JP3654661B2 - Oxygen generation method by pressure fluctuation adsorption separation method - Google Patents

Oxygen generation method by pressure fluctuation adsorption separation method Download PDF

Info

Publication number
JP3654661B2
JP3654661B2 JP12101594A JP12101594A JP3654661B2 JP 3654661 B2 JP3654661 B2 JP 3654661B2 JP 12101594 A JP12101594 A JP 12101594A JP 12101594 A JP12101594 A JP 12101594A JP 3654661 B2 JP3654661 B2 JP 3654661B2
Authority
JP
Japan
Prior art keywords
adsorption
oxygen
pressure
cylinder
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12101594A
Other languages
Japanese (ja)
Other versions
JPH07330306A (en
Inventor
伸 林
雅人 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP12101594A priority Critical patent/JP3654661B2/en
Priority to PCT/JP1995/001083 priority patent/WO1995033681A1/en
Priority to CN95190507A priority patent/CN1042215C/en
Publication of JPH07330306A publication Critical patent/JPH07330306A/en
Priority to US09/056,377 priority patent/US5985003A/en
Application granted granted Critical
Publication of JP3654661B2 publication Critical patent/JP3654661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、圧力変動吸着分離法による酸素発生方法に関し、詳しくは、窒素を選択的に吸着する吸着剤を用いた圧力変動吸着法により、酸素と窒素とを主成分とする混合ガス、例えば空気から純度90%程度の酸素を発生する方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
酸素と窒素とを主成分とする混合ガス、例えば空気を処理して濃縮酸素を発生させる方法として、圧力変動吸着式による酸素発生方法(以下、酸素PSA法という)が広く行われている。この酸素PSA法は、一般に、窒素を選択的に吸着するゼオライトを吸着剤として充填した複数の吸着筒を備えた装置(酸素PSA装置)を使用して行われるもので、基本的には、各吸着筒について、相対的に高い圧力で操作を行う吸着工程と、相対的に低い圧力で操作を行う再生工程とを交互に繰返すことにより、連続的に濃縮酸素を発生するように構成されている。
【0003】
このような酸素PSA装置においては、ゼオライトの窒素に対する高い選択吸着特性を利用して空気から酸素を濃縮分離するが、酸素とアルゴンとがゼオライトに対して略同一の吸着特性を持つことから、分離濃縮された酸素はアルゴンを含むため、その最高濃度は概ね95%であった。
【0004】
一方、酸素を用いる側の条件として、金属の切断に酸素を用いる場合は、99.5%程度の酸素濃度がないと、切断スピードや切断面の点で問題があり、また、病院等で用いられる医療用の酸素は、薬事法で99.5%以上の酸素濃度が必要と指定されている。しかし、電気炉を用いた製鋼等では95%以下の酸素濃度で十分であり、その他、大部分の酸素の用途においては、90%前後の酸素濃度で十分なため、酸素PSA法の適用範囲は極めて広いといえる。このようなことから、酸素濃度が90%前後で良く、しかも大量の酸素を消費するユーザーにおいては、より安価な酸素を得るために、PSA法に対して様々な改良を行ってきた。
【0005】
酸素PSA法の性能を向上させるための着目ポイントとしては、装置の小型化のために使用する吸着剤の剤当たり酸素発生量を大きくすること、動力原単位を下げるために製品酸素回収率を高くすること、の2点が挙げられる。
【0006】
酸素PSA法は、前述のように、吸着工程と再生工程とを基本工程としているが、酸素回収率を高くするため、この基本工程に、圧力回収工程や再加圧工程等を追加するようにしている。また、圧力回収工程の代わりに、並流減圧工程を行って吸着筒内に残留する濃縮された酸素分を製品あるいはパージ用ガスとして利用することも行われており、さらに、吸着剤当たりの酸素発生量を大きくするため、再生工程において製品ガスの一部によりパージ操作を行い、吸着剤からの窒素の脱着を促進することも行われている。このパージ操作は、減圧によって吸着筒内の圧力が低下した段階で製品ガスの一部を製品出口端より供給することにより、気相の易吸着成分の分圧を下げ、窒素の脱着を促進させる方法であり、常圧再生,真空再生のプロセスに関係なく採用されている。
【0007】
酸素PSA法の性能を向上させるために、従来行われている方法としては、例えば、特開昭63−144104号公報に記載されたものでは、圧力回収工程において、2個の吸着筒を連結して各吸着筒の上部(製品ガス出口部)及び下部(原料ガス入口部)の両方から同時にガスの回収を行う均圧工程(上下同時均圧)を採用している。この場合、多量のガスを回収できるが、ガスの受取側の吸着筒では、筒の上部に比較的酸素の濃縮されたガスが回収され、筒の下部に空気あるいは空気より幾分窒素分の高いガスが回収される。このため、この方法では、製品回収率は高いが、吸着剤の剤当たりの酸素発生量は低くなる。
【0008】
さらに、特開昭63−144103号公報に記載されたものは、均圧工程の際に、上記同様に2筒を連結して筒の上部及び下部の両方から同時にガスの回収を行うが、このとき、下部ラインは真空排気ラインを使って下部から回収されるガスの一部を排気し、筒下部からの回収量を調整している。この方法では、上記方法に比較してガス回収量が少なくなるため、製品回収率は余り高くないという問題とともに、受入れ側の筒では回収による昇圧が少ないため、次の加圧工程で必要とする酸素充圧のための酸素量が多くなり、酸素発生中の吸着工程にある筒の吸着圧力を下げてしまうという問題があった。
