JPH058156B2 - - Google Patents

Info

Publication number
JPH058156B2
JPH058156B2 JP63085117A JP8511788A JPH058156B2 JP H058156 B2 JPH058156 B2 JP H058156B2 JP 63085117 A JP63085117 A JP 63085117A JP 8511788 A JP8511788 A JP 8511788A JP H058156 B2 JPH058156 B2 JP H058156B2
Authority
JP
Japan
Prior art keywords
resistivity
heat treatment
crystal
gaas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63085117A
Other languages
Japanese (ja)
Other versions
JPH01257200A (en
Inventor
Yasuo Ootsuki
Yoshio Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP8511788A priority Critical patent/JPH01257200A/en
Publication of JPH01257200A publication Critical patent/JPH01257200A/en
Publication of JPH058156B2 publication Critical patent/JPH058156B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はGaAs化合物半導体基板の製造方法に
関し、特に基板内で特性分布が平坦であり、かつ
抵抗率の高い半絶縁性GaAs基板の製法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a GaAs compound semiconductor substrate, and particularly to a method for manufacturing a semi-insulating GaAs substrate that has a flat characteristic distribution within the substrate and has high resistivity. .

〔従来の技術〕[Conventional technology]

−族化合物半導体の中でもGaAsは電子移
動度が大きく、超高速集積回路、光―電子集積回
路の素子用結晶基板として広く用いられつつあ
る。このGaAs基板は通常液体封止引き上げ法
(以下LEC法と略記)により得られた柱状インゴ
ツトから製造されている。ところがLEC法によ
り作られたGaAs基板は一般に基板内での特性の
ばらつきが大きい(Japanese Journal of
Applied Physics vol.21,No.6′82pp L355〜
L337)。このばらついた特性分布を平坦にするた
めにはGaAs単結晶にインゴツトの状態で高温長
時間の熱処理を施すインゴツトアニール法が広く
実施されている(GaAs IC Symposium′83
IEEE,D.Rumsbyet al)。即ち該インゴツトアニ
ール法によれば種々の特性例えばICにとつて重
要であるしきい値電圧のばらつきが低減するとの
報告がある(Appl.Phys.Lett.44,′84 P410
Miyazawa他)。
Among - group compound semiconductors, GaAs has high electron mobility and is being widely used as a crystal substrate for elements of ultrahigh-speed integrated circuits and opto-electronic integrated circuits. This GaAs substrate is usually manufactured from a columnar ingot obtained by the liquid confinement pulling method (hereinafter abbreviated as LEC method). However, GaAs substrates made by the LEC method generally have large variations in characteristics within the substrate (Japanese Journal of
Applied Physics vol.21, No.6′82pp L355~
L337). In order to flatten this uneven property distribution, the ingot annealing method, in which GaAs single crystals are heat-treated at high temperatures and for long periods of time, is widely practiced (GaAs IC Symposium'83
IEEE, D. Rumsby et al). In other words, it has been reported that the ingot annealing method reduces variations in various characteristics, such as threshold voltage, which is important for ICs (Appl. Phys. Lett. 44, '84 P410
Miyazawa et al.)

このインゴツトアニール法は結晶を長時間加熱
した後結晶に歪が生じない様に50℃/hour程度
のゆつくりした速度で結晶を冷却することにより
行なう。
This ingot annealing method is carried out by heating the crystal for a long time and then cooling the crystal at a slow rate of about 50° C./hour so as not to cause distortion in the crystal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

LSIやIC用基板にとつては特性の均一性と同様
に抵抗率の高いことも重要である。これは抵抗率
が高ければ素子間の分離状態が良好になり、集積
度も大きくすることができるからである。ところ
がインゴツトアニールを施した基板は上記の如く
特性の均一性は向上するが抵抗率は低下してしま
い、このため素子間での漏れ電流や活性層から基
板への漏れ電流が問題となつている。
For LSI and IC substrates, high resistivity is as important as uniformity of characteristics. This is because the higher the resistivity, the better the separation between elements, and the higher the degree of integration. However, although the uniformity of characteristics of substrates subjected to ingot annealing improves as described above, the resistivity decreases, and as a result, leakage current between elements and leakage current from the active layer to the substrate becomes a problem. There is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、基板の抵
抗率を上げるGaAs化合物半導体基板の製造方法
を開発したものである。即ち本発明は液体封止引
き上げ法により得られたGaAs化合物半導体結晶
をインゴツト状でアニールした後、ウエーハー状
に切断し、その後700℃以上に加熱し、しかるの
ち30分以内に400℃以下に冷却し、その後鏡面研
磨することを特徴とするものである。
In view of this, and as a result of various studies, the present invention has developed a method for manufacturing a GaAs compound semiconductor substrate that increases the resistivity of the substrate. That is, the present invention involves annealing a GaAs compound semiconductor crystal obtained by the liquid-sealed pulling method in the form of an ingot, cutting it into wafer shapes, heating it to 700°C or higher, and then cooling it to 400°C or lower within 30 minutes. It is characterized in that it is then mirror-polished.

〔作用〕[Effect]

インゴツトアニールされたGaAs化合物半導体
結晶はドナーが生じるために抵抗率が低下する。
従つてこの結晶を再加熱し急冷(700℃以上の温
度から30分以内に400℃以下に冷却)する熱処理
を施すことによつて上記ドナーを消滅させて抵抗
率を高くしている。そしてこの再加熱前即ち熱処
理前に結晶をウエーハー状に切断するのは急冷に
よつて結晶中に歪が生じにくくするためである。
The resistivity of an ingot-annealed GaAs compound semiconductor crystal decreases due to the generation of donors.
Therefore, by subjecting this crystal to a heat treatment in which it is reheated and rapidly cooled (cooled from a temperature of 700° C. or higher to 400° C. or lower within 30 minutes), the above-mentioned donors are eliminated and the resistivity is increased. The reason why the crystal is cut into wafer shapes before reheating, that is, before heat treatment, is to prevent distortion from occurring in the crystal due to rapid cooling.

このような熱処理を施すことでインゴツトアニ
ールにより得られた特性の平坦性はそのままで全
体として抵抗率の高い結晶が得られる。
By performing such heat treatment, a crystal with high overall resistivity can be obtained while maintaining the flatness of the characteristics obtained by ingot annealing.

〔実施例〕〔Example〕

次に本発明を実施例により説明する。 Next, the present invention will be explained by examples.

LEC法により得られたGaAs単結晶のインゴツ
トをアニール後、ウエーハー状に切断し、該ウエ
ーハーを窒素気流中で第1図に示すような温度カ
ーブに従い850℃に加熱後、約20分で400℃以下に
急冷する熱処理いを施した。
After annealing the GaAs single crystal ingot obtained by the LEC method, the wafer was cut into wafers, heated to 850°C in a nitrogen stream according to the temperature curve shown in Figure 1, and then heated to 400°C in about 20 minutes. The following heat treatment was performed: quenching.

このような熱処理の効果を明らかにするために
アニール後熱処理前のウエーハーの抵抗率を測定
し種々の抵抗率のウエーハーについて熱処理後の
抵抗率を1対1で測定し、これらの結果を第2図
に示した。なお熱処理後の抵抗率はウエーハー表
面を50μmエツチングして測定した。
In order to clarify the effect of such heat treatment, we measured the resistivity of wafers after annealing and before heat treatment, and measured the resistivity of wafers with various resistivities on a one-to-one basis after heat treatment. Shown in the figure. The resistivity after heat treatment was measured by etching the wafer surface by 50 μm.

第2図から明らかなように熱処理前は抵抗率が
107Ω・cm以下であつたウエーハーであつても熱
処理後はすべて107Ω・cm以上の抵抗率を有し、
半絶縁性となつた。
As is clear from Figure 2, the resistivity is low before heat treatment.
Even if the wafer had a resistivity of 10 7 Ω・cm or less, after heat treatment it will have a resistivity of 10 7 Ω・cm or more,
It became semi-insulating.

またアニール後で熱処理前ウエーハーとさらに
熱処理を施した後のウエーハーについて径方向で
の抵抗率の分布を調べその結果を第3図に示し
た。
Further, after annealing, the distribution of resistivity in the radial direction was investigated for the wafer before heat treatment and the wafer after further heat treatment, and the results are shown in FIG.

第3図から明らかなように熱処理後の抵抗率の
分布Aは熱処理前の抵抗率の分布Bと比較して平
坦性は熱処理によつては失われず、むしろ向上し
ていることが判り、さらにいずれの場所において
も熱処理後の方が高抵抗化していることが判る。
As is clear from Fig. 3, the flatness of resistivity distribution A after heat treatment is not lost by heat treatment, but rather is improved compared to resistivity distribution B before heat treatment. It can be seen that the resistance is higher after heat treatment at any location.

〔発明の効果〕〔Effect of the invention〕

このように本発明によればGaAs化合物半導体
結晶の特性の平坦性を維持したまま抵抗率を高く
できる等工業上顕著な効果を奏するものである。
As described above, the present invention brings about industrially significant effects such as increasing the resistivity while maintaining the flatness of the characteristics of GaAs compound semiconductor crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例で施した熱処理の温
度曲線を示すグラフ、第2図は本発明の一実施例
による熱処理前後の抵抗率を示す実測図、第3図
は本発明の一実施例による熱処理前後のウエーハ
ー上の抵抗率の分布を示す実測図である。 A……熱処理後の抵抗率の分布、B……熱処理
前の抵抗率の分布。
FIG. 1 is a graph showing a temperature curve of heat treatment performed in an embodiment of the present invention, FIG. 2 is an actual measurement diagram showing resistivity before and after heat treatment in an embodiment of the present invention, and FIG. 3 is a graph showing a temperature curve of heat treatment performed in an embodiment of the present invention. FIG. 3 is an actual measurement diagram showing the resistivity distribution on a wafer before and after heat treatment according to an example. A...Distribution of resistivity after heat treatment, B...Distribution of resistivity before heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 1 液体封止引き上げ法により得られたGaAs化
合物半導体結晶をインゴツト状でアニールした
後、ウエーハー状に切断し、その後700℃以上に
加熱し、しかる後30分以内に400℃以下に冷却し、
その後鏡面研磨することを特徴とするGaAs化合
物半導体基板の製造方法。
1. After annealing the GaAs compound semiconductor crystal obtained by the liquid seal pulling method in the form of an ingot and cutting it into wafer shapes, the crystal is then heated to 700°C or higher, and then cooled to 400°C or lower within 30 minutes,
A method for manufacturing a GaAs compound semiconductor substrate, the method comprising mirror polishing the substrate.
JP8511788A 1988-04-08 1988-04-08 Production of substrate for gaas compound semiconductor Granted JPH01257200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8511788A JPH01257200A (en) 1988-04-08 1988-04-08 Production of substrate for gaas compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8511788A JPH01257200A (en) 1988-04-08 1988-04-08 Production of substrate for gaas compound semiconductor

Publications (2)

Publication Number Publication Date
JPH01257200A JPH01257200A (en) 1989-10-13
JPH058156B2 true JPH058156B2 (en) 1993-02-01

Family

ID=13849688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8511788A Granted JPH01257200A (en) 1988-04-08 1988-04-08 Production of substrate for gaas compound semiconductor

Country Status (1)

Country Link
JP (1) JPH01257200A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216999A (en) * 1986-03-14 1987-09-24 Shin Etsu Handotai Co Ltd Compound semiconductor single crystal and its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472999A (en) * 1987-09-14 1989-03-17 Nippon Mining Co Heat treatment of compound semiconductor single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216999A (en) * 1986-03-14 1987-09-24 Shin Etsu Handotai Co Ltd Compound semiconductor single crystal and its production

Also Published As

Publication number Publication date
JPH01257200A (en) 1989-10-13

Similar Documents

Publication Publication Date Title
JPH0231493B2 (en)
US4889493A (en) Method of manufacturing the substrate of GaAs compound semiconductor
JP2612040B2 (en) MOS-FET using β-SiC and manufacturing method thereof
JPS61274386A (en) Manufacture of iii-v semiconductor device
JP2000012482A (en) Production of silicon carbide semiconductor element
JPH058156B2 (en)
JPH04233219A (en) Manufacture of products comprising semiconductor devices
JPH0750692B2 (en) <III>-<V> Group compound semiconductor heat treatment method
JPS62216999A (en) Compound semiconductor single crystal and its production
JPS634345B2 (en)
JPS63236313A (en) Compound semiconductor integrated circuit
JP3207146B2 (en) Semiconductor device manufacturing method
JP2639470B2 (en) Method of manufacturing GaAs single crystal wafer
JPS63158836A (en) Manufacture of semiconductor element
JPH06140326A (en) Manufacture of compound semiconductor substrate
JPS6142911A (en) Forming method of conductive layer by implanting ion
JPH03145720A (en) Compound semiconductor growth method and silicon substrate to be used thereon
JPS5918679A (en) Semiconductor device
JPS63158837A (en) Manufacture of semiconductor element
JP3234054B2 (en) Silicon wafer for semiconductor device and method of manufacturing the same
JPH0351726A (en) Heat treatment apparatus
JPH05190870A (en) Manufacture of semiconductor device
JPH0355437B2 (en)
JPS5852329B2 (en) Manufacturing method for semiconductor devices
JPH02239668A (en) Compound semiconductor device and manufacture thereof