JPS62216999A - Compound semiconductor single crystal and its production - Google Patents

Compound semiconductor single crystal and its production

Info

Publication number
JPS62216999A
JPS62216999A JP5658086A JP5658086A JPS62216999A JP S62216999 A JPS62216999 A JP S62216999A JP 5658086 A JP5658086 A JP 5658086A JP 5658086 A JP5658086 A JP 5658086A JP S62216999 A JPS62216999 A JP S62216999A
Authority
JP
Japan
Prior art keywords
single crystal
resistivity
compound semiconductor
specific resistivity
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5658086A
Other languages
Japanese (ja)
Other versions
JPH0513119B2 (en
Inventor
Masateru Takaya
高屋 征輝
Toru Takahashi
徹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP5658086A priority Critical patent/JPS62216999A/en
Publication of JPS62216999A publication Critical patent/JPS62216999A/en
Publication of JPH0513119B2 publication Critical patent/JPH0513119B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To produce the titled semi-insulating single crystal having high resistivity in spite of its low carbon concn. and which can be appropriately used as the materials of a high-speed device and a high-speed integrated circuit by heating a starting single crystal material having low carbon concn. and resistivity, and then quenching the material. CONSTITUTION:The starting single crystal material having >=1.5X10<15>atoms/cm<3> carbon concn. and <=1X10<7>OMEGAcm resistivity is heated at 750-1,100 deg.C and then quenched at the rate of >=1.0 deg.C/min to adjust the resistivity of the single crystal to >=2X10<7>OMEGAcm. The resistivity is increased to a semi-insulating region by the quenching from high temp. The same results can be obtained from a single crystal in the form of a rod and a block or the single crystal sliced into wafer by this method, and the method can be applied to all the semiconductors consisting of >=2 group III-V elements such as GaAs and InP. The single crystal can be used as the excellent material for a high-speed device and a high-speed integrated circuit.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭素濃度が極めて低くしかも固有抵抗率の高
い半絶縁性化合物半導体単結晶およびその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a semi-insulating compound semiconductor single crystal having extremely low carbon concentration and high specific resistivity, and a method for manufacturing the same.

(従来技術とその問題点) ■−■族化合物半導体、たとえばガリウム砒素(GaA
s)単結晶は、電子移動度が大きいので、高速ディバイ
ス、高速集積回路などの材料として広く利用されている
が、この化合物半導体の半絶縁性はディバイス製造にお
いて要求される重要な特性である。この場合、不純物と
しての炭素はイオンインプラネーションなどにより、結
晶表面にrl型の電気的活性層を作る場合のキラーとし
て作用し、活性層のキャリヤ濃度を著しく減少させるの
で、結晶中の炭素濃度はこれを極めて低くすることが望
まれている。
(Prior art and its problems) ■-■ group compound semiconductors, such as gallium arsenide (GaA
s) Since single crystals have high electron mobility, they are widely used as materials for high-speed devices, high-speed integrated circuits, etc., and the semi-insulating property of this compound semiconductor is an important property required in device manufacturing. In this case, carbon as an impurity acts as a killer when an RL-type electrically active layer is formed on the crystal surface by ion implantation, etc., and significantly reduces the carrier concentration in the active layer, so the carbon concentration in the crystal decreases. It is desired to make this extremely low.

しかし、結晶中の炭素濃度を通常の値の2×1016原
子数/dから2x lo 14原子数/ ad程度にま
で減少させてゆくと、結晶の固有抵抗率が1、X101
1Q訓のオーダーからI X I O’Ωσのオーダー
以下にまで低下し、n型導電性に変化してしまう。
However, when the carbon concentration in the crystal is reduced from the normal value of 2×1016 atoms/d to about 2× lo14 atoms/ad, the specific resistivity of the crystal becomes 1,×101
The conductivity decreases from the order of 1Q to below the order of I X I O'Ωσ, changing to n-type conductivity.

これは、炭素濃度の減少に伴い炭素による浅いアクセプ
ターが減少するため、炭素濃度が高いときには隠九で現
われなかった浅いドナー不純物および結晶欠陥力叫目対
的に電気的活性を示すようになり、結晶がn型導電性を
示すためと考えられる。
This is because as the carbon concentration decreases, the number of shallow acceptors due to carbon decreases, so it becomes electrically active toward shallow donor impurities and crystal defects, which did not appear when the carbon concentration was high. This is thought to be because the crystal exhibits n-type conductivity.