【0009】
すなわち、酸素PSA法において、製品回収率を高く保ち、しかも、吸着剤の剤当たりの酸素発生量を高くするということは、二律相反する要求であるため、両者を両立させ得るようなプロセスは、未だに開発されていなかった。
【0010】
そこで本発明は、製品回収率を高く保ちながら、酸素発生量を高めることができ、動力原単位の低減も図れる圧力変動吸着式酸素発生方法を提供することを目的としている。
【0011】
【課題を解決するための手段】
上記した目的を達成するため、本発明の圧力変動吸着式酸素発生方法の第1は、吸着剤としてゼオライトを充填した複数の吸着筒を、それぞれ相対的に高い圧力で行う吸着工程と、大気圧以下の圧力で行う再生工程とを交互に順次繰り返すことにより、酸素と窒素を主成分とする混合ガスから酸素と窒素とを分離して酸素ガスを発生する圧力変動吸着分離法による酸素発生方法において、前記吸着工程を終了した吸着筒の出口端と、前記再生工程を終了した吸着筒の出口端とを連通し、吸着工程を終了した吸着筒内に残留する製品酸素ガスより低酸素濃度のガスを再生工程を終了した吸着筒内へ回収する圧力回収工程を行うと同時に、再生工程を終了した吸着筒の入口端から前記混合ガスを吸着筒内に導入することを特徴とし、第2は、第1の方法の再生工程を終了した吸着筒の入口端から混合ガスを吸着筒内に導入することに代えて、吸着工程を終了した吸着筒の入口端から混合ガスを吸着筒内に導入することを特徴としている。
【0012】
また、本発明は、前記再生工程を終了した吸着筒前記混合ガスを略大気圧で導入することにより一次加圧工程を行うこと、該一次加圧工程を終了した吸着筒に出口端から製品酸素ガスの一部を導入するとともに、入口端から前記略大気圧の混合ガスの導入を継続する二次加圧工程を行うこと、前記吸着工程を終了した吸着筒に前記混合ガスを吸着工程と略同じ圧力で導入すること、及び第1の方法において、前記吸着工程を終了した吸着筒は、前記圧力回収工程時に、入口端からの真空排気を同時に行うことを特徴としている。
【0013】
【実施例】
以下、本発明を、図面に示す実施例に基づいてさらに詳細に説明する。
まず、図1は、本発明方法を実施するための酸素PSA装置の一例を示すものであって、それぞれ吸着剤としてゼオライトを充填した3基の吸着筒A,B,Cを有し、酸素と窒素を主成分とする混合ガスである空気から酸素を分離発生させる3筒式の酸素PSA装置を示している。
【0014】
この酸素PSA装置は、前記3基の吸着筒A,B,Cと、原料である空気を所定圧力に昇圧して前記吸着筒に供給する送風機1と、前記吸着筒内を真空排気する真空ポンプ2と、前記吸着筒から導出された製品酸素を一時貯留する製品貯槽3と、再生工程や加圧工程の際のガス流量を制御する流量制御弁4,5及び製品酸素ガス供給量を制御する流量調節弁6と、各吸着筒を吸着工程,再生工程等に切換えるための多数の自動弁11,12,13,14,15,16,17(各吸着筒に付随する弁には、それぞれの吸着筒A,B,Cに対応させてa,b,cを付す。)と、吸着筒内に大気圧状態の空気を導入するための空気導入管18とを備えている。
【0015】
上記酸素PSA装置は、上記多数の自動弁を所定の順序で開閉して連続的に酸素ガスを発生するものであり、例えば、図2に示す9工程を繰り返して行うことにより、酸素と窒素を主成分とする混合ガス、例えば空気中の酸素と窒素とを分離して製品酸素を発生させる。
【0016】
以下、本発明の酸素発生方法の第1実施例を、上記酸素PSA装置を用いた図2に示す工程図に基づいて説明する。
まず、工程1は、吸着筒Aが吸着工程、吸着筒Bが再生工程を終了した後の圧力回収工程、吸着筒Cが吸着工程を終えた後の圧力回収工程に、それぞれ切換えられた状態であり、吸着筒Aで酸素と窒素との分離が行われている。
【0017】
すなわち、送風機1で所定圧力、例えば500mmAq(約800Torr)に昇圧した原料空気が吸着筒Aに導入され、筒内に充填されているゼオライトに空気中の窒素が吸着して酸素と分離し、非吸着成分である酸素が製品酸素として導出されている。
【0018】
また、筒内圧力が大気圧より低い吸着筒Bと、筒内圧力が相対的に高い吸着筒Cとは、両者の出口端同士を連通させる圧力回収が行われており、吸着筒C内のガスが流量調節弁5(図1参照)で流量を調節されながら吸着筒Bに出口側から導入されるとともに、吸着筒Bの入口側からは、空気導入管18から大気圧状態の空気が吸入される。これにより、吸着筒Bにおいては、吸着筒C内の比較的酸素分に富んだガスを吸着筒Bの出口側に回収するとともに、吸着筒Bの入口側から原料である空気を送風機1による加圧無しに受け入れる一次加圧工程が行われる。
【0019】
工程2では、吸着筒Aは、引き続いて加圧された原料空気を筒下部から受け入れ、筒頂部から製品酸素を発生する吸着工程にあり、吸着筒Bは、吸着筒Aから発生した製品酸素の一部を筒頂部から受け入れる二次加圧工程になる。また、吸着筒Cは、真空ポンプ2により筒内のガスが排気され、筒内の圧力が低下して吸着剤に吸着されていた窒素分を脱着させる真空再生工程になる。
【0020】
工程3では、吸着筒Aは引き続いて吸着工程にあり、吸着筒Bは引き続いて二次加圧工程で、最終的に吸着工程時の圧力、即ち吸着圧力と略同等の圧力まで加圧される。吸着筒Cは、真空ポンプ2の排気が進んで比較的真空度が高くなった時点で真空排気をしつつ吸着筒Aから発生した製品酸素の一部を筒頂部から受け入れる、いわゆる排気パージの状態(パージ再生工程)になる。
【0021】
工程4では、吸着筒Aが工程1における吸着筒Cと同じ圧力回収工程に、吸着筒Bが工程1における吸着筒Aと同じ吸着工程に、吸着筒Cが工程1における吸着筒Bと同じ一次加圧になる。以下、工程5では、吸着筒Aが真空再生工程、吸着筒Cが二次加圧工程になり、工程6では吸着筒Aがパージ再生工程になる。
【0022】
さらに、工程7,8、9では、工程1〜3における吸着筒Aの状態を吸着筒Cが、吸着筒Bの状態を吸着筒Aが、吸着筒Cの状態を吸着筒Bが、それぞれ行い、工程9を終えると工程1に戻る。
【0023】
このように工程1〜9をそれぞれの吸着筒で行い、工程9から工程1に戻って繰り返すことで連続的な酸素発生が行われる。各工程の時間は、サイクルタイム60秒として、通常、工程1,4,7が5〜10秒、工程2,5,8が10〜15秒、工程3,6,9が40〜45秒である。また、各工程の圧力は、通常、吸着圧力が500mmAq(約800Torr)、真空再生圧力が200Torr、一次加圧工程の最終圧力が500Torr、二次加圧工程の最終圧力が760Torr程度である。
【0024】
本実施例に示すように、圧力回収工程において、吸着工程を終了した筒内圧力が相対的に高い吸着筒と、再生工程を終了した筒内圧力が大気圧より低い吸着筒とを、両者のそれぞれの出口端同士を連通させ、吸着工程を終了した吸着筒の上部のガスを再生工程を終了した吸着筒内に筒頂部から回収し、該吸着筒下部からは大気圧状態の空気を吸入することにより、吸着工程を終了した吸着筒内の比較的酸素分に富んだガスを再生工程を終了した吸着筒内に回収できるとともに、該吸着筒の加圧を効率よく行うことができる。
【0025】
すなわち、再生工程を終了した吸着筒は、次の吸着工程に入る前に、前述の一次加圧工程及び二次加圧工程で筒内をできるだけ吸着圧力に近い圧力まで加圧しておく必要があるが、上述のように、一次加圧工程において、再生工程を終了した吸着筒の上部に酸素分に富んだガスを回収するとともに、筒下部から空気を吸入することにより、回収ガス量を必要十分な量としながら該吸着筒内の圧力を十分に高めることができる。したがって、製品酸素の一部を使用する二次加圧工程に入る際の吸着筒内の圧力を従来よりも高くすることができ、製品酸素の使用量を低減することができる。
【0026】
上記加圧に使用する製品酸素量の低減により、吸着工程にある吸着筒の吸着操作を安定した状態で行うことができ、製品酸素の発生量も増大させることができる。また、一次加圧工程で吸着筒に吸入される空気は、原料混合ガスと同じ組成の空気であり、しかも、この空気は、送風機1を介さずに筒内の負圧と大気圧との圧力差によって吸着筒に吸入されるので、送風機1を経由することによる圧縮動力を必要とせず、また、送風量に比べて実際の処理空気量が従来のものに比べて増加することになるので、動力費の低減や製品酸素の発生量の増加が図れる。
【0027】
図3は、本発明の第2実施例を示す工程図であって、前記第1実施例に対して、二次加圧工程の操作中に、筒内圧力が大気圧近くなるまで空気の吸入を継続するようにしたものである。なお、以下の実施例においては、前記第1実施例と同様の部分については詳細な説明を省略する。
【0028】
すなわち、工程1は、前記第1実施例と同様に、吸着筒Aが送風機1からの原料空気を受け入れて製品酸素を発生する吸着工程、吸着筒Bが再生工程を終了した後の圧力回収工程、吸着筒Cが吸着工程を終えた後の圧力回収工程であり、吸着筒Bは、吸着筒Cの出口側の酸素分に富んだガスを出口側に回収するとともに、入口側から空気導入管18を介して空気を吸入する一次加圧工程の状態である。
【0029】
工程2は、吸着筒Aが引き続いて吸着工程、吸着筒Bが二次加圧工程、吸着筒Cが真空ポンプ2により筒内のガスを排気する真空再生工程であり、このとき、吸着筒Bにおいては、筒頂部からの製品酸素の一部の受け入れとともに、筒下部からの空気の吸入が行われている。したがって、吸着筒Bでは、筒上部の製品酸素と筒下部の空気とにより二次加圧が行われている。
【0030】
工程3では、吸着筒Aは引き続いて吸着工程にあり、吸着筒Bは引き続いて二次加圧工程であるが、該吸着筒Bでは、筒内圧力に応じて筒下部からの空気の吸入が止められ、筒頂部からの製品酸素の受け入れのみによる加圧が行われる。また、吸着筒Cは、製品酸素の一部を筒頂部から受け入れながら真空排気を行うパージ再生工程にある。
【0031】
以下、前記第1実施例と同様に、工程4では、吸着筒Aが工程1における吸着筒Cと同じ圧力回収工程に、吸着筒Bが工程1における吸着筒Aと同じ吸着工程に、吸着筒Cが工程1における吸着筒Bと同じ一次加圧になり、工程5では、吸着筒Aが真空再生工程、吸着筒Cが二次加圧工程に、工程6では吸着筒Aがパージ再生工程になる。さらに、工程7,8、9では、工程1〜3における吸着筒Aの状態を吸着筒Cが、吸着筒Bの状態を吸着筒Aが、吸着筒Cの状態を吸着筒Bが、それぞれ行い、工程9を終えると工程1に戻る。
【0032】
本実施例に示すように、二次加圧工程においても、筒内圧力が大気圧近くなるまで空気の吸入を継続することにより、前記第1実施例よりも空気の吸入量が多くなるので、加圧に要する製品酸素量を更に低減することができ、製品酸素の発生量を一層増大させることができる。なお、二次加圧工程において、空気の吸入を止める圧力は、大気圧付近とすることもできるが、通常は、600〜700Torr程度が適当である。
【0033】
図4は、本発明の第3実施例を示す工程図であって、前記第1実施例に対して、圧力回収の際に、吸着工程を終えた後の回収ガス放出側の吸着筒への原料空気の導入を継続するようにしたものである(工程1,4,7)。
【0034】
このように、吸着工程を終えて圧力回収工程に入る吸着筒への原料空気の導入を継続することにより、該吸着筒内の圧力を吸着圧力に保つことができ、吸着剤からの窒素の脱着を抑えることができるので、該吸着筒の上部から再生工程を終了した吸着筒に回収するガス中に窒素が混入することを防止しながら、受入れ側の吸着筒の加圧を十分に行うことができる。
【0035】
図5は、本発明の第4実施例を示す工程図であって、前記第1実施例に対して、圧力回収の際に、吸着工程を終えた後の回収ガス放出側の吸着筒における筒上部からの回収ガスの放出とともに、筒下部からの真空排気も同時に開始するようにしたものである(工程1,4,7)。これにより、真空ポンプの遊び時間を無くすことができて効率の向上が図れる。
【0036】
なお、本発明においては、各実施例を組み合わせて実施することが可能であり、さらに、用いる吸着筒の数は3筒に限られるものではなく、2筒式あるいは4筒以上の吸着筒を用いる装置にも適用できる。
【0037】
また、使用する吸着剤としては、酸素に比べて窒素を優先的に多量に吸着するゼオライト、例えば、いわゆるMS−5A,MS−10X,MS−13X,モルデナイト,その他、窒素を十分に早い吸着速度で吸着できる細孔径を持つようにゼオライト中の金属をイオン交換したゼオライト等を用いることができる。
【0038】
さらに、酸素と窒素を主成分とする混合ガスとしては、空気に限らず、任意の組成の混合ガスを用いることができる。この場合は、前述の空気導入管は、原料となる混合ガスの発生部あるいは貯槽に接続すればよい。
【0039】
次に、前記図1に示した構成の装置を使用して、前記第1〜第4実施例に示す操作方法と、従来例として前記上下同時均圧法とを行い、酸素発生量,酸素回収率等を測定した実験結果を説明する。
【0040】
吸着筒は、内径155mm×高さ1.6mであり、吸着剤には、モレキュラーシーブス5Aの1.6mm径ペレットを用いた。運転条件としては、吸着圧力を500mmAq、真空再生圧力を200Torrとした。また、サイクルタイムは60秒とし、工程1に相当する工程を5〜10秒、工程2に相当する工程を10〜15秒、工程3に相当する工程を40〜45秒とした。実験結果を表1に示す。
【0041】
【表1】

Figure 0003654661
【0042】
【発明の効果】
以上説明したように、本発明の圧力変動吸着式酸素発生方法によれば、一次加圧工程の際に、吸着筒に原料ガスあるいは原料ガスと略同組成の混合ガスを導入するので、再生工程終了済の吸着筒内への窒素の流入を防止しながら該吸着筒を十分に加圧することができ、加圧に使用する製品酸素量を低減して製品酸素の発生量を増加させることができる。
【0043】
特に、再生工程終了済の吸着筒へ送風機等の加圧手段を用いること無く原料ガスあるいは原料ガスと略同組成の混合ガスを吸入することにより、処理量に比較して動力費を削減できる。
【0044】
また、原料ガスが空気である場合は、吸着筒内に取り込まれる空気が大気圧で送入されるため、送風機による原料供給量からは除外でき、このため、実質的に著しく酸素回収率を高めることが可能になる。
【図面の簡単な説明】
【図1】 酸素PSA装置の一例を示す系統図である。
【図2】 本発明の第1実施例を示す工程図である。
【図3】 本発明の第2実施例を示す工程図である。
【図4】 本発明の第3実施例を示す工程図である。
【図5】 本発明の第4実施例を示す工程図である。
【符号の説明】
A,B,C…吸着筒、1…送風機、2…真空ポンプ、3…製品貯槽、4,5,6…流量制御弁、18…空気導入管[0001]
[Industrial application fields]
The present invention relates to an oxygen generation method by a pressure fluctuation adsorption separation method, and more particularly, a mixed gas containing oxygen and nitrogen as main components, for example, air, by a pressure fluctuation adsorption method using an adsorbent that selectively adsorbs nitrogen. Relates to a method for generating oxygen having a purity of about 90%.
[0002]
[Prior art and problems to be solved by the invention]
As a method of generating concentrated oxygen by treating a mixed gas containing oxygen and nitrogen as main components, for example, air, an oxygen generation method based on a pressure fluctuation adsorption method (hereinafter referred to as oxygen PSA method) is widely used. This oxygen PSA method is generally performed using an apparatus (oxygen PSA apparatus) having a plurality of adsorption cylinders filled with zeolite that selectively adsorbs nitrogen as an adsorbent. The adsorption cylinder is configured to continuously generate concentrated oxygen by alternately repeating an adsorption process that operates at a relatively high pressure and a regeneration process that operates at a relatively low pressure. .
[0003]
In such an oxygen PSA device, oxygen is concentrated and separated from the air by utilizing the high selective adsorption characteristics of zeolite with respect to nitrogen. However, since oxygen and argon have substantially the same adsorption characteristics with respect to zeolite, separation is performed. Since concentrated oxygen contains argon, its maximum concentration was approximately 95%.
[0004]
On the other hand, when oxygen is used for cutting metal as a condition on the side of using oxygen, there is a problem in terms of cutting speed and cutting surface unless oxygen concentration of about 99.5% is used. Medical oxygen to be used is specified by the Pharmaceutical Affairs Law as requiring an oxygen concentration of 99.5% or more. However, an oxygen concentration of 95% or less is sufficient for steelmaking using an electric furnace, and in addition, in most oxygen applications, an oxygen concentration of about 90% is sufficient, so the scope of application of the oxygen PSA method is It can be said that it is extremely wide. For this reason, the oxygen concentration may be around 90%, and users who consume a large amount of oxygen have made various improvements to the PSA method in order to obtain cheaper oxygen.
[0005]
The points of interest for improving the performance of the oxygen PSA method are to increase the amount of oxygen generated per adsorbent used to reduce the size of the equipment, and to increase the product oxygen recovery rate in order to reduce the power unit. There are two points to do.
[0006]
As described above, the oxygen PSA method has the adsorption process and the regeneration process as basic processes, but in order to increase the oxygen recovery rate, a pressure recovery process, a repressurization process, and the like are added to the basic process. ing. In addition, instead of the pressure recovery process, a cocurrent depressurization process is performed to use the concentrated oxygen remaining in the adsorption cylinder as a product or a purge gas. Further, oxygen per adsorbent is also used. In order to increase the generation amount, a purge operation is performed with a part of the product gas in the regeneration process to promote the desorption of nitrogen from the adsorbent. In this purge operation, a part of the product gas is supplied from the product outlet end when the pressure in the adsorption cylinder is reduced by the pressure reduction, thereby reducing the partial pressure of the easily adsorbed component in the gas phase and promoting the desorption of nitrogen. This method is used regardless of the normal pressure regeneration and vacuum regeneration processes.
[0007]
In order to improve the performance of the oxygen PSA method, as a conventional method, for example, in the method described in JP-A-63-144104, two adsorption cylinders are connected in the pressure recovery step. The pressure equalization process (up and down simultaneous pressure equalization) is performed in which the gas is simultaneously recovered from both the upper part (product gas outlet part) and the lower part (raw material gas inlet part) of each adsorption cylinder. In this case, a large amount of gas can be recovered, but in the adsorption cylinder on the gas receiving side, a relatively oxygen-enriched gas is recovered at the upper part of the cylinder, and the lower part of the cylinder is air or somewhat higher in nitrogen than air. Gas is recovered. For this reason, in this method, the product recovery rate is high, but the amount of oxygen generated per adsorbent agent is low.
[0008]
Further, in JP-A-63-144103, in the pressure equalizing step, two cylinders are connected in the same manner as described above, and gas is recovered simultaneously from both the upper and lower parts of the cylinder. At the time, the lower line uses the vacuum exhaust line to exhaust a part of the gas recovered from the lower part to adjust the recovery amount from the lower part of the cylinder. In this method, the amount of gas recovered is smaller than in the above method, so that the product recovery rate is not so high, and the pressure increase due to recovery is small in the receiving side cylinder, which is necessary in the next pressurizing step. There has been a problem that the amount of oxygen for filling the oxygen increases, and the adsorption pressure of the cylinder in the adsorption process during oxygen generation is lowered.
[0009]
That is, in the oxygen PSA method, keeping the product recovery rate high and increasing the amount of oxygen generated per adsorbent agent is a contradictory requirement, and therefore a process that can achieve both is compatible. It was not developed yet.
[0010]
Accordingly, an object of the present invention is to provide a pressure fluctuation adsorption type oxygen generation method capable of increasing the amount of oxygen generated while maintaining a high product recovery rate and reducing the power unit.
[0011]
[Means for Solving the Problems]
In order to achieve the above-described object, a first of the pressure fluctuation adsorption type oxygen generation method of the present invention includes an adsorption step in which a plurality of adsorption cylinders filled with zeolite as an adsorbent are respectively performed at a relatively high pressure, and atmospheric pressure. In the oxygen generation method by the pressure fluctuation adsorption separation method in which oxygen and nitrogen are separated from a mixed gas mainly composed of oxygen and nitrogen to generate oxygen gas by alternately repeating the regeneration step performed at the following pressures A gas having a lower oxygen concentration than the product oxygen gas remaining in the adsorption cylinder after the adsorption step is communicated with the outlet end of the adsorption cylinder after the adsorption step and the outlet end of the adsorption cylinder after the regeneration step. the same time Doing pressure recovery step of recovering the regeneration step the finished adsorption cylinder, the mixed gas from the inlet mouth end of the adsorption cylinder to complete the playback process is characterized by the introduction into the adsorption column, the 2 is the first Instead of introducing the mixed gas into the adsorption cylinder from the inlet end of the adsorption cylinder after the regeneration step of the method, the mixed gas is introduced into the adsorption cylinder from the inlet end of the adsorption cylinder after the adsorption process. It is set to.
[0012]
Further, the present invention, the mixed gas to the adsorption column which has finished the previous SL regeneration step to perform a primary pressurization step by introducing at substantially atmospheric pressure, from the outlet end to the adsorption column which has finished the primary pressurizing step is introduced a portion of the oxygen product gas, and this performing secondary pressurization step of continuing the introduction of the mixture gas of the substantially atmospheric pressure from the inlet end, the gas mixture to the adsorption column which has finished the previous SL adsorption step Introducing at substantially the same pressure as the adsorption step, and in the first method, the adsorption cylinder that has completed the adsorption step is characterized in that it simultaneously performs evacuation from the inlet end during the pressure recovery step.
[0013]
【Example】
Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings.
First, FIG. 1 shows an example of an oxygen PSA apparatus for carrying out the method of the present invention, which has three adsorption cylinders A, B, and C each filled with zeolite as an adsorbent, A three-cylinder oxygen PSA apparatus that separates and generates oxygen from air, which is a mixed gas containing nitrogen as a main component, is shown.
[0014]
The oxygen PSA apparatus includes the three adsorption cylinders A, B, and C, a blower 1 that pressurizes the raw material air to a predetermined pressure and supplies the air to the adsorption cylinder, and a vacuum pump that evacuates the adsorption cylinder. 2, the product storage tank 3 for temporarily storing product oxygen derived from the adsorption cylinder, the flow rate control valves 4 and 5 for controlling the gas flow rate in the regeneration process and the pressurization process, and the product oxygen gas supply amount are controlled. The flow control valve 6 and a number of automatic valves 11, 12, 13, 14, 15, 16, 17 for switching each adsorption cylinder to an adsorption process, a regeneration process, etc. A, b, and c are attached to the adsorption cylinders A, B, and C.), and an air introduction pipe 18 for introducing air at atmospheric pressure into the adsorption cylinder.
[0015]
The oxygen PSA device generates oxygen gas continuously by opening and closing the numerous automatic valves in a predetermined order. For example, by repeating 9 steps shown in FIG. A product gas is generated by separating a mixed gas as a main component, for example, oxygen and nitrogen in the air.
[0016]
Hereinafter, a first embodiment of the oxygen generation method of the present invention will be described based on the process diagram shown in FIG. 2 using the oxygen PSA apparatus.
First, in step 1, the adsorption cylinder A is switched to the adsorption process, the pressure recovery process after the adsorption cylinder B finishes the regeneration process, and the pressure recovery process after the adsorption cylinder C finishes the adsorption process. Yes, the adsorption cylinder A separates oxygen and nitrogen.
[0017]
That is, the raw material air whose pressure is increased to a predetermined pressure, for example, 500 mmAq (about 800 Torr) by the blower 1 is introduced into the adsorption cylinder A, and nitrogen in the air is adsorbed and separated from oxygen by the zeolite filled in the cylinder. Oxygen which is an adsorbing component is derived as product oxygen.
[0018]
In addition, the suction cylinder B whose in-cylinder pressure is lower than the atmospheric pressure and the adsorption cylinder C whose cylinder pressure is relatively high are subjected to pressure recovery that allows the outlet ends of the two to communicate with each other. The gas is introduced into the adsorption cylinder B from the outlet side while the flow rate is adjusted by the flow regulating valve 5 (see FIG. 1), and air at atmospheric pressure is sucked from the air introduction pipe 18 from the inlet side of the adsorption cylinder B. Is done. As a result, in the adsorption cylinder B, the gas having a relatively high oxygen content in the adsorption cylinder C is collected on the outlet side of the adsorption cylinder B, and air as a raw material is added by the blower 1 from the inlet side of the adsorption cylinder B. A primary pressurization step is performed that accepts no pressure.
[0019]
In step 2, the adsorption cylinder A is in an adsorption process in which the pressurized raw material air is continuously received from the bottom of the cylinder and product oxygen is generated from the top of the cylinder, and the adsorption cylinder B is the product oxygen generated from the adsorption cylinder A. It becomes the secondary pressurization process which receives a part from a cylinder top part. Further, the adsorption cylinder C is a vacuum regeneration process in which the gas in the cylinder is exhausted by the vacuum pump 2 and the nitrogen pressure adsorbed by the adsorbent is desorbed as the pressure in the cylinder decreases.
[0020]
In step 3, the adsorption cylinder A is continuously in the adsorption process, and the adsorption cylinder B is subsequently pressurized in the secondary pressurization process, and finally is pressurized to the pressure during the adsorption process, that is, substantially equal to the adsorption pressure. . The adsorption cylinder C is in a so-called exhaust purge state in which a part of product oxygen generated from the adsorption cylinder A is received from the cylinder top while evacuating when the vacuum pump 2 is exhausted and the degree of vacuum becomes relatively high. (Purge regeneration step).
[0021]
In step 4, the adsorption cylinder A is in the same pressure recovery step as the adsorption cylinder C in step 1, the adsorption cylinder B is in the same adsorption step as the adsorption cylinder A in step 1, and the adsorption cylinder C is the same primary as the adsorption cylinder B in step 1. Pressurize. Hereinafter, in the process 5, the adsorption cylinder A becomes a vacuum regeneration process, the adsorption cylinder C becomes a secondary pressurization process, and in the process 6, the adsorption cylinder A becomes a purge regeneration process.
[0022]
Further, in steps 7, 8 and 9, the suction cylinder C in the steps 1 to 3 is performed by the suction cylinder C, the suction cylinder B is performed by the suction cylinder A, and the suction cylinder C is performed by the suction cylinder B. When step 9 is completed, the process returns to step 1.
[0023]
As described above, the processes 1 to 9 are performed in the respective adsorption cylinders, and the process returns from the process 9 to the process 1 and is repeated to generate continuous oxygen. The time of each process is as follows. The cycle time is 60 seconds. Usually, the processes 1, 4, and 7 are 5 to 10 seconds, the processes 2, 5, and 8 are 10 to 15 seconds, and the processes 3, 6, and 9 are 40 to 45 seconds. is there. The pressure in each step is usually about 500 mmAq (about 800 Torr) for the adsorption pressure, about 200 Torr for the vacuum regeneration pressure, about 500 Torr for the primary pressure step, and about 760 Torr for the secondary pressure step.
[0024]
As shown in this embodiment, in the pressure recovery process, an adsorption cylinder having a relatively high in-cylinder pressure after completion of the adsorption process and an adsorption cylinder having a cylinder pressure after completion of the regeneration process lower than atmospheric pressure are The outlet ends communicate with each other, the gas at the top of the adsorption cylinder after the adsorption process is collected from the top of the cylinder into the adsorption cylinder after the regeneration process, and atmospheric pressure air is sucked from the bottom of the adsorption cylinder As a result, the gas having a relatively high oxygen content in the adsorption cylinder after the adsorption process can be recovered in the adsorption cylinder after the regeneration process, and pressurization of the adsorption cylinder can be performed efficiently.
[0025]
That is, the adsorption cylinder that has finished the regeneration process needs to be pressurized to the pressure as close to the adsorption pressure as possible in the primary pressurization process and the secondary pressurization process before entering the next adsorption process. However, as described above, in the primary pressurization process, the gas rich in oxygen is recovered at the upper part of the adsorption cylinder after the regeneration process, and air is sucked from the lower part of the cylinder. The pressure in the adsorption cylinder can be sufficiently increased while keeping the amount small. Therefore, the pressure in the adsorption cylinder at the time of entering the secondary pressurization process using a part of product oxygen can be made higher than before, and the amount of product oxygen used can be reduced.
[0026]
By reducing the amount of product oxygen used for the pressurization, the adsorption operation of the adsorption cylinder in the adsorption process can be performed in a stable state, and the amount of product oxygen generated can be increased. The air sucked into the adsorption cylinder in the primary pressurizing step is air having the same composition as the raw material mixed gas, and this air is a pressure between the negative pressure in the cylinder and the atmospheric pressure without going through the blower 1. Because it is sucked into the adsorption cylinder due to the difference, it does not require the compression power by going through the blower 1, and the actual processing air amount will increase compared to the conventional one compared to the blowing amount, Power costs can be reduced and product oxygen generation can be increased.
[0027]
FIG. 3 is a process diagram showing a second embodiment of the present invention. Compared to the first embodiment, air suction is performed until the in-cylinder pressure becomes close to atmospheric pressure during the operation of the secondary pressurization process. Is to continue. In the following embodiments, detailed description of the same parts as those in the first embodiment will be omitted.
[0028]
That is, in the process 1, as in the first embodiment, the adsorption cylinder A receives the raw air from the blower 1 and generates product oxygen, and the pressure recovery process after the adsorption cylinder B finishes the regeneration process. The adsorption cylinder C is a pressure recovery process after the adsorption process is completed, and the adsorption cylinder B collects an oxygen-rich gas on the outlet side of the adsorption cylinder C on the outlet side and also introduces an air introduction pipe from the inlet side. 18 is a state of a primary pressurizing process in which air is sucked through 18.
[0029]
Process 2 is an adsorption process followed by the adsorption cylinder A, the adsorption cylinder B is a secondary pressurization process, and the adsorption cylinder C is a vacuum regeneration process in which the vacuum pump 2 exhausts the gas in the cylinder. In the method, air is sucked in from the lower part of the cylinder while receiving part of the product oxygen from the cylinder top. Therefore, in the adsorption cylinder B, secondary pressurization is performed by the product oxygen at the upper part of the cylinder and the air at the lower part of the cylinder.
[0030]
In step 3, the adsorption cylinder A continues to be in the adsorption process, and the adsorption cylinder B continues to be the secondary pressurization process. In the adsorption cylinder B, air is sucked from the lower part of the cylinder according to the in-cylinder pressure. Pressurization is performed only by receiving product oxygen from the top of the cylinder. Further, the adsorption cylinder C is in a purge regeneration process in which evacuation is performed while receiving a part of product oxygen from the cylinder top.
[0031]
Hereinafter, in the same manner as in the first embodiment, in the process 4, the adsorption cylinder A is in the same pressure recovery process as the adsorption cylinder C in the process 1, and the adsorption cylinder B is in the same adsorption process as the adsorption cylinder A in the process 1. C becomes the same primary pressurization as the adsorption cylinder B in the process 1. In the process 5, the adsorption cylinder A becomes the vacuum regeneration process, the adsorption cylinder C becomes the secondary pressurization process, and in the process 6, the adsorption cylinder A becomes the purge regeneration process. Become. Further, in steps 7, 8 and 9, the suction cylinder C in the steps 1 to 3 is performed by the suction cylinder C, the suction cylinder B is performed by the suction cylinder A, and the suction cylinder C is performed by the suction cylinder B. When step 9 is completed, the process returns to step 1.
[0032]
As shown in the present embodiment, even in the secondary pressurization step, by continuing to suck in air until the in-cylinder pressure is close to atmospheric pressure, the amount of air sucked is larger than that in the first embodiment. The amount of product oxygen required for pressurization can be further reduced, and the amount of product oxygen generated can be further increased. In the secondary pressurizing step, the pressure for stopping the intake of air can be close to the atmospheric pressure, but usually about 600 to 700 Torr is appropriate.
[0033]
FIG. 4 is a process diagram showing a third embodiment of the present invention. Compared to the first embodiment, when the pressure is recovered, the adsorption cylinder on the recovered gas discharge side after completion of the adsorption step is shown. The introduction of the raw material air is continued (steps 1, 4 and 7).
[0034]
Thus, by continuing the introduction of the raw material air to the adsorption cylinder that enters the pressure recovery process after finishing the adsorption process, the pressure in the adsorption cylinder can be maintained at the adsorption pressure, and the desorption of nitrogen from the adsorbent Therefore, it is possible to sufficiently pressurize the adsorption cylinder on the receiving side while preventing nitrogen from being mixed into the gas recovered from the upper part of the adsorption cylinder to the adsorption cylinder that has finished the regeneration process. it can.
[0035]
FIG. 5 is a process diagram showing a fourth embodiment of the present invention. Compared to the first embodiment, the cylinder in the adsorption cylinder on the recovered gas discharge side after completion of the adsorption process at the time of pressure recovery. Along with the discharge of the recovered gas from the upper part, evacuation from the lower part of the cylinder is started at the same time (steps 1, 4 and 7). Thereby, the idle time of a vacuum pump can be eliminated and efficiency can be improved.
[0036]
In addition, in this invention, it is possible to implement combining each Example, Furthermore, the number of the adsorption cylinders to be used is not restricted to 3 cylinders, 2 cylinder type or 4 or more adsorption cylinders are used. It can also be applied to devices.
[0037]
The adsorbent used is a zeolite that preferentially adsorbs a large amount of nitrogen compared to oxygen, such as so-called MS-5A, MS-10X, MS-13X, mordenite, etc., and a sufficiently high adsorption rate of nitrogen. Zeolite or the like obtained by ion-exchange of the metal in the zeolite so as to have a pore size that can be adsorbed by the above can be used.
[0038]
Furthermore, the mixed gas containing oxygen and nitrogen as main components is not limited to air, and a mixed gas having any composition can be used. In this case, the above-described air introduction pipe may be connected to a mixed gas generation section or storage tank as a raw material.
[0039]
Next, using the apparatus having the configuration shown in FIG. 1, the operation method shown in the first to fourth embodiments and the simultaneous upper and lower pressure equalization method as a conventional example are performed, and the oxygen generation amount and the oxygen recovery rate are obtained. The experimental results of measuring the above will be described.
[0040]
The adsorption cylinder had an inner diameter of 155 mm and a height of 1.6 m, and a 1.6 mm diameter pellet of molecular sieve 5A was used as the adsorbent. The operating conditions were an adsorption pressure of 500 mmAq and a vacuum regeneration pressure of 200 Torr. The cycle time was 60 seconds, the step corresponding to step 1 was 5 to 10 seconds, the step corresponding to step 2 was 10 to 15 seconds, and the step corresponding to step 3 was 40 to 45 seconds. The experimental results are shown in Table 1.
[0041]
[Table 1]
Figure 0003654661
[0042]
【The invention's effect】
As described above, according to the pressure fluctuation adsorption type oxygen generation method of the present invention, since the raw material gas or the mixed gas having substantially the same composition as the raw material gas is introduced into the adsorption cylinder during the primary pressurization step, the regeneration step The adsorption cylinder can be sufficiently pressurized while preventing the inflow of nitrogen into the completed adsorption cylinder, and the amount of product oxygen used for pressurization can be reduced and the amount of product oxygen generated can be increased. .
[0043]
In particular, by sucking the raw material gas or a mixed gas having substantially the same composition as the raw material gas without using a pressurizing means such as a blower into the adsorption cylinder after the regeneration process, the power cost can be reduced compared to the processing amount.
[0044]
In addition, when the raw material gas is air, since the air taken into the adsorption cylinder is sent in at atmospheric pressure, it can be excluded from the raw material supply amount by the blower, and this substantially increases the oxygen recovery rate substantially. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an example of an oxygen PSA apparatus.
FIG. 2 is a process diagram showing a first embodiment of the present invention.
FIG. 3 is a process diagram showing a second embodiment of the present invention.
FIG. 4 is a process diagram showing a third embodiment of the present invention.
FIG. 5 is a process diagram showing a fourth embodiment of the present invention.
[Explanation of symbols]
A, B, C ... Adsorption cylinder, 1 ... Blower, 2 ... Vacuum pump, 3 ... Product storage tank, 4, 5, 6 ... Flow control valve, 18 ... Air introduction pipe

Claims (6)

吸着剤としてゼオライトを充填した複数の吸着筒を、それぞれ相対的に高い圧力で行う吸着工程と、大気圧以下の圧力で行う再生工程とを交互に順次繰り返すことにより、酸素と窒素を主成分とする混合ガスから酸素と窒素とを分離して酸素ガスを発生する圧力変動吸着分離法による酸素発生方法において、前記吸着工程を終了した吸着筒の出口端と、前記再生工程を終了した吸着筒の出口端とを連通し、吸着工程を終了した吸着筒内に残留する製品酸素ガスより低酸素濃度のガスを再生工程を終了した吸着筒内へ回収する圧力回収工程を行うと同時に、再生工程を終了した吸着筒の入口端から前記混合ガスを吸着筒内に導入することを特徴とする圧力変動吸着分離法による酸素発生方法。A plurality of adsorption cylinders filled with zeolite as an adsorbent are alternately and repeatedly subjected to an adsorption process performed at a relatively high pressure and a regeneration process performed at a pressure lower than atmospheric pressure, respectively, so that oxygen and nitrogen as main components. In the oxygen generation method by the pressure fluctuation adsorption separation method in which oxygen and nitrogen are separated from the mixed gas to generate oxygen gas, the outlet end of the adsorption cylinder that has completed the adsorption process, and the adsorption cylinder that has completed the regeneration process communicating an Tadashi Ideguchi, at the same time when performing the pressure recovery step of recovering the adsorption step remaining finished adsorption cylinder the product oxygen gas from the low oxygen concentration of the adsorption cylinder that was terminated reproduction process gas, playback oxygen generation process according to the pressure swing adsorption separation method characterized by the inlet mouth end of the adsorption column ended the step of introducing the mixed gas into the adsorption column. 吸着剤としてゼオライトを充填した複数の吸着筒を、それぞれ相対的に高い圧力で行う吸着工程と、大気圧以下の圧力で行う再生工程とを交互に順次繰り返すことにより、酸素と窒素を主成分とする混合ガスから酸素と窒素とを分離して酸素ガスを発生する圧力変動吸着分離法による酸素発生方法において、前記吸着工程を終了した吸着筒の出口端と、前記再生工程を終了した吸着筒の出口端とを連通し、吸着工程を終了した吸着筒内に残留する製品酸素ガスより低酸素濃度のガスを再生工程を終了した吸着筒内へ回収する圧力回収工程を行うと同時に、吸着工程を終了した吸着筒の入口端から前記混合ガスを吸着筒内に導入することを特徴とする圧力変動吸着分離法による酸素発生方法。 A plurality of adsorption cylinders filled with zeolite as an adsorbent are alternately and repeatedly subjected to an adsorption process performed at a relatively high pressure and a regeneration process performed at a pressure lower than atmospheric pressure, respectively, so that oxygen and nitrogen as main components. In the oxygen generation method by the pressure fluctuation adsorption separation method in which oxygen and nitrogen are separated from the mixed gas to generate oxygen gas, the outlet end of the adsorption cylinder that has completed the adsorption process, and the adsorption cylinder that has completed the regeneration process At the same time as performing a pressure recovery process that communicates with the outlet end and recovers a gas having a lower oxygen concentration than the product oxygen gas remaining in the adsorption cylinder after completion of the adsorption process into the adsorption cylinder after completion of the regeneration process. A method for generating oxygen by a pressure fluctuation adsorption separation method, wherein the mixed gas is introduced into the adsorption cylinder from an inlet end of the completed adsorption cylinder . 前記混合ガスは、略大気圧で導入されことにより一次加圧工程を行うことを特徴とする請求項記載の圧力変動吸着分離法による酸素発生方法。 The mixed gas is oxygen generating method according to the pressure swing adsorption separation process according to claim 1, characterized in that the primary pressurization step by being introduced in substantially atmospheric pressure. 前記一次加圧工程を終了した吸着筒は、出口端から製品酸素ガスの一部を導入するとともに、入口端から前記略大気圧の混合ガスの導入を継続する二次加圧工程を行うことを特徴とする請求項記載の圧力変動吸着分離法による酸素発生方法。 The adsorption cylinder that has finished the primary pressurization step performs a secondary pressurization step of introducing a part of the product oxygen gas from the outlet end and continuing the introduction of the mixed gas at the substantially atmospheric pressure from the inlet end. The method for generating oxygen by the pressure fluctuation adsorption separation method according to claim 3 . 前記混合ガスは、吸着工程と略同じ圧力で導入されることを特徴とする請求項記載の圧力変動吸着分離法による酸素発生方法。 The oxygen generation method according to claim 2 , wherein the mixed gas is introduced at substantially the same pressure as in the adsorption step . 前記吸着工程を終了した吸着筒は、前記圧力回収工程時に、入口端からの真空排気を同時に行うことを特徴とする請求項1記載の圧力変動吸着分離法による酸素発生方法 The method for generating oxygen by the pressure fluctuation adsorption separation method according to claim 1, wherein the adsorption cylinder that has finished the adsorption step simultaneously performs evacuation from the inlet end during the pressure recovery step .
JP12101594A 1994-06-02 1994-06-02 Oxygen generation method by pressure fluctuation adsorption separation method Expired - Fee Related JP3654661B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12101594A JP3654661B2 (en) 1994-06-02 1994-06-02 Oxygen generation method by pressure fluctuation adsorption separation method
PCT/JP1995/001083 WO1995033681A1 (en) 1994-06-02 1995-06-02 Oxygen generating method based on pressure variation adsorption separation
CN95190507A CN1042215C (en) 1994-06-02 1995-06-02 Oxygen generating method based on pressure variation adsorption separation
US09/056,377 US5985003A (en) 1994-06-02 1998-04-07 Oxygen production process by pressure swing adsorption separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12101594A JP3654661B2 (en) 1994-06-02 1994-06-02 Oxygen generation method by pressure fluctuation adsorption separation method

Publications (2)

Publication Number Publication Date
JPH07330306A JPH07330306A (en) 1995-12-19
JP3654661B2 true JP3654661B2 (en) 2005-06-02

Family

ID=14800701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12101594A Expired - Fee Related JP3654661B2 (en) 1994-06-02 1994-06-02 Oxygen generation method by pressure fluctuation adsorption separation method

Country Status (3)

Country Link
JP (1) JP3654661B2 (en)
CN (1) CN1042215C (en)
WO (1) WO1995033681A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052701C (en) * 1997-04-08 2000-05-24 浙江大学 Method for production of oxygen-rich gases with multiple kinds of concentration and apparatus thereof
KR100360835B1 (en) * 2000-08-09 2002-11-22 주식회사 옥서스 A continuous oxygen concentrator with 3 tower-2 compressor and the method thereof
CN1302983C (en) * 2005-04-30 2007-03-07 印全彬 Pressure swing adsorption continuous oxygen generation method
CN100364644C (en) * 2005-12-27 2008-01-30 温州瑞气空分设备有限公司 Process for improving gas reclaiming rate of pressure swing absorption separation process
RU2013144388A (en) 2011-03-03 2015-04-10 Конинклейке Филипс Н.В. METHOD AND DEVICE FOR OXYGEN GENERATION

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150507A (en) * 1984-01-13 1985-08-08 住友電気工業株式会社 Gas-filled rubber and plastic insulated power cable
JPS60210507A (en) * 1984-03-31 1985-10-23 Showa Denko Kk Method for controlling turn-down in pressure fluctuation adsorption process
JPS61161117A (en) * 1985-01-11 1986-07-21 Showa Denko Kk Preparation of oxygen having high purity
JPS63166702A (en) * 1986-12-26 1988-07-09 Osaka Oxygen Ind Ltd Concentration of oxygen gas
EP0449448B1 (en) * 1990-03-29 1997-01-22 The Boc Group, Inc. Process for producing oxygen enriched product stream
AU662909B2 (en) * 1991-07-02 1995-09-21 Boc Group, Inc., The Process for producing oxygen enriched product stream
JPH057323U (en) * 1991-07-08 1993-02-02 三菱重工業株式会社 Pressure swing type gas separation device

Also Published As

Publication number Publication date
WO1995033681A1 (en) 1995-12-14
CN1042215C (en) 1999-02-24
JPH07330306A (en) 1995-12-19
CN1128979A (en) 1996-08-14

Similar Documents

Publication Publication Date Title
JP3492869B2 (en) Single bed pressure swing adsorption method for oxygen recovery from air
US4406675A (en) RPSA Process
JP3050881B2 (en) How to separate oxygen from air
TW436316B (en) Pressure swing process and system using single adsorber and single blower for separating a gas mixture
JPH0929044A (en) Reflux in pressure swing type suction method
EP1175934A2 (en) Improved oxygen production
JP2000153124A (en) Pressure swing adsorption for producing oxygen-enriched gas
JP3073917B2 (en) Simultaneous pressure change adsorption method
JP3902416B2 (en) Gas separation method
JPH1024208A (en) Treatment of gaseous mixture by pressure swing adsorption
US5985003A (en) Oxygen production process by pressure swing adsorption separation
JP3654661B2 (en) Oxygen generation method by pressure fluctuation adsorption separation method
JP3169647B2 (en) Pressure swing type suction method and suction device
JP2607632B2 (en) Separation of gas mixtures
JPWO2002049959A1 (en) Recovery method of concentrated oxygen gas
JPH0490819A (en) Air separation method
JP3654658B2 (en) Pressure fluctuation adsorption type oxygen production method and apparatus
JP4050415B2 (en) Gas separation method
JPH10272332A (en) Gas separation device and its operation method
JPH11267439A (en) Gas separation and gas separator for performing same
JP3889125B2 (en) Gas separation method
JP3561886B2 (en) Pressure fluctuation adsorption separation method
JP3895037B2 (en) Low pressure oxygen enrichment method
JP4195131B2 (en) Single tower type adsorption separation method and apparatus
JP3755622B2 (en) Mixed gas separation method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050301

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees