる。  In other words, it is necessary for the adsorption cylinder that has completed the regeneration step to pressurize the inside of the cylinder to a pressure as close as possible to the adsorption pressure in the primary pressurization step and the secondary pressurization step before starting the next adsorption step. However, as described above, in the primary pressurization step, the gas rich in oxygen is recovered at the upper part of the adsorption cylinder after the regeneration step, and the air is sucked in from the lower part of the adsorption cylinder to recover the gas. The pressure in the adsorption column can be sufficiently increased while the gas amount is required and sufficient. Therefore, the pressure in the adsorption column at the time of entering the secondary pressurization step using a part of the product oxygen can be made higher than before, and the amount of product oxygen used can be reduced.
上記加圧に使用する製品酸素量の低減によ り 、 吸着工程にある吸着筒の吸着操 作を安定した状態で行う こ とができ、 製品酸素の発生量も増大させるこ とができ る。 また、 一次加圧工程で吸着筒に吸入される空気は、 原料混合ガスと同じ組成 の空気であ り、 しかも、 この空気は、 送風機 1 を介さずに筒内の負圧と大気圧と の圧力差によって吸着筒に吸入されるので、 送風機 1 を絰由することによる圧縮 動力を必要とせす、 また、 送風機に比べて実際の処理空気量が従来のものに比べ て増加することになるので、 動力費の低減や製品酸素の発生量の増加が図れる。 図 3は、 本発明の第 2実施例を示す工程図であって、 前記第 1実施例に対して 、 二次加圧工程の操作中に、 筒内圧力が大気圧近く なるまで空気の吸入を継続す るようにしたものである。 なお、 以下の実施例においては、 前記第 1実施例と同 様の部分については詳細な説明を省略する。 By reducing the amount of product oxygen used for pressurization, the adsorption operation of the adsorption column in the adsorption step can be performed in a stable state, and the amount of product oxygen generated can be increased. In addition, the air sucked into the adsorption cylinder in the primary pressurization step is air having the same composition as the raw material mixed gas, and this air is separated from the negative pressure in the cylinder and the atmospheric pressure without passing through the blower 1. Since the air is sucked into the adsorption cylinder due to the pressure difference, compression power is required by using the blower 1, and the actual amount of treated air is larger than that of the conventional blower. However, power costs can be reduced and the amount of product oxygen generated can be increased. FIG. 3 is a process diagram showing a second embodiment of the present invention. In the first embodiment, during the operation of the secondary pressurizing step, air is sucked until the in-cylinder pressure becomes close to the atmospheric pressure. Is to be continued. In the following embodiment, the same as the first embodiment is used. A detailed description of such parts will be omitted.
すなわち、 工程 1 は、 前記第 1実施例と同様に、 吸着筒 Aが送風機 1 からの原 料空気を受け入れて製品酸素を発生する吸着工程、 吸着筒 Bが再生工程を終了し た後の圧力回収工程、 吸着筒 Cが吸着工程を終えた後の圧力回収工程であ り、 吸 着筒 Bは、 吸着筒 Cの出口側の酸素分に富んだガスを出口側に回収する と ともに 、 入口側から空気導入管 1 8を介して空気を吸入する一次加圧工程の状態である 工程 2は、 吸着筒 Aが引き続いて吸着工程、 吸着筒 Bが二次加圧工程、 吸着筒 Cが真空ポンプ 2 により筒内のガスを排気する真空再生工程であ り、 このとき、 吸着筒 Bにおいては、 筒頂部からの製品酸素の一部の受け入れと ともに、 筒下部 からの空気の吸入が行われている。 したがって、 吸着筒 Bでは、 筒上部の製品酸 素と筒下部の空気とによ り二次加圧が行われている。  That is, in the step 1, as in the first embodiment, the adsorption column A receives the raw air from the blower 1 to generate product oxygen and the adsorption column A receives the raw air from the blower 1, and the pressure after the adsorption column B completes the regeneration step. The recovery step is a pressure recovery step after the adsorption cylinder C has completed the adsorption step.The adsorption cylinder B collects the oxygen-rich gas at the outlet side of the adsorption cylinder C at the outlet side, and at the inlet side. In the primary pressurization process in which air is sucked in from the side via the air introduction pipe 18, the process 2 is in the adsorption process, where the adsorption tube A is the adsorption process, the adsorption tube B is the secondary pressurization process, and the adsorption tube C is vacuum. This is a vacuum regeneration step in which gas in the cylinder is exhausted by the pump 2.At this time, in the adsorption cylinder B, a part of the product oxygen is received from the top of the cylinder, and air is sucked in from the lower part of the cylinder. ing. Therefore, in the adsorption cylinder B, secondary pressurization is performed by the product oxygen in the upper part of the cylinder and the air in the lower part of the cylinder.
工程 3では、 吸着筒 Aは引き続いて吸着工程にあり、 吸着筒 Bは引き続いて二 次加圧工程であるが、 該吸着筒 Bでは、 筒内圧力に応じて筒下部からの空気の吸 入が止められ、 筒頂部からの製品酸素の受け入れのみによる加圧が行われる。 ま た、 吸着筒 Cは、 製品酸素の一部を筒頂部から受け入れながら真空排気を行うパ —ジ再生工程にある。  In step 3, the adsorption cylinder A is in the adsorption step continuously, and the adsorption cylinder B is in the secondary pressurization step, but in the adsorption cylinder B, air is sucked in from the lower part of the cylinder according to the in-cylinder pressure. Is stopped, and pressurization is performed only by receiving product oxygen from the top of the cylinder. In addition, adsorption cylinder C is in a purge regeneration process that evacuates while receiving a part of the product oxygen from the top of the cylinder.
以下、 前記第 1 実施例と同様に、 工程 4では、 吸着筒 Aが工程 1 における吸着 筒 C と同じ圧力回収工程に、 吸着筒 Bが工程 1 における吸着筒 Aと同じ吸着工程 に、 吸着筒 Cが工程 1における吸着筒 B と同じ一次加圧にな り、 工程 5 では、 吸 着筒 Aが真空再生工程、 吸着筒 Cが二次加圧工程に、 工程 6では吸着筒 Aがパー ジ再生工程になる。 さらに、 工程 7 , 8 , 9では、 工程 1 ~ 3における吸着筒 A の状態を吸着筒 Cが、 吸着筒 Bの状態を吸着筒 Aが、 吸着筒 Cの状態を吸着筒 B 力5、 それぞれ行い、 工程 9 を終える と工程 1 に戻る。 Hereinafter, as in the first embodiment, in step 4, the adsorption column A is subjected to the same pressure recovery step as the adsorption column C in step 1, and the adsorption column B is subjected to the same adsorption step as the adsorption column A in step 1. C has the same primary pressurization as the adsorption cylinder B in step 1, in step 5, adsorption cylinder A performs the vacuum regeneration step, adsorption cylinder C performs the secondary pressurization step, and in step 6, adsorption cylinder A purges It is a regeneration process. Further, in step 7, 8, 9, adsorption column C the state of the adsorption column A in step 1-3, the adsorption column A the status of the adsorption column B is, adsorption column B force 5 the state of the adsorption column C, respectively After completing step 9, return to step 1.
本実施例に示すように、 二次加圧工程においても、 筒内圧力が大気圧近く なる まで空気の吸入を継続することによ り、 前記第 1 実施例よ り も空気の吸入量が多 く なるので、 加圧に要する製品酸素量を更に低減することができ、 製品酸素の発 生量を一層増大させるこ とができる。 なお、 二次加圧工程において、 空気の吸入 を止める圧力は、 大気圧付近とすることもでき るが、 通常は、 6 0 0 ~ 7 0 0 T o r r程度が適当である。 As shown in the present embodiment, in the secondary pressurizing step, the air suction is continued until the in-cylinder pressure becomes close to the atmospheric pressure, so that the air suction amount is larger than in the first embodiment. Therefore, the amount of product oxygen required for pressurization can be further reduced, and the amount of product oxygen generated can be further increased. In addition, in the secondary pressurization step, the pressure at which the suction of air is stopped can be near atmospheric pressure, but it is usually 600 to 700 T Orr is appropriate.
図 4は、 本発明の第 3実施例を示す工程図であって、 前記第 1実施例に対して 、 圧力回収の際に、 吸着工程を終えた後の回収ガス放出側の吸着筒への原料空気 の導入を継続するように したものである (工程 1, 4, 7 ) 。  FIG. 4 is a process diagram showing a third embodiment of the present invention. In the first embodiment, at the time of pressure recovery, after the adsorption step is completed, the recovered gas is discharged to the adsorption cylinder on the suction side. The introduction of raw air was continued (steps 1, 4, and 7).
このよう に、 吸着工程を終えて圧力回収工程に入る吸着筒への原料空気の導入 を継続する ことによ り、 該吸着筒内の圧力を吸着圧力に保つことができ、 吸着剤 からの窒素の脱着を抑える ことができるので、 該吸着筒の上部から再生工程を終 了した吸着筒に回収するガス中に窒素が混入することを防止しながら、 受入れ側 の吸着筒の加圧を十分に行うこ とができる。  In this way, by continuing the introduction of the raw material air into the adsorption cylinder after the adsorption step and entering the pressure recovery step, the pressure in the adsorption cylinder can be maintained at the adsorption pressure, and the nitrogen from the adsorbent can be maintained. Since the desorption of water can be suppressed, the pressure of the adsorption column on the receiving side can be sufficiently increased while preventing nitrogen from being mixed into the gas collected from the upper portion of the adsorption column into the adsorption column after the regeneration step. It can be carried out.
図 5は、 本発明の第 4実施例を示す工程図であって、 前記第 1 実施例に対して 、 圧力回収の際に、 吸着工程を終えた後の回収ガス放出側の吸着筒における筒上 部からの回収ガスの放出とともに、 筒下部からの真空排気も同時に開始するよう にしたものである (工程 1 , 4 , 7 ) 。 これによ り、 真空ポンプの遊び時間を無 く すことができて効率の向上が図れる。  FIG. 5 is a process diagram showing a fourth embodiment of the present invention. In the first embodiment, at the time of pressure recovery, the cylinder in the adsorption cylinder on the recovered gas discharge side after the adsorption step is completed. With the release of the recovered gas from the upper part, the vacuum evacuation from the lower part of the cylinder is started simultaneously (steps 1, 4, and 7). As a result, the idle time of the vacuum pump can be eliminated and the efficiency can be improved.
なお、 本発明においては、 各実施例を組み合わせて実施するこ とが可能であ り 、 さ らに、 用いる吸着筒の数は 3筒に限られるものではな く、 2筒式あるいは 4 筒以上の吸着筒を用いる装置にも適用できる。  In the present invention, it is possible to carry out the embodiments in combination, and the number of adsorption tubes used is not limited to three, but may be two or four or more. The present invention can also be applied to an apparatus using an adsorption cylinder.
また、 使用する吸着剤と しては、 酸素に比べて窒素を優先的に多量に吸着する ゼォライ ト、 例えば、 いわゆる M S— 5 A, M S— 1 0 X, M S - 1 3 X , モル デナイ ト、 その他、 窒素を十分に早い吸着速度で吸着できる細孔怪を持つよう に ゼォライ ト中の金属をイオン交換したゼォライ ト等を用いるこ とができる。 さ らに、 酸素と窒素を主成分とする混合ガスとしては、 空気に限らず、 任意の 組成の混合ガスを用いる こ とができる。 この場合は、 前述の空気導入管は、 原料 となる混合ガスの発生部あるいは貯槽に接続すればよい。 次に、 前記図 1 に示した構成の装置を使用して、 前記第 1〜第 4実施例に示す 操作方法と、 従来例として前記上下同時均圧法とを行い、 酸素発生量、 酸素回収 率等を測定した実験結果を説明する。  The adsorbent used is a zeolite that preferentially adsorbs a larger amount of nitrogen than oxygen, for example, so-called MS-5A, MS-10X, MS-13X, mordenite. In addition, zeolite obtained by ion-exchanging metals in zeolite can be used so as to have pores capable of adsorbing nitrogen at a sufficiently high adsorption rate. Further, the mixed gas containing oxygen and nitrogen as main components is not limited to air, and a mixed gas having an arbitrary composition can be used. In this case, the above-described air introduction pipe may be connected to a mixed gas generating section or a storage tank serving as a raw material. Next, using the apparatus having the configuration shown in FIG. 1, the operation methods described in the first to fourth embodiments and the simultaneous upper and lower pressure equalization method as a conventional example were performed. The experimental results of the measurements will be described.
吸着筒は、 内径 1 5 5 m m x高さ 1 . 6 mであ り、 吸着剤には、 モレキュラー シーブス 5 Aの 1 . 6 m m径ペレ ッ トを用いた。 運転条件としては、 吸着圧力を 5 0 0 m m A q、 真空再生圧力を 2 0 0 T o r r とした。 また、 サイ クルタイ ム は 6 0秒と し、 工程 1 に相当する工程を 5 ~ 1 0秒、 工程 2に相当する工程を 1 0 1 5秒、 工程 3 に相当する工程を 4 0 ~ 4 5秒と した。 実験結果を表 1に示 す。 The adsorber cylinder has an inner diameter of 15.5 mm x 1.6 m in height. A 1.6 mm diameter pellet with a sieve 5A was used. The operating conditions were an adsorption pressure of 500 mm Aq and a vacuum regeneration pressure of 200 Torr. The cycle time is 60 seconds, the step corresponding to step 1 is 5 to 10 seconds, the step corresponding to step 2 is 10 15 seconds, and the step corresponding to step 3 is 40 to 45 seconds. Seconds. Table 1 shows the experimental results.
Figure imgf000011_0001
Figure imgf000011_0002
以上説明したよう に、 本発明の圧力変動吸着式酸素発生方法によれば、 一次加 圧工程の際に、 吸着筒に原料ガスあるいは原料ガスと略同組成の混合ガスを導入 するので、 再生工程終了済の吸着筒内への窒素の流入を防止しながら該吸着筒を 十分に加圧するこ とができ、 加圧に使用する製品酸素量を低減して製品酸素の発 生量を増加させるこ とができる。
Figure imgf000011_0001
Figure imgf000011_0002
As described above, according to the pressure fluctuation adsorption type oxygen generation method of the present invention, during the primary pressurizing step, the raw material gas or a mixed gas having substantially the same composition as the raw material gas is introduced into the adsorption column, so that the regeneration step The adsorption column can be sufficiently pressurized while preventing nitrogen from flowing into the completed adsorption column, and the amount of product oxygen used for pressurization can be reduced to increase the amount of product oxygen generated. Can be.
特に、 再生工程終了済の吸着筒へ送風機等の加圧手段を用いる こと無く原料ガ スあるいは原料ガスと略同組成の混合ガスを吸入する 'こ とによ り 、 処理量に比較 して動力費を削減できる。 また、 原料ガスが空気である場合は、 吸着筒内に取り込まれる空気が大気圧で 送入されるため、 送風機による原料供給量からは除外でき、 このため、 実質的に 著し く酸素回収率を高める ことが可能になる。 In particular, by sucking the raw material gas or a mixed gas having substantially the same composition as the raw material gas into the adsorption column after the regeneration process without using a pressurizing means such as a blower, the power is reduced compared to the processing amount. Costs can be reduced. In addition, when the raw material gas is air, the air taken into the adsorption column is sent at atmospheric pressure, which can be excluded from the raw material supply amount by the blower, and therefore, the oxygen recovery rate is substantially remarkable. Can be increased.

Claims

請求の範囲 The scope of the claims
1 . 吸着剤としてゼォライ トを充填した複数の吸着筒を、 それそれ相対的に高い 圧力で行う吸着工程と、 大気圧以下の圧力で行う再生工程とを交互に順次繰り返 すこ とによ り、 酸素と窒素を主成分とする混合ガスから酸素と窒素とを分離して 酸素ガスを発生する圧力変動吸着分離法による酸素発生方法において、 前記吸着 工程を終了した吸着筒の出口端と、 前記再生工程を終了した吸着筒の出口端とを 連通し、 吸着工程を終了した吸着筒内に残留するガスを再生工程を終了した吸着 筒内へ回収する圧力回収工程を行う と同時に、 吸着工程を終了した吸着筒及び再 生工程を終了した吸着筒の少な く ともいずれか一方の入口端から前記混合ガスを 吸着筒内に導入することを特徴とする圧力変動吸着分離法による酸素発生方法。 1. A plurality of adsorption columns filled with zeolite as an adsorbent are alternately and successively subjected to an adsorption step performed at a relatively high pressure and a regeneration step performed at a pressure lower than the atmospheric pressure. A method for separating oxygen and nitrogen from a mixed gas containing oxygen and nitrogen as main components to generate oxygen gas by a pressure fluctuation adsorption separation method, comprising: an outlet end of an adsorption cylinder having completed the adsorption step; The outlet end of the adsorption cylinder that has completed the regeneration process is communicated with the outlet end, and the pressure recovery process that recovers the gas remaining in the adsorption cylinder that has completed the adsorption process into the adsorption cylinder that has completed the regeneration process is performed. A method for generating oxygen by a pressure fluctuation adsorption separation method, wherein the mixed gas is introduced into the adsorption column from at least one of the inlet ends of the adsorption column that has been completed and the adsorption column that has completed the regeneration step.
2 . 前記混合ガスを導入する吸着筒は、 前記再生工程を終了した吸着筒であり、 前記混合ガスを略大気圧で導入することによ り一次加圧工程を行う ことを特徴と する請求の範囲第 1項記載の圧力変動吸着分離法による酸素発生方法。 2. The adsorption cylinder that introduces the mixed gas is an adsorption cylinder that has been subjected to the regeneration step, and performs a primary pressurization step by introducing the mixed gas at substantially atmospheric pressure. 2. A method for generating oxygen by the pressure fluctuation adsorption separation method according to claim 1.
3 . 前記一次加圧工程を終了した吸着筒は、 出口端から製品酸素ガスの一部を供 給するとともに、 入口端から前記略大気圧の混合ガスの導入を継続する二次加圧 工程を行う ことを特徴とする請求の範囲第 2項記載の圧力変動吸着分離法による 酸素発生方法。 3. After the primary pressurizing step, the adsorption cylinder supplies a part of the product oxygen gas from the outlet end, and performs the secondary pressurizing step of continuing the introduction of the substantially atmospheric pressure mixed gas from the inlet end. 3. The method for generating oxygen by the pressure fluctuation adsorption separation method according to claim 2, wherein the method is performed.
4 . 前記混合ガスを導入する吸着筒は、 前記吸着工程を終了した吸着筒であり、 前記混合ガスは、 吸着工程と略同じ圧力で導入される ことを特徴とする請求の範 囲第 1項記載の圧力変動吸着分離法による酸素発生方法。 4. The adsorption cylinder for introducing the mixed gas is an adsorption cylinder that has been subjected to the adsorption step, and the mixed gas is introduced at substantially the same pressure as in the adsorption step. An oxygen generation method according to the pressure fluctuation adsorption separation method described above.
5 . 前記吸着工程を終了した吸着筒は、 前記圧力回収工程時に、 入口端からの真 空排気を同時に行う ことを特徴とする請求の範囲第 1項記載の圧力変動吸着分離 法による酸素発生装置。 5. The oxygen generating apparatus according to claim 1, wherein the adsorption column that has completed the adsorption step simultaneously performs vacuum exhaust from the inlet end during the pressure recovery step. .
PCT/JP1995/001083 1994-06-02 1995-06-02 Oxygen generating method based on pressure variation adsorption separation WO1995033681A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/056,377 US5985003A (en) 1994-06-02 1998-04-07 Oxygen production process by pressure swing adsorption separation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12101594A JP3654661B2 (en) 1994-06-02 1994-06-02 Oxygen generation method by pressure fluctuation adsorption separation method
JP6/121015 1994-06-02

Publications (1)

Publication Number Publication Date
WO1995033681A1 true WO1995033681A1 (en) 1995-12-14

Family

ID=14800701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001083 WO1995033681A1 (en) 1994-06-02 1995-06-02 Oxygen generating method based on pressure variation adsorption separation

Country Status (3)

Country Link
JP (1) JP3654661B2 (en)
CN (1) CN1042215C (en)
WO (1) WO1995033681A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052701C (en) * 1997-04-08 2000-05-24 浙江大学 Method for production of oxygen-rich gases with multiple kinds of concentration and apparatus thereof
KR100360835B1 (en) * 2000-08-09 2002-11-22 주식회사 옥서스 A continuous oxygen concentrator with 3 tower-2 compressor and the method thereof
CN1302983C (en) * 2005-04-30 2007-03-07 印全彬 Pressure swing adsorption continuous oxygen generation method
CN100364644C (en) * 2005-12-27 2008-01-30 温州瑞气空分设备有限公司 Process for improving gas reclaiming rate of pressure swing absorption separation process
EP2680946B1 (en) 2011-03-03 2015-05-13 Koninklijke Philips N.V. Method and arrangement for generating oxygen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210507A (en) * 1984-03-31 1985-10-23 Showa Denko Kk Method for controlling turn-down in pressure fluctuation adsorption process
JPS61161117A (en) * 1985-01-11 1986-07-21 Showa Denko Kk Preparation of oxygen having high purity
JPH057323U (en) * 1991-07-08 1993-02-02 三菱重工業株式会社 Pressure swing type gas separation device
JPH05184851A (en) * 1991-07-02 1993-07-27 Boc Group Inc:The Method for producing stream of oxygen rich product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150507A (en) * 1984-01-13 1985-08-08 住友電気工業株式会社 Gas-filled rubber and plastic insulated power cable
JPS63166702A (en) * 1986-12-26 1988-07-09 Osaka Oxygen Ind Ltd Concentration of oxygen gas
EP0449448B1 (en) * 1990-03-29 1997-01-22 The Boc Group, Inc. Process for producing oxygen enriched product stream

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210507A (en) * 1984-03-31 1985-10-23 Showa Denko Kk Method for controlling turn-down in pressure fluctuation adsorption process
JPS61161117A (en) * 1985-01-11 1986-07-21 Showa Denko Kk Preparation of oxygen having high purity
JPH05184851A (en) * 1991-07-02 1993-07-27 Boc Group Inc:The Method for producing stream of oxygen rich product
JPH057323U (en) * 1991-07-08 1993-02-02 三菱重工業株式会社 Pressure swing type gas separation device

Also Published As

Publication number Publication date
CN1042215C (en) 1999-02-24
JPH07330306A (en) 1995-12-19
JP3654661B2 (en) 2005-06-02
CN1128979A (en) 1996-08-14

Similar Documents

Publication Publication Date Title
JP3492869B2 (en) Single bed pressure swing adsorption method for oxygen recovery from air
JP3232003B2 (en) Reflux in pressure swing adsorption method
KR880000513B1 (en) Process for removing a nitrogen gas from mixture comprising n2 and co
JP3310249B2 (en) Oxygen production method and apparatus using one adsorber and one blower
JP3050881B2 (en) How to separate oxygen from air
KR100838166B1 (en) Method And System for Separating Gas
EP1101522B1 (en) Pressure swing adsorption process
JPS6130813B2 (en)
JP3073917B2 (en) Simultaneous pressure change adsorption method
US5620501A (en) Recovery of trace gases from gas streams
JP2004000819A (en) Gas isolating process
JPH1024208A (en) Treatment of gaseous mixture by pressure swing adsorption
US5997611A (en) Single vessel gas adsorption system and process
JP3169647B2 (en) Pressure swing type suction method and suction device
US5985003A (en) Oxygen production process by pressure swing adsorption separation
JP2607632B2 (en) Separation of gas mixtures
WO1995033681A1 (en) Oxygen generating method based on pressure variation adsorption separation
JP3654658B2 (en) Pressure fluctuation adsorption type oxygen production method and apparatus
JP4050415B2 (en) Gas separation method
JPH10272332A (en) Gas separation device and its operation method
JPH11267439A (en) Gas separation and gas separator for performing same
JPH0733404A (en) Production of high concentration oxygen
JP2529929B2 (en) Method for separating and recovering carbon monoxide gas
JP3561886B2 (en) Pressure fluctuation adsorption separation method
JPH01155926A (en) Pressure switching adsorption process

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95190507.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

ENP Entry into the national phase

Ref document number: 1996 586789

Country of ref document: US

Date of ref document: 19960201

Kind code of ref document: A