JPH0582293B2 - - Google Patents

Info

Publication number
JPH0582293B2
JPH0582293B2 JP60078874A JP7887485A JPH0582293B2 JP H0582293 B2 JPH0582293 B2 JP H0582293B2 JP 60078874 A JP60078874 A JP 60078874A JP 7887485 A JP7887485 A JP 7887485A JP H0582293 B2 JPH0582293 B2 JP H0582293B2
Authority
JP
Japan
Prior art keywords
epoxy resin
metal foil
adhesive
bisphenol
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60078874A
Other languages
Japanese (ja)
Other versions
JPS61235145A (en
Inventor
Yasuo Fushiki
Minoru Itsushiki
Koji Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP7887485A priority Critical patent/JPS61235145A/en
Publication of JPS61235145A publication Critical patent/JPS61235145A/en
Publication of JPH0582293B2 publication Critical patent/JPH0582293B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は、印刷回路基板に使用される金属箔張
り積層板およびその製造方法に関する。 背景技術および問題点 近年民生用および産業用電子機器に使用する印
刷回路基板の普及につれその需要が増大し、安価
でしかも性能のすぐれた製品を製造し得る方法の
開発が要望されて来た。本発明者らはこの要望に
応えて先に特開昭55−4838、同56−98136等にお
いて大量生産に適した金属箔張り積層板の連続製
造法を提案し、該方法による製品は既に出願人会
社から「エクセライト」なる登録商標名で市販さ
れ、好評を得ている。該方法の概要は、複数枚の
基材を連続的に引出し、搬送下に樹脂液を含浸
し、含浸基材を合体し、それに金属箔を張り合わ
せ後連続的に硬化させるものでるが、含浸樹脂と
して不飽和ポリエステル樹脂のようなそれ自身液
状の樹脂を使用することを基本とするから、金属
箔のラミネート時および硬化時に殆ど成型圧を加
えないのが特徴である。従つて樹脂含浸基材より
なる絶縁板と金属箔との間の十分な剥離強度を確
保するための接着剤および接着方法には特別の工
夫を必要とする。すなわち、従来主流であつたプ
リプレツグに金属箔を重ね、プレスで加熱加圧
し、積層板の成型と金属箔の接着とを同時に行な
う方法にあつては、含浸樹脂は固体であり、金属
箔はあらかじめ接着剤を塗布し、半硬化の状態と
した接着剤つき金属箔が使用される。この目的に
対してポリビニルブチラール変性フエノール樹脂
等の接着剤が多く使用される。しかしながらこの
ような接着剤は、連続法に使用した場合、成型圧
が加えられないため十分な剥離強度が得られな
い。このため本発明者らは特開昭56−8227等にお
いて、金属箔の張り合わせ面にエポキシ樹脂等の
接着剤をインラインで塗布し、塗布面を加熱して
から未硬化積層体へ張り合わせる方法を提案し
た。しかしながら需要者の性能の向上に対する要
求は益々厳しくなつており、特に常温および熱時
の剥離強度にすぐれた製品が要求されている。本
発明の課題はこのような要求を満たすことにあ
る。 解決方法 本発明は、複数枚のシート状基材を連続的に搬
送下それ自体液状である硬化性不飽和樹脂液を含
浸し、含浸した基材を合体し、合体した積層体の
少なくとも片面に金属箔を張り合わせ、次いで積
層体を硬化させることを含む金属箔張り積層板の
連続製造法において、金属箔を連続的に繰り出
し、その張り合わせ面にビスフエノールS型エポ
キシ樹脂を5重量%以上含むエポキシ樹脂系接着
剤を連続的に塗布し、張り合わせることを特徴と
する金属箔張り積層板の連続製造法を提供する。 好ましい実施態様 本発明に使用できる基材は公知のものでよく、
クラフト紙、リンター紙等のセルロス系シート状
基材や、ガラスクロス、ガラスマツト、ガラスペ
ーパー等のガス繊維基材およびセルロース混抄ガ
ラスペーパー等が一般的である。一枚の積層板に
必ずしも全部同じ基材を使用する必要はなく、例
えば最外側にガラスクロスを使用し、中間に紙、
ガラスペーパー、セルロース混抄ガラスペーパ
ー、等を使用することも可能である。 基材を含浸する樹脂は、一般に低圧成型樹脂と
呼ばれる樹脂のうち、硬化前樹脂がラジカル重合
可能な炭素間二重結合不飽和基を含み、該不飽和
基のラジカル重合反応によつて硬化する樹脂であ
る。このような樹脂は硬化に際し気体や液体の副
反応生成物を発生しないから低圧で成型し得る。
典型的な例は不飽和ポリエステル樹脂であるが、
その他にもエポキシアクリレート樹脂、ポリエス
テルアクリレート樹脂、ウレタンアクリレート樹
脂、スピラン樹脂、ジアリルフタレート樹脂など
があり、単独あるいは二つ以上を混合しても使用
できる。これらの樹脂はその骨格へ結合したハロ
ゲン原子、特に臭素を含有することによつて難燃
化することもできる。難燃化はハロゲンを含有し
ない樹脂へ添加型のハロゲン化難燃材を添加する
ことによつても達成できる。これら樹脂の難燃化
方法自体は公知であり、本発明の一部ではないの
でこれ以上詳しく説明しない。 印刷回路基板に使用される金属箔は、銅箔が一
般的であるが、所望によりアルミニウムなどの他
の金属箔も使用できる。本発明では接着剤をイン
ラインで塗布するのが好ましいので、金属箔にあ
らかじめ塗布された接着剤層を有しないものが使
用できる。 連続法により金属箔張り積層板の製造は、一般
に先に引用した特開昭55−4838、同56−98136等
に記載の方法、すなわち実質的無圧の状態で連続
硬化させる方法によることが好ましい。また金属
箔への接着剤の塗布および未硬化積層板へのラミ
ネートは特開昭56−8227に記載の方法によること
ができる。ただし本発明においては、接着剤とし
てビスフエノールS型エポキシ樹脂を5重量%以
上含有するエキシ系接着剤を使用するのが必須の
要件である。ビスフエノールS型エポキシ樹脂を
含むことにより、これを含まない場合に比較して
常温および熱時の金属箔剥離強度が改善される。 本発明でいうビフフエノールS型エポキシ樹脂
とはビスフエノールS(ジヒドロキシジフエニル
スルホン)とエピクロルヒドリンの反応から得ら
れるジグリシジルエーテルが典形的な例である
が、これに限定されず、ビスフエノールSの成分
を骨格に含むエポキシ樹脂は全て含まれる。例え
ばビスフエノールSとビスフエノールAを共縮合
したエポキシ樹脂はメチルエチルケトン、アセト
ン等汎用の低沸点溶剤への溶解性が高まり、好ま
しい実施態様である。 ビスフエノールS型エポキシ樹脂と併用するエ
ポキシ樹脂としてはビスフエノールA型エポキシ
樹脂、ノボラツク型エポキシ樹脂、脂環型エポキ
シ樹脂、ビスフエノールF型エポキシ樹脂、グリ
シジルエステル型エポキシ樹脂、グリシジルアミ
ン型エポキシ樹脂等が好適である。 ビスフエノールS型エポキシ樹脂の配合比率は
5重量以上、より好ましくは40重量%以上である
ことが望ましい。ビスフエノールS型エポキシ樹
脂の量は多い程、常温および熱時の金属箔剥離強
度を同時に向上させることができる。 硬化剤は通常のエポキシ樹脂の硬化剤が使用で
きる。例えば酸無水物、各種アシン、イソシアネ
ート系化合物、イミダゾール化合物、ジシアンジ
アミド、アミンの三フツ化ホウ素化合物等であ
る。中でもアミン系硬化剤が金属箔との剥離強度
に優れており、本発明にとつて好適である。 また、本発明に使用する接着剤組成物にガラス
パウダー、ガラスフレーク、タルク、シリカ、カ
オリン、水酸化アルミニウム、酸化亜鉛等のフイ
ラー、着色剤、ゴム、硬化促進剤、酸化防止剤、
シランカツプリング剤等の添加剤を配合すること
は何ら差支えない。 接着剤を金属箔に塗布するためには液状化する
必要があるが、ビスフエノールS型エポキシ樹脂
を液状のエポキシ樹脂希釈剤に溶かし込むか、あ
るいは溶剤を用いて液状化してもどちらでもかま
わない。本発明の接着剤を特開昭56−8227等で示
される金属箔張り積層板の連続製造法に適用すれ
ば、常温および熱時の剥離強度の改善された金属
箔張り積層板を効率よく製造できる。以下に本発
明の実施例を示す。 実施例 市販の不飽和ポリエステル樹脂(アトラツク
711−05A,アトラス社製)100重量部、ワスラト
ナイト10重量部、三酸化アンチモン2重量部、ベ
ンゾイルパーオキサイド1重量部からなる樹脂液
を調整した。二層のガラスクロスの間に3層のガ
ラスペーパーが入るように配置された5層の連続
的に搬送される基材に対し該樹脂液を連続的に含
浸し、次いで重ね合わせるとともに、連続的に巻
き出されている市販の35μm電解銅箔(T−8,
福田金属製)に第1表の組成Aの接着剤をブレー
ドコーターで厚さ30μmに塗布し、次いで接着剤
の予備硬化炉で溶剤を除くとともに予備硬化した
ものを積層体の上側からラミネートし、さらにそ
の対面にポリエステルフイルムをラミネートし、
温度が100℃のトンネル型硬化炉で20分間連続的
に加熱硬化を行つた。次いでポリエステルフイル
ムを剥離した後、切断し、さらに160℃で20分間
後硬化を行い、1.6mm厚の片面銅張積層板を得た。
性能を第2表に示す。 実施例 2 第1表の組成Bの接着剤を用いて、実施例1と
同様にして1.6mm厚の片面銅張積層板を得た。性
能を第2表に示す。 比較例 第1表の組成Cの接着剤を用いて、実施例1と
同様にして1.6mm厚の片面銅張積層板を得た。性
能を第2表に示す。
TECHNICAL FIELD The present invention relates to a metal foil-clad laminate used for printed circuit boards and a method for manufacturing the same. BACKGROUND ART AND PROBLEMS In recent years, with the spread of printed circuit boards used in consumer and industrial electronic equipment, the demand for them has increased, and there has been a demand for the development of a method that can produce products with excellent performance at low cost. In response to this demand, the present inventors previously proposed a continuous manufacturing method for metal foil-clad laminates suitable for mass production in JP-A-55-4838 and JP-A-56-98136, and a product using this method has already been filed. It is marketed under the registered trademark name ``Excellite'' by a company called ``Excelite'' and has been well received. The outline of this method is to continuously pull out a plurality of base materials, impregnate them with resin liquid while conveying them, combine the impregnated base materials, bond them with metal foil, and then harden them continuously. Since the method basically uses a liquid resin such as unsaturated polyester resin, it is characterized in that almost no molding pressure is applied during lamination and curing of the metal foil. Therefore, special measures are required for the adhesive and bonding method to ensure sufficient peel strength between the insulating plate made of the resin-impregnated base material and the metal foil. In other words, in the conventional method of stacking metal foil on prepreg and heating and pressurizing it with a press, forming the laminate and adhering the metal foil at the same time, the impregnated resin is solid, and the metal foil is Adhesive-coated metal foil is used, which is coated with adhesive and left in a semi-cured state. Adhesives such as polyvinyl butyral modified phenolic resins are often used for this purpose. However, when such an adhesive is used in a continuous method, sufficient peel strength cannot be obtained because no molding pressure is applied. For this reason, the present inventors proposed a method in JP-A-56-8227, etc. in which an adhesive such as an epoxy resin is applied in-line to the bonding surface of metal foil, the coated surface is heated, and then bonded to an uncured laminate. Proposed. However, customers' demands for improved performance are becoming increasingly strict, and products with particularly excellent peel strength at room temperature and heat are required. The object of the present invention is to meet these requirements. Solution method The present invention involves impregnating a plurality of sheet-like substrates with a curable unsaturated resin liquid that is itself liquid while conveying them continuously, combining the impregnated substrates, and applying a coating to at least one side of the combined laminate. In a continuous manufacturing method for metal foil-clad laminates, which involves laminating metal foils and then curing the laminate, the metal foils are continuously fed out, and an epoxy resin containing 5% by weight or more of bisphenol S type epoxy resin is applied to the laminated surface. To provide a continuous manufacturing method for metal foil-clad laminates, which is characterized by continuously applying a resin adhesive and laminating them together. Preferred Embodiment The base material that can be used in the present invention may be a known one,
Commonly used are cellulosic sheet-like substrates such as kraft paper and linter paper, gas fiber substrates such as glass cloth, glass mat, and glass paper, and cellulose-mixed glass paper. It is not always necessary to use the same base material for a single laminate; for example, you can use glass cloth for the outermost layer, paper in the middle, etc.
It is also possible to use glass paper, cellulose-mixed glass paper, etc. The resin that impregnates the base material is a resin that is generally called a low-pressure molding resin, and the resin before curing contains a radically polymerizable carbon-carbon double bond unsaturated group, and is cured by the radical polymerization reaction of the unsaturated group. It is resin. Such resins do not generate gaseous or liquid side reaction products during curing, so they can be molded at low pressure.
A typical example is unsaturated polyester resin,
In addition, there are epoxy acrylate resins, polyester acrylate resins, urethane acrylate resins, spiran resins, diallyl phthalate resins, etc., which can be used alone or in combination of two or more. These resins can also be made flame retardant by containing halogen atoms, especially bromine, bonded to their backbones. Flame retardancy can also be achieved by adding an additive type halogenated flame retardant to a halogen-free resin. The flame retardant methods for these resins are known per se and are not part of the present invention, so they will not be described in further detail. The metal foil used for printed circuit boards is generally copper foil, but other metal foils such as aluminum can also be used if desired. Since it is preferred in the present invention to apply the adhesive in-line, a metal foil without a pre-applied adhesive layer can be used. For the production of metal foil-clad laminates by a continuous method, it is generally preferable to use the method described in JP-A-55-4838 and JP-A-56-98136 cited above, that is, the method of continuous curing under substantially no pressure. . Further, application of the adhesive to the metal foil and lamination to the uncured laminate can be carried out by the method described in JP-A-56-8227. However, in the present invention, it is essential to use an exo adhesive containing 5% by weight or more of bisphenol S type epoxy resin. By including the bisphenol S type epoxy resin, the peel strength of the metal foil at room temperature and heat is improved compared to the case where the bisphenol S type epoxy resin is not included. A typical example of the bifuphenol S type epoxy resin in the present invention is diglycidyl ether obtained from the reaction of bisphenol S (dihydroxydiphenyl sulfone) and epichlorohydrin, but is not limited to this. All epoxy resins containing components in their skeletons are included. For example, an epoxy resin obtained by co-condensing bisphenol S and bisphenol A has increased solubility in general-purpose low boiling point solvents such as methyl ethyl ketone and acetone, and is a preferred embodiment. Epoxy resins used in combination with bisphenol S type epoxy resin include bisphenol A type epoxy resin, novolac type epoxy resin, alicyclic type epoxy resin, bisphenol F type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, etc. is suitable. The blending ratio of the bisphenol S type epoxy resin is desirably 5% by weight or more, more preferably 40% by weight or more. The larger the amount of bisphenol S-type epoxy resin, the more the peel strength of metal foil at room temperature and heat can be improved at the same time. As the curing agent, a normal epoxy resin curing agent can be used. Examples include acid anhydrides, various acins, isocyanate compounds, imidazole compounds, dicyandiamide, and boron trifluoride compounds of amines. Among these, amine curing agents have excellent peel strength with metal foil and are suitable for the present invention. In addition, the adhesive composition used in the present invention may include fillers such as glass powder, glass flakes, talc, silica, kaolin, aluminum hydroxide, and zinc oxide, colorants, rubber, curing accelerators, antioxidants,
There is no problem in adding additives such as silane coupling agents. In order to apply adhesive to metal foil, it is necessary to liquefy it, but it does not matter whether the bisphenol S type epoxy resin is dissolved in a liquid epoxy resin diluent or liquefied using a solvent. . If the adhesive of the present invention is applied to the continuous production method for metal foil laminates disclosed in JP-A-56-8227, etc., metal foil laminates with improved peel strength at room temperature and heat can be efficiently produced. can. Examples of the present invention are shown below. Example Commercially available unsaturated polyester resin
711-05A, manufactured by Atlas Corporation), 10 parts by weight of waslatonite, 2 parts by weight of antimony trioxide, and 1 part by weight of benzoyl peroxide. The resin liquid is continuously impregnated into five layers of continuously conveyed substrates arranged so that three layers of glass paper are placed between two layers of glass cloth, and then they are overlapped and continuously conveyed. A commercially available 35 μm electrolytic copper foil (T-8,
Fukuda Metal Co., Ltd.) was coated with an adhesive having composition A in Table 1 to a thickness of 30 μm using a blade coater, and then the solvent was removed in an adhesive pre-curing oven and the pre-cured material was laminated from the top of the laminate. Furthermore, a polyester film is laminated on the opposite side,
Heat curing was performed continuously for 20 minutes in a tunnel type curing furnace at a temperature of 100°C. Next, the polyester film was peeled off, cut, and post-cured at 160° C. for 20 minutes to obtain a single-sided copper-clad laminate with a thickness of 1.6 mm.
The performance is shown in Table 2. Example 2 A single-sided copper-clad laminate having a thickness of 1.6 mm was obtained in the same manner as in Example 1 using the adhesive having composition B in Table 1. The performance is shown in Table 2. Comparative Example A single-sided copper-clad laminate with a thickness of 1.6 mm was obtained in the same manner as in Example 1 using an adhesive having composition C in Table 1. The performance is shown in Table 2.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 複数枚のシート状基材を連続的に搬送下それ
自体液状である硬化性不飽和樹脂液を含浸し、含
浸した基材を合体し、合体した積層体の少なくと
も片面に金属箔を張り合わせ、次いで積層体を硬
化させることを含む金属箔張り積層板の連続製造
法において、金属箔の張り合わせ面にビスフエノ
ールS型エポキシ樹脂を5重量%以上含むエポキ
シ樹脂系接着剤を有する金属箔を張り合わせるこ
とを特徴とする金属箔張り積層板の連続製造法。 2 エポキシ樹脂系接着剤がエポキシ樹脂とアミ
ン系硬化剤からなる特許請求の範囲第1項記載の
連続製造法。 3 金属箔を連続的に繰り出し、その張り合わせ
面にビスフエノールS型エポキシ樹脂を5重量%
以上含むエポキシ樹脂とアミン系硬化剤からなる
接着剤を連続的に塗布し、張り合わせることを特
徴とする特許請求の範囲第1項記載の連続製造
法。
[Scope of Claims] 1. A plurality of sheet-like base materials are impregnated with a curable unsaturated resin liquid that is itself liquid while being conveyed continuously, and the impregnated base materials are combined, and at least one side of the combined laminate is In a continuous manufacturing method for metal foil-clad laminates, which involves laminating metal foil on a sheet and then curing the laminate, an epoxy resin adhesive containing 5% by weight or more of bisphenol S type epoxy resin is applied to the laminated surface of the metal foil. A continuous manufacturing method for a metal foil-clad laminate, characterized by laminating together metal foils. 2. The continuous manufacturing method according to claim 1, wherein the epoxy resin adhesive comprises an epoxy resin and an amine curing agent. 3. Continuously roll out metal foil and apply 5% by weight of bisphenol S type epoxy resin to the bonded surface.
2. The continuous manufacturing method according to claim 1, wherein an adhesive comprising an epoxy resin and an amine curing agent containing the above components is continuously applied and laminated together.
JP7887485A 1985-04-12 1985-04-12 Metallic-foil lined laminated board and manufacture thereof Granted JPS61235145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7887485A JPS61235145A (en) 1985-04-12 1985-04-12 Metallic-foil lined laminated board and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7887485A JPS61235145A (en) 1985-04-12 1985-04-12 Metallic-foil lined laminated board and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61235145A JPS61235145A (en) 1986-10-20
JPH0582293B2 true JPH0582293B2 (en) 1993-11-18

Family

ID=13673964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7887485A Granted JPS61235145A (en) 1985-04-12 1985-04-12 Metallic-foil lined laminated board and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61235145A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122825A (en) * 1980-03-03 1981-09-26 Matsushita Electric Works Ltd Epoxy resin composition for laminate
JPS57195120A (en) * 1981-05-27 1982-11-30 Asahi Denka Kogyo Kk Epoxy resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122825A (en) * 1980-03-03 1981-09-26 Matsushita Electric Works Ltd Epoxy resin composition for laminate
JPS57195120A (en) * 1981-05-27 1982-11-30 Asahi Denka Kogyo Kk Epoxy resin composition

Also Published As

Publication number Publication date
JPS61235145A (en) 1986-10-20

Similar Documents

Publication Publication Date Title
US5718039A (en) Method of making multilayer printed wiring board
US5674611A (en) Adhesive for copper foils and an adhesive-applied copper foil
US3600263A (en) Metal clad laminates
JPH0582293B2 (en)
JPH0442416B2 (en)
JPH03296587A (en) Adhesive for copper-clad laminate
CN114539958A (en) Adhesive of covering film for flexible copper-clad plate and preparation method and application thereof
JPS61214495A (en) Metal foil having binder layer for covering laminate plate and manufacture of base material for printed circuit
JP3125582B2 (en) Manufacturing method of metal foil-clad laminate
JPS61227041A (en) Metallic foil lined laminated board and manufacture thereof
JP2000218734A (en) Production of metal foil-clad laminated plate
JPH05138807A (en) Manufacture of copper clad laminated sheet
JPH06143448A (en) Manufacture of laminated plate
JP4759896B2 (en) Manufacturing method of printed wiring board manufacturing material
JP2755158B2 (en) Coverlay film
JPH07336054A (en) Interlayer insulating resin material for multilayer board printed circuit board and manufacture of the same board
JPH11172025A (en) Printed-wiring board pre-preg and metal clad laminated board using this
JPH04197717A (en) Manufacture of electric laminated sheet
JPS6092844A (en) Laminated board for electricity and metallic foil lined laminated board
JPH06256966A (en) Surface treated copper foil
JPH0347188B2 (en)
JPS59170115A (en) Flame-retardant liquid epoxy resin composition and manufacture of laminate sheet for electrical use therefrom
JPH05293928A (en) Polyetherimide/dimethyl siloxane copolymer adhesive for adhering copper foil to flexible polyetherimide sheet
JP2005243830A (en) Printed wiring board
JPH0477589A (en) Method for bonding flexible printed wiring board to reinforcing plate