しかして、結晶の半絶縁性を確保する目的において、従
来クロムなどの不純物を添加する方法が知られているが
、この方法はクロムが単結晶中に取り込まれるときに不
均一に分布し、電気特性のバラツキの原因となるので好
ましくない。このため低炭素含有率で、かつクロムなど
の不純物を添加せずに半絶縁性とする方法が久しく望ま
れていた。
Conventionally, a method of adding impurities such as chromium is known for the purpose of ensuring semi-insulating properties of the crystal, but this method results in non-uniform distribution of chromium when it is incorporated into the single crystal. This is not preferable because it causes variations in characteristics. For this reason, there has long been a desire for a method of achieving semi-insulating properties with a low carbon content and without adding impurities such as chromium.

(問題点を解決するための手段) 本発明者らは、上述の問題点を解決すべく鋭意検討を重
ねた結果、炭素1度の低い化合物半導体単結晶でも加熱
後急冷すれば、固有抵抗率を半絶縁性の状態にすること
ができることを見出し本発明に到達した。
(Means for Solving the Problems) As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have found that even a compound semiconductor single crystal with a low carbon 1 degree can have a specific resistivity of The present invention was achieved by discovering that it is possible to make a semi-insulating state.

(発明の構成) すなわち第1の発明は、炭素濃度が1.5×101J)
?(子a/cn?以下、固Tfg抗率ff12 x 1
0’Ω■以上であることを特徴とする化合物半導体単結
晶であり、第2の発明は、炭素濃度が1.5×10”f
jfi子数/d以下、固有抵抗率がI X I Q7Ω
備以下の始発単結晶材料を、750℃〜1100℃に加
熱後、毎分1.0℃以上の速度で急冷却し、該単結晶の
固有抵抗率を2 X 10’Ω口以上とすることを特徴
とする化合物半導体単結晶の製造方法である。
(Structure of the invention) That is, the first invention has a carbon concentration of 1.5×101J)
? (Child a/cn? Below, solid Tfg resistance ff12 x 1
The second invention is a compound semiconductor single crystal characterized by having a carbon concentration of 0'Ω■ or more, and a carbon concentration of 1.5×10"f
jfi number of children/d or less, specific resistivity is I X I Q7Ω
After heating the starting single crystal material below to 750°C to 1100°C, rapidly cool it at a rate of 1.0°C or more per minute to make the specific resistivity of the single crystal 2 x 10'Ω or more. A method for manufacturing a compound semiconductor single crystal, characterized by the following.

以下本発明をG a A s単結晶を例にとり詳しく説
明する。
The present invention will be explained in detail below using a GaAs single crystal as an example.

GaAs単結晶は炭素濃度を低減してゆくとn型導電性
を示すようになる。もちろんここではSiやSなどのn
型導電性不純物は添加していない。
GaAs single crystals come to exhibit n-type conductivity as the carbon concentration is reduced. Of course, here we use n such as Si and S.
No conductive impurities are added.

この結晶を加熱炉に入れ750℃から1100℃の間、
好ましくは950℃に30分乃至数時間加熱保持し、そ
の後加熱炉内で徐冷却しても固有抵抗率は結晶成長直後
とほとんど変化がない。しかるに、この加熱処理した単
結晶を加熱炉から取り出し、1.0℃/分以上の割合で
急冷却することによって固有抵抗率は数桁上昇し、2X
10’乃至2×108Ω国になった。このように、高温
からの急冷によって固有抵抗率が半絶縁性の領域にまで
高くなることは、今迄到底考えられないことであった。
This crystal was placed in a heating furnace between 750°C and 1100°C.
Preferably, even if the material is heated and maintained at 950.degree. C. for 30 minutes to several hours and then slowly cooled in a heating furnace, the specific resistivity hardly changes from immediately after crystal growth. However, by taking out this heat-treated single crystal from the heating furnace and rapidly cooling it at a rate of 1.0°C/min or more, the specific resistivity increases by several orders of magnitude, increasing 2X.
It became a 10' to 2 x 108Ω country. In this way, it was completely unthinkable until now that the specific resistivity could be increased to a semi-insulating region by rapid cooling from a high temperature.

本発明の方法では、単結晶は棒状、ブロック状に成形し
たもの、ウェーハにスライスしたものいずれでも同様な
結果が得られる。また、この結晶の急冷却前後のエッチ
ピット分布を比較したが。
In the method of the present invention, similar results can be obtained whether the single crystal is formed into a rod shape, a block shape, or sliced into wafers. We also compared the etch pit distribution before and after rapid cooling of this crystal.

転位の発生増加がないことも確かめられた。It was also confirmed that there was no increase in the occurrence of dislocations.

なお1本発明の技術は単結晶の製法の種類を問わず、液
体封止法、ブリッジマン法あるいは蒸気圧制御法のいず
れで製造されたものでも適用可能である。
Note that the technique of the present invention is applicable to single crystals manufactured by any of the liquid sealing method, Bridgman method, or vapor pressure control method, regardless of the type of manufacturing method.

また5本発明の対象とする化合物半導体はm −■族の
二元前以上からなる化合物半導体すべてに適用すること
ができ、GaAs 、GaP 、GaAsP。
Furthermore, the compound semiconductors to which the present invention is applied can be applied to all compound semiconductors consisting of binary or more m -■ group, such as GaAs, GaP, and GaAsP.

InAs 、InP  、InSbあるいはこれらの結
晶構成成分の二成分以上の混合体、例えばGaAs−I
nAsなどもその対象として挙げられる。
InAs, InP, InSb or a mixture of two or more of these crystal components, such as GaAs-I
nAs and the like are also included as targets.

つぎに本発明の実施例を述べる。Next, embodiments of the present invention will be described.

(実施例1) 炭素不純物濃度が1.I X 10”i子数/d、固有
抵抗率が1.4 X 10’Ω国であるG a A s
単結晶のウェーハを加熱炉に入れ、850℃で30分保
持し、その後炉外に取り出し、毎分5℃以上の速度で急
冷却し、固有抵抗率を測定したところ、2.7 X 1
0’Ω個であった。つぎに温度を変えて900℃、95
0℃、1000℃で同様の処理をしたところ、固有抵抗
率はそれぞれ、5.2x107、 G、6 X 107
.7.9 x 107ΩQであった。
(Example 1) Carbon impurity concentration is 1. I x 10''i number of children/d, specific resistivity is 1.4 x 10'Ω
A single crystal wafer was placed in a heating furnace and held at 850°C for 30 minutes, then taken out of the furnace and rapidly cooled at a rate of 5°C or more per minute.The specific resistivity was measured and found to be 2.7 x 1.
The number was 0'Ω. Next, change the temperature to 900℃, 95℃
When similar treatments were performed at 0°C and 1000°C, the specific resistivities were 5.2 x 107, G, and 6 x 107, respectively.
.. It was 7.9 x 107ΩQ.

(実施例2) 炭素不純物濃度が0.6 X I O”原子数/d。(Example 2) Carbon impurity concentration is 0.6 x IO'' atoms/d.

固有抵抗率が3.4ΩcmであるGaAs単結晶のイン
ゴットを加熱炉に入れ、900℃で24時間保持した後
、毎分0.5℃の速度で冷却したところ、固有抵抗率は
8.5Ωcmであった。
A GaAs single crystal ingot with a specific resistivity of 3.4 Ωcm was placed in a heating furnace, held at 900°C for 24 hours, and then cooled at a rate of 0.5°C per minute.The specific resistivity was 8.5Ωcm. there were.

つぎに、同インゴットをウェーハにし、加熱炉しこ入れ
、850℃で30分保持後、毎分5℃以上の速度で急冷
却した結果、固有抵抗率は、2.0XIO7Ωcmであ
った。
Next, the same ingot was made into a wafer, put into a heating furnace, held at 850° C. for 30 minutes, and then rapidly cooled at a rate of 5° C./min or more. As a result, the specific resistivity was 2.0×IO7 Ωcm.

(実施例3) I rlA sを重量で2%含むG a A s無転位
単結晶で。
(Example 3) A GaAs dislocation-free single crystal containing 2% by weight of IrlAs.

炭素濃度が1.7 X I O”J7I子数/ ant
、固有抵抗率が5.6X103Ωσのインゴットを加熱
炉に入れ、850℃で24時間加熱保持し、毎分0.8
℃の速度で冷却した結果、固有抵抗率は2.6×10’
Ωαであった。このインゴットをウェーハにし、加熱炉
に入れ、850℃で5時間保持した後取出し、毎分1.
2℃で冷却したところ、固有抵抗率は2.OX 107
Ω印であった。
Carbon concentration is 1.7 X I O”J7I number of children/ant
, an ingot with a specific resistivity of 5.6 x 103 Ωσ was placed in a heating furnace, heated and held at 850°C for 24 hours, and the resistivity was 0.8/min.
As a result of cooling at a rate of ℃, the specific resistivity is 2.6 x 10'
It was Ωα. This ingot was made into a wafer, placed in a heating furnace, held at 850°C for 5 hours, and then taken out, at a rate of 1.
When cooled to 2°C, the specific resistivity was 2. OX107
It was marked Ω.

(発明の効果) 本発明による化合物半導体単結晶は、含まれる炭素濃度
が1.5X10”原子数/ adと少ないにもかかわら
ず、固有抵抗率が2 X I O’Ωm以上と高い半絶
縁性のもので、高速ディバイス、高速集積回路用として
、きわめて優れた材料である。
(Effects of the Invention) The compound semiconductor single crystal according to the present invention has a high semi-insulating property with a specific resistivity of 2 X I O'Ωm or more, even though the carbon concentration contained is as low as 1.5 X 10" atoms/ad. It is an extremely excellent material for high-speed devices and high-speed integrated circuits.

Claims (1)

【特許請求の範囲】 1)炭素濃度が1.5×10^1^5原子数/cm^3
以下、固有抵抗率が2×10^7Ωcm以上であること
を特徴とする化合物半導体単結晶。 2)炭素濃度が1.5×10^1^5原子数/cm^3
以下、固有抵抗率が1×10^7Ωcm以下の始発単結
晶材料を、750℃〜1100℃に加熱後、毎分1.0
℃以上の速度で急冷却し、該単結晶の固有抵抗率を2×
10^7Ωcm以上とすることを特徴とする化合物半導
体単結晶の製造方法。 3)始発単結晶材料が棒状もしくはブロック状インゴッ
トあるいはウェーハである特許請求の範囲第2項記載の
方法。 4)化合物半導体単結晶がGaAs、GaP、GaAs
P、InAs、InP、InSbのいずれか一種、もし
くはこれらの混合である特許請求の範囲第1項、第2項
、第3項いずれかに記載の単結晶体。
[Claims] 1) Carbon concentration is 1.5 x 10^1^5 atoms/cm^3
Hereinafter, a compound semiconductor single crystal characterized by having a specific resistivity of 2×10^7 Ωcm or more. 2) Carbon concentration is 1.5 x 10^1^5 atoms/cm^3
Below, a starting single crystal material with a specific resistivity of 1 x 10^7 Ωcm or less is heated to 750°C to 1100°C, and then heated at 1.0°C per minute.
The specific resistivity of the single crystal is reduced to 2× by rapid cooling at a rate of ℃ or higher.
A method for manufacturing a compound semiconductor single crystal, characterized in that the resistance is 10^7 Ωcm or more. 3) The method according to claim 2, wherein the starting single crystal material is a rod-shaped or block-shaped ingot or wafer. 4) Compound semiconductor single crystal is GaAs, GaP, GaAs
The single crystal body according to any one of claims 1, 2, and 3, which is any one of P, InAs, InP, and InSb, or a mixture thereof.
JP5658086A 1986-03-14 1986-03-14 Compound semiconductor single crystal and its production Granted JPS62216999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5658086A JPS62216999A (en) 1986-03-14 1986-03-14 Compound semiconductor single crystal and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5658086A JPS62216999A (en) 1986-03-14 1986-03-14 Compound semiconductor single crystal and its production

Publications (2)

Publication Number Publication Date
JPS62216999A true JPS62216999A (en) 1987-09-24
JPH0513119B2 JPH0513119B2 (en) 1993-02-19

Family

ID=13031100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5658086A Granted JPS62216999A (en) 1986-03-14 1986-03-14 Compound semiconductor single crystal and its production

Country Status (1)

Country Link
JP (1) JPS62216999A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445126A (en) * 1987-08-13 1989-02-17 Furukawa Electric Co Ltd Manufacture of gaas compound semiconductor substrate
JPS6472999A (en) * 1987-09-14 1989-03-17 Nippon Mining Co Heat treatment of compound semiconductor single crystal
JPH01102932A (en) * 1987-10-16 1989-04-20 Showa Denko Kk Manufacture of semi-insulating gaas substrate
JPH01257200A (en) * 1988-04-08 1989-10-13 Furukawa Electric Co Ltd:The Production of substrate for gaas compound semiconductor
US5209811A (en) * 1988-03-25 1993-05-11 Shin-Etsu Handotai Company Limited Of Japan Method for heat-treating gallium arsenide monocrystals
JP2545477B2 (en) * 1988-02-24 1996-10-16 株式会社ジャパンエナジー Compound semiconductor single crystal, manufacturing method thereof, and semiconductor device using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210591A (en) * 1984-04-05 1985-10-23 Hitachi Cable Ltd Production of semiinsulating gaas single crystal
JPS6144800A (en) * 1984-08-09 1986-03-04 Sumitomo Electric Ind Ltd Method for improving crystal quality

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210591A (en) * 1984-04-05 1985-10-23 Hitachi Cable Ltd Production of semiinsulating gaas single crystal
JPS6144800A (en) * 1984-08-09 1986-03-04 Sumitomo Electric Ind Ltd Method for improving crystal quality

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445126A (en) * 1987-08-13 1989-02-17 Furukawa Electric Co Ltd Manufacture of gaas compound semiconductor substrate
JPS6472999A (en) * 1987-09-14 1989-03-17 Nippon Mining Co Heat treatment of compound semiconductor single crystal
JPH01102932A (en) * 1987-10-16 1989-04-20 Showa Denko Kk Manufacture of semi-insulating gaas substrate
JP2545477B2 (en) * 1988-02-24 1996-10-16 株式会社ジャパンエナジー Compound semiconductor single crystal, manufacturing method thereof, and semiconductor device using the same
US5209811A (en) * 1988-03-25 1993-05-11 Shin-Etsu Handotai Company Limited Of Japan Method for heat-treating gallium arsenide monocrystals
JPH01257200A (en) * 1988-04-08 1989-10-13 Furukawa Electric Co Ltd:The Production of substrate for gaas compound semiconductor
JPH058156B2 (en) * 1988-04-08 1993-02-01 Furukawa Electric Co Ltd

Also Published As

Publication number Publication date
JPH0513119B2 (en) 1993-02-19

Similar Documents

Publication Publication Date Title
JP2967780B1 (en) GaAs single crystal substrate and epitaxial wafer using the same
US4889493A (en) Method of manufacturing the substrate of GaAs compound semiconductor
JPS62216999A (en) Compound semiconductor single crystal and its production
Senzaki et al. Influences of postimplantation annealing conditions on resistance lowering in high-phosphorus-implanted 4H–SiC
Rao et al. Two‐step rapid thermal annealing of Si‐implanted InP: Fe
US2808315A (en) Processing of silicon
JPH0750692B2 (en) &lt;III&gt;-&lt;V&gt; Group compound semiconductor heat treatment method
JP2505222B2 (en) Method for manufacturing semi-insulating GaAs substrate
EP0455325B1 (en) Single crystals of semi-insulating indium phosphide and processes for making them
JPH02253622A (en) Manufacture of silicon carbide semiconductor device
Li et al. Electrical nonuniformities and their impact on the electron mobility in semi-insulating SiC crystals
Itoh et al. Electrical Properties of n‐Type Epitaxial Films of Silicon on Sapphire Formed by Vacuum Evaporation
JP2932787B2 (en) Method for manufacturing compound semiconductor wafer
Schlachetzki et al. High resistivity layers of GaAs grown by liquid phase epitaxy
JPS63116420A (en) Semiconductor substrate
JPH02239199A (en) Production of semiinsulating inp single crystal
JPH0380199A (en) Substrate made of single crystal of p type gaas, production thereof and semiconductor device using this substrate
JP3793934B2 (en) Method for producing semi-insulating InP single crystal
JPS5946918B2 (en) Semi-insulating gallium arsenide single crystal
JPS63158836A (en) Manufacture of semiconductor element
JPS6184828A (en) Formation of inp ion-implanted conductive layer
JPS6270300A (en) Semi-insulating gaas single crystal
JPH058156B2 (en)
CA1271393A (en) Method of manufacturing a semi-insulating single crystal of gallium indium arsenide
JPH0367998B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees