JPH0581489B2 - - Google Patents

Info

Publication number
JPH0581489B2
JPH0581489B2 JP60056291A JP5629185A JPH0581489B2 JP H0581489 B2 JPH0581489 B2 JP H0581489B2 JP 60056291 A JP60056291 A JP 60056291A JP 5629185 A JP5629185 A JP 5629185A JP H0581489 B2 JPH0581489 B2 JP H0581489B2
Authority
JP
Japan
Prior art keywords
electromagnet
top plate
gas chamber
electromagnets
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60056291A
Other languages
Japanese (ja)
Other versions
JPS61217434A (en
Inventor
Seiji Ishikawa
Hiroshi Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP5629185A priority Critical patent/JPS61217434A/en
Priority to GB08524359A priority patent/GB2165515A/en
Priority to DE19853536151 priority patent/DE3536151A1/en
Publication of JPS61217434A publication Critical patent/JPS61217434A/en
Publication of JPH0581489B2 publication Critical patent/JPH0581489B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Mechanical Conveyors (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は搬送用装置に関し、更に詳細には多数
の被搬送物の所定の順序で逐次、所定の位置に搬
送することのできる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a conveying device, and more particularly to a device capable of sequentially conveying a large number of objects to a predetermined position in a predetermined order.

〔従来の技術〕[Conventional technology]

多数の被搬送物を所定の順序で逐次、所定の位
置に搬送する装置は種々の分野で要求されてお
り、このような要求を満す装置として、例えばベ
ルトコンベヤー、ターンテーブル等が使用されて
いる。
Devices that transport a large number of objects to be transported one after another in a predetermined order to a predetermined position are required in various fields, and belt conveyors, turntables, etc., are used as devices that meet such requirements. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、ベルトコンベヤーによる搬送で
は、その始点と終点において都度、被搬送物をベ
ルトコンベヤーに載せたり、ベルトコンベヤーか
ら下したりするための手間が必要である。
However, conveyance by a belt conveyor requires time and effort to place the conveyed object on and off the belt conveyor each time at the start and end points.

ターンテーブルは一旦、テーブル上に複数の被
搬送物を載置すれば、その始点から終点まで、ベ
ルトコンベヤーのように被搬送物を逐一載せたり
下したりする手間は省けるが、通常はその円周に
沿つて1列にしか被搬送物を載置できず、搬送用
装置としては面積効率が悪いという欠点がある。
Once multiple objects are placed on the table, turntables can save you the trouble of loading and unloading the objects one by one from the start point to the end point like a belt conveyor, but usually The disadvantage is that objects to be transported can only be placed in one row along the circumference, and the area efficiency is poor as a transport device.

さらに、これらの搬送装置はいずれも一方向に
しか被搬送物を移動できず、しかも被搬送物を載
置した支持台、即ちベルトやテーブルを動かすこ
とによつて被搬送物を移動させるものであるの
で、支持台を駆動させる装置を必要とするもので
ある。従つて、被搬送物が大きくなればその支持
台の駆動装置も大型化しなければならないという
欠点をも有している。
Furthermore, all of these conveyance devices can only move the conveyed object in one direction, and moreover, the conveyed object is moved by moving the support platform on which the conveyed object is placed, that is, a belt or table. Therefore, a device for driving the support base is required. Therefore, it also has the disadvantage that if the object to be transported becomes larger, the drive device for the support stand must also become larger.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこのような従来の搬送装置の問題点に
着目し、被搬送物を載置する支持台を駆動させず
に、その上に載置されている被搬送物だけを、
個々に若しくは必要な数にとりまとめて、所望の
方向に移動させて所望の位置に搬送し得る搬送用
装置を提供することを目的とするものである。
The present invention focuses on the problems of such conventional conveyance devices, and instead of driving the support table on which the conveyed object is placed, only the conveyed object placed on it is moved.
It is an object of the present invention to provide a conveyance device that can move the objects individually or in a necessary number in a desired direction and convey them to a desired position.

本発明に係る搬送用装置は、多数の通気孔を有
する上面板と、該上面板の下側に形成され、前記
通気孔に連通するガス室および該ガス室にガスを
供給する手段からなり、前記上面板の下側から該
通気孔にガスを供給する手段と、該上面板上に該
通気孔の少なくとも1個を被覆するように載置さ
れ、かつ永久磁石が装着されている被搬送物と、
前記上面板上における前記被搬送物の移動経路に
沿い、かつ前記ガス室の下側に該ガス室とは別個
に形成された電磁石収納室に設置された多数個の
電磁石と、電流の大きさを連続的に変化させ、か
つ前記被搬送物に設けられた前記永久磁石に対し
て個々の前記電磁石が時期的に吸引関係になるよ
うに極性を変化させる電流制御手段とを含む搬送
用装置である。
The conveyance device according to the present invention includes a top plate having a large number of ventilation holes, a gas chamber formed on the lower side of the top plate and communicating with the ventilation holes, and means for supplying gas to the gas chamber, means for supplying gas to the ventilation hole from the lower side of the top plate, and an object placed on the top plate so as to cover at least one of the ventilation holes, and a permanent magnet attached thereto. and,
A large number of electromagnets installed in an electromagnet storage chamber formed separately from the gas chamber along the moving path of the transported object on the top plate and below the gas chamber, and the magnitude of the current. and current control means for continuously changing the polarity of the electromagnet so that each of the electromagnets is in an attractive relationship with the permanent magnet provided on the object to be transported. be.

〔作用〕[Effect]

本発明の装置においては、多数の通気孔からガ
ス(通常は空気を使用するので以下、空気とい
う。)を上面板上に噴出させ、該上面板上に載置
されている被搬送物を僅かに浮上させ、この状態
で電磁石に通電し、被搬送物に装着されている永
久磁石が電磁石と磁気的に吸引関係を生ずるよう
にし、この永久磁石と電磁石との磁気的吸引力に
より、被搬送物が上面板上を滑るように移動する
ものである。
In the apparatus of the present invention, gas (hereinafter referred to as air because air is normally used) is ejected onto the top plate from a large number of vent holes, and the transported object placed on the top plate is slightly In this state, the electromagnet is energized so that the permanent magnet attached to the transported object creates a magnetic attraction relationship with the electromagnet, and the magnetic attraction between the permanent magnet and the electromagnet causes the transported object to float. Objects slide on the top plate.

本発明の装置において被搬送物が所望の経路に
沿つて移動するのは、この経路に沿つて多数の電
磁石が設置されており、かつこれらの電磁石の磁
力が順次変化するからである。これを模式的に説
明すれば、移動経路の進向方向に沿つて第1、第
2、第3…の電磁石が設置されており、かつ被搬
送物が第1の電磁石の直上に位置しているとき
に、第1の電磁石のみ被搬送物に装着されている
永久磁石を吸引する様に通電し、その他の電磁石
には通電せずにおく。次いで、被搬送物の進行方
向に隣接する第2の電磁石を永久磁石と吸引し合
うように通電し、その後に第1の電磁石の通電を
停止すれば被搬送物は磁気的吸引関係により第2
の電磁石の真上に移動する。同様にして、第3の
電磁石を永久磁石と吸引するように通電したの
ち、第2の電磁石の通電を停止すれば被搬送物は
第3の電磁石の真上に移動する。
The reason why the conveyed object moves along a desired path in the apparatus of the present invention is that a large number of electromagnets are installed along this path, and the magnetic force of these electromagnets changes sequentially. To explain this schematically, first, second, third, etc. electromagnets are installed along the moving direction of the moving route, and the transported object is located directly above the first electromagnet. When the object is being transported, only the first electromagnet is energized so as to attract the permanent magnet attached to the transported object, and the other electromagnets are not energized. Next, if the second electromagnet adjacent to the transported object in the traveling direction is energized so as to attract the permanent magnet, and then the first electromagnet is de-energized, the transported object will move to the second electromagnet due to the magnetic attraction relationship.
Move directly above the electromagnet. Similarly, if the third electromagnet is energized so as to be attracted to the permanent magnet, and then the second electromagnet is de-energized, the object to be transported will move directly above the third electromagnet.

好ましくは、被搬送物がなめらかに移動し得る
ように、電磁石に通電する電流の大きさを連続的
に変化させることが望ましい。
Preferably, it is desirable to continuously change the magnitude of the current flowing through the electromagnet so that the object to be transported can move smoothly.

例えば被搬送物を第1の電磁石の真上から第2
の電磁石の真上まで移動させようとするとき、第
1の電磁石の通電を徐々に低下させながら同時に
第2の電磁石の通電を徐々に増加させる。これに
より永久磁石との吸引関係が第1の電磁石から第
2の電磁石へと徐々に移行するため被搬送物はな
めらかに移動する。
For example, move the object from directly above the first electromagnet to the second electromagnet.
When attempting to move the object directly above the electromagnet, the energization of the first electromagnet is gradually decreased while at the same time the energization of the second electromagnet is gradually increased. As a result, the attraction relationship with the permanent magnet gradually shifts from the first electromagnet to the second electromagnet, so that the conveyed object moves smoothly.

また、被搬送物を停止させるには、停止位置に
おける永久磁石と電磁石との磁気的吸引力が最大
となつたところで、その時に電磁石に通電されて
いる電流を一定に保持すればよい。或は、電流を
保持したのち、さらにガスの供給を中断し、被搬
送物の自重により被搬送物を上面板上に固定させ
るか、所望ならば、ガス室内のガスを排出し、ガ
ス室内を減圧状態にして被搬送物を上面板に吸引
密着させてもよい。定着位置の精密な制御は、被
搬送物の永久磁石との吸引により容易に行ない得
る。
Furthermore, in order to stop the conveyed object, it is sufficient to maintain the current flowing through the electromagnet at a constant level when the magnetic attractive force between the permanent magnet and the electromagnet reaches its maximum at the stop position. Alternatively, after maintaining the current, the gas supply may be further interrupted and the object to be transferred may be fixed on the top plate by its own weight, or if desired, the gas in the gas chamber may be exhausted and the gas chamber may be removed. The conveyed object may be brought into close contact with the top plate under reduced pressure. Precise control of the fixing position can be easily performed by attracting the conveyed object with a permanent magnet.

〔実施例〕〔Example〕

以下、本発明の搬送用装置を図面に示された実
施例に基づき、更に詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The conveying device of the present invention will be explained in more detail below based on embodiments shown in the drawings.

第1図aは本発明の一実施例に係る搬送用装置
の移動機構の一部の概略断面図、第1図bはこの
移動機構を構成する電磁石に通電する電流の変化
および電磁石の磁力の変化を各電磁石に対応させ
て表わした図である。
FIG. 1a is a schematic sectional view of a part of a moving mechanism of a conveying device according to an embodiment of the present invention, and FIG. 1b is a diagram showing changes in the current flowing through the electromagnets constituting the moving mechanism and changes in the magnetic force of the electromagnets. It is a diagram showing changes corresponding to each electromagnet.

上面板1は非磁性材からなり、その表面には多
数の通気孔2が上面板上を移動する被搬送物5
(通常は適当な容器に収容して搬送するので以下、
容器5と略称する)の移動経路に沿つて形成され
ている。容器5はその移動経路上の通気孔2を常
に1個以上被覆するように載置されている。ま
た、容器5の下面側には通気孔2から噴出する空
気を有効に保持して浮上効果を高め、かつ、上面
板1との接触面積を低減させて、容器5と上面板
1との摩擦抵抗を小さくさせることを目的として
僅かな深さの凹部6が形成され、さらに凹部6の
中央部には永久磁石7がその一部を埋め込むよう
な状態で接着剤又は適当な手段により固着されて
いる。
The top plate 1 is made of a non-magnetic material, and a large number of ventilation holes 2 are provided on the surface of the top plate 1 for conveying objects 5 that move on the top plate.
(Usually, it is transported in a suitable container, so below,
It is formed along the moving path of the container (abbreviated as container 5). The container 5 is placed so as to always cover at least one vent hole 2 on its moving path. In addition, the lower surface side of the container 5 effectively retains the air ejected from the vent hole 2 to enhance the floating effect, and reduces the contact area with the upper surface plate 1 to reduce the friction between the container 5 and the upper surface plate 1. A recess 6 with a slight depth is formed for the purpose of reducing resistance, and a permanent magnet 7 is fixed to the center of the recess 6 with adhesive or other appropriate means so as to partially embed it. There is.

上面板1の下側には僅かな間隔をあけて、上面
板1と同様の材質かつ大きさの底板3が配置さ
れ、この間隔は上面板1および底板3の周囲にお
いて該間隔内に挾み込まれた縁部8(第2図参
照)で密閉されてガス室4とされている。このガ
ス室4を区画する底板3の端部近傍下面には第2
図に示されるように比較的大きな容積を持つガス
溜め9が取付けられ、該ガス溜め9は底板3に形
成された孔によりガス室4に連通されている。こ
のガス溜め9の側壁には圧ガス源、例えば空気圧
送ポンプ(図示せず)に伸長する管を接続する接
続口栓10が取付けられている。このように空気
圧送ポンプからの圧気を比較的大きな容積のガス
溜め9を介してから狭いガス室4へ送ることによ
り圧力の損失を抑えることができる。なお、上面
板の直下にガス室を設ける代りに、上面板と離れ
た位置に設けたガス溜と各々の通気孔とを導管で
接続するようにしてもよいが、製作が面倒なので
特に必要がない限りガス室方式が有利である。
A bottom plate 3 made of the same material and size as the top plate 1 is arranged below the top plate 1 with a slight interval therebetween. The gas chamber 4 is sealed with a recessed edge 8 (see FIG. 2). A second
As shown in the figure, a gas reservoir 9 having a relatively large capacity is attached, and the gas reservoir 9 is communicated with the gas chamber 4 through a hole formed in the bottom plate 3. A connection plug 10 is attached to the side wall of the gas reservoir 9 for connecting a pipe extending to a source of pressurized gas, such as a pneumatic pump (not shown). In this way, pressure loss can be suppressed by sending the pressurized air from the air pump to the narrow gas chamber 4 after passing through the gas reservoir 9 having a relatively large volume. In addition, instead of providing the gas chamber directly under the top plate, it is also possible to connect the gas reservoir provided at a distance from the top plate and each vent hole with a conduit, but this is not particularly necessary as it is cumbersome to manufacture. Unless otherwise available, the gas chamber method is advantageous.

上面板1と底板3との周囲縁には断面逆L字型
のテーブルガイド11が設けられ、上面板上に位
置するその一部は容器5の上面板1からの落下を
防止する。テーブルガイド11の側部には側板1
2の上端が固着され、該側板12の下端は台板1
3の周囲端面に固着されている。このようにして
底板3の直下には該底板3、側板12および台板
13で囲まれた電磁石収納室14が形成される。
なお、このような電磁石収納室を設けずに電磁石
をガス室内に設定した場合には、ガス室内に設置
するとガス室の容積が大きくなり、上面板上への
空気の噴出を迅速に制御することが困難となるば
かりでなく、通気孔からの落下物、例えば塵や、
被搬送物が液体であつた場合、それがこぼれて電
磁石を汚染する惧れもあり、また電磁石やその付
属装置の修理、そのための取りはずしやすさの点
からも、別途電磁石収納室を設ける必要がある。
A table guide 11 having an inverted L-shaped cross section is provided at the peripheral edge of the top plate 1 and the bottom plate 3, and a part of the table guide 11 located on the top plate prevents the container 5 from falling from the top plate 1. A side plate 1 is attached to the side of the table guide 11.
The upper end of the side plate 12 is fixed, and the lower end of the side plate 12 is fixed to the base plate 1.
It is fixed to the peripheral end face of 3. In this way, an electromagnet storage chamber 14 surrounded by the bottom plate 3, side plates 12, and base plate 13 is formed directly below the bottom plate 3.
In addition, if the electromagnet is set inside the gas chamber without providing such an electromagnet storage chamber, the volume of the gas chamber will increase if it is installed inside the gas chamber, and the blowout of air onto the top plate can be quickly controlled. Not only is it difficult to clean, but also objects falling from the ventilation holes, such as dust, etc.
If the object to be transported is a liquid, there is a risk that it will spill and contaminate the electromagnet, and it is also necessary to provide a separate electromagnet storage room in order to facilitate repair and removal of the electromagnet and its attached devices. be.

電磁石a〜mにはこれらを磁化するためのコイ
ルa′〜m′が捲回されている。
Coils a' to m' for magnetizing the electromagnets a to m are wound around the electromagnets a to m.

各コイルは例えば4個おきに直列(又は並列)
に接続され、いづれのコイルも通電により同一方
向に磁極(例えばN極)が出ず様に接続されてい
る。即ち被搬送物に装着されている永久磁石を下
向きにS極が出る様に取付けた場合にはどのコイ
ルも通電時にその電磁石がN極となり吸引関係が
成立するように接続されている。
For example, every 4 coils are connected in series (or in parallel)
The coils are connected so that their magnetic poles (for example, N poles) do not extend in the same direction when energized. That is, when the permanent magnet attached to the conveyed object is attached so that the south pole faces downward, the electromagnet of each coil becomes the north pole when energized, so that an attraction relationship is established.

この様にして、コイルa′,e′,i′,m′の巻線W
−W′、b′,f′,j′の巻線X−X′,C′,g′,k′の

線Y−Y′およびd′,h′,l′の巻線Z−Z′は、夫々

別々に通電することができ、通電時にはその巻線
に対応した電磁石は、全て、被搬送物に装着され
ている永久磁石と吸引関係が生じる様になつてい
る。
In this way, the windings W of coils a′, e′, i′, m′
- Windings X-X' of W', b', f', j', Y-Y' of C', g', k' and Z-Z of windings d', h', l' ′ are respectively,
They can be energized separately, and when energized, all the electromagnets corresponding to the windings are in an attractive relationship with the permanent magnets attached to the conveyed object.

叙上の如く構成された搬送用装置により被搬送
物を移送するには、被搬送物である容器5を上面
板1上に載置し、ガス室4内に空気を圧入して通
気孔2から噴出する空気により容器5を僅かに浮
上させ、巻線W−W′,X−X′,Y−Y′およびZ
−Z′に順次通電する。その際、第1図bに示され
るように通電する巻線と電流の大きさを時間の経
過とともに変化させると、これに対応して電磁石
a〜mの磁力の大きさも同様に変化する。電磁石
a〜mの磁力の変化に伴ない、電磁石と対面する
永久磁石は、磁気的吸引力の最も強い関係にある
磁石の方に移動する。例えば第1図aにおいて、
永久磁石7をS極を下側に設置し、これに対向す
る電磁石cの極性をN極とすると、電磁石cの磁
力がその最大値から減少し0となる方へ変化する
につれ、電磁石dの磁力は0から増加し、最大値
となるように電流を供給する(第1図b参照)。
このような電磁石c,dの磁力の変化に従つて永
久磁石7は電磁石cとの磁気的吸引力は減少し、
一方、電磁石dとの磁気的吸引力が増加し、その
結果、容器5は矢印の方向に移動する。
In order to transfer an object using the transfer device configured as described above, the container 5, which is the object to be transported, is placed on the top plate 1, air is pressurized into the gas chamber 4, and the ventilation hole 2 is opened. The container 5 is slightly floated by the air jetted from the windings W-W', X-X', Y-Y' and Z.
−Z′ is energized sequentially. At this time, as shown in FIG. 1b, if the energized windings and the magnitude of the current are changed over time, the magnitude of the magnetic force of the electromagnets a to m will also change accordingly. As the magnetic force of electromagnets a to m changes, the permanent magnet facing the electromagnet moves toward the magnet with the strongest magnetic attraction. For example, in Figure 1a,
If the permanent magnet 7 is installed with the south pole on the lower side, and the polarity of the electromagnet c facing it is set to the north pole, as the magnetic force of the electromagnet c decreases from its maximum value to 0, the electromagnet d increases. The magnetic force increases from 0 and a current is supplied so that it reaches its maximum value (see Figure 1b).
As the magnetic force of the electromagnets c and d changes, the magnetic attraction force between the permanent magnet 7 and the electromagnet c decreases.
On the other hand, the magnetic attraction force with the electromagnet d increases, and as a result, the container 5 moves in the direction of the arrow.

被搬送物の移動を停止させるには、永久磁石と
対応位置にある電磁石の磁気的吸引力が最大の状
態で電磁石への供給電流を一定に保持すれば、被
搬送物は噴出する空気で浮遊しながら磁気的吸引
力によりその位置に停止する。次いで、ガス室へ
の空気の供給を停止して容器5を自重により上面
板に定着させるか、ガス室を減圧にして上面板上
に吸着させれば電磁石への通電を停止することが
できる。これらの場合には、そのときの電流の大
きさを電流制御装置に保持させておく。一たん停
止した被搬送物の移動を再度開始するときは、ま
ず停止時に保持させた大きさの電流を電磁石に通
電したのちガス室への通気を再開して容器を浮上
させ、容器の動揺が安定してから、電流を変化さ
せる。
To stop the movement of the conveyed object, if the magnetic attraction of the electromagnet at the corresponding position to the permanent magnet is at its maximum and the current supplied to the electromagnet is kept constant, the conveyed object will be suspended by the ejected air. It stops at that position due to magnetic attraction. Next, the supply of air to the gas chamber is stopped and the container 5 is fixed to the top plate by its own weight, or the gas chamber is depressurized and the container 5 is adsorbed onto the top plate to stop energizing the electromagnet. In these cases, the current magnitude at that time is held by the current control device. When restarting the movement of the transported object after it has been stopped, first apply the same current to the electromagnet that was maintained when the object was stopped, then restart the ventilation to the gas chamber and float the container to prevent the container from moving. After stabilizing, change the current.

第3図は電磁石の巻線W−W′,X−X′,Y−
Y′及びZ−Z′に供給する電流の大きさを変化させ
るための制御手段の1例である。マイクロコンピ
ユーターによつて作られたデイジタル信号は、デ
ータ端子よりラツチアンドバツフアー回路へ出力
され、アドレス信号の出力によつてその時のデー
タがラツチされ、ラツチアンドバツフアーに保持
される。保持された信号はデイジタルアナログ変
換器にてアナログ信号に変換され、同時にドライ
バーに出力され、デイジタル信号に見合つた大き
さを持つたアナログ電流信号に変換され、巻線W
−W′〜巻線Z−Z′に出力される。このときコン
ピユーターのプログラムは、巻線W−W′〜巻線
Z−Z′に対する出力信号の変化が第1図bに示さ
れるように設定する。第1図bは制御電流の1例
を示したものであり、必要に応じて正弦波的な変
化をさせる等して被搬送物の動きを滑らかにする
こともできる。
Figure 3 shows the electromagnet windings W-W', X-X', Y-
This is an example of a control means for changing the magnitude of the current supplied to Y' and Z-Z'. A digital signal generated by a microcomputer is outputted from a data terminal to a latch-and-buffer circuit, and the current data is latched by the output of an address signal and held in the latch-and-buffer. The held signal is converted to an analog signal by a digital-to-analog converter, and simultaneously output to the driver, converted to an analog current signal with a size commensurate with the digital signal, and then connected to the winding W.
-W' to winding Z-Z'. At this time, the computer program is set so that the changes in the output signals for the windings W-W' to Z-Z' are shown in FIG. 1b. FIG. 1b shows an example of the control current, and if necessary, the movement of the conveyed object can be made smooth by changing it in a sinusoidal manner.

電磁石は個数を多くして磁力を徐々に変化させ
ることにより、被搬送物の動きを滑らかにするこ
とができる。一方あまりに個数を多くすることは
経済的に得策ではない。
By increasing the number of electromagnets and gradually changing the magnetic force, the movement of the transported object can be made smoother. On the other hand, increasing the number too much is not economically advisable.

第4図は本発明の搬送用装置を自動滴定装置の
オートサンプルチエンジヤーに適用した例を示し
たものであり、Aはオートサンプルチエンジヤ
ー、Bは滴定装置、15は被滴定物を収容するビ
ーカーである。このビーカー15を収容する容器
5の下側に永久磁石7が装着され、電磁石収納室
14中に電磁石(図示せず)が収納されている。
FIG. 4 shows an example in which the conveying device of the present invention is applied to an auto sample changer of an automatic titration device, where A is the auto sample changer, B is the titration device, and 15 is a container for storing the titrant. It's a beaker. A permanent magnet 7 is attached to the lower side of the container 5 that houses the beaker 15, and an electromagnet (not shown) is housed in the electromagnet storage chamber 14.

滴定を行なうには第5図に示すように滴定位置
Gにおいて滴定操作を行なつた後、1個づつ矢印
の方向に容器5を移動させる。また第6図に示す
ように、上面板1をその上方から見て、該上面板
の矩形の面領域を中央から2つに等分割して便宜
的に左領域をL、右領域をRとし、各領域には、
横方向4個の容器を並べて1列とし、左領域には
滴定位置に相当する1列を空き列として4列(L
−1〜L−4)、右領域には5列(R−1〜R−
5)配列する。容器の移動方法としては、先ずR
−1列を順次左領域Lへ1個づつ横方向移動さ
せ、左端側の容器に担持されているビーカー内の
試料について滴定位置Cにて滴定を行なう。R−
1列について滴定が終了すると、R−1列は左領
域Lの空き列に移動し、右領域RのR−1列のあ
つた場所が空くことになる。そこで、右領域のR
−2,R−3,R−4及びR−5の全列をまとめ
て同時に或は1列づつ、1列分だけ縦方向前方
(第6図でみて上方)に移動させる。これにより
R−5列のあつた場所(右領域Rの最後列)が空
くので、ここに左領域Lの最後列であるL−4列
を横方向移動させる。次いで左領域Lに位置する
L−1,L−2,L−3および右領域から移動し
てきたR−1の全列をまとめて同時に或は1列づ
つ、1列分だけ縦方向後方(第6図でみて下方)
へ移動させ、再び左領域Lの最前列を空き列とす
る。同様にして、滴定操作を終了した各列を第6
図の矢印のように周回移動させる。このように本
発明の装置によれば、最前列及び最後列を除いた
列をまとめて移動させることができ極めて効率よ
くピーカーの移動を行なうことができる。
To perform the titration, as shown in FIG. 5, after performing the titration operation at the titration position G, the containers 5 are moved one by one in the direction of the arrow. Further, as shown in FIG. 6, when the top plate 1 is viewed from above, the rectangular surface area of the top plate is equally divided into two from the center, and for convenience, the left area is designated as L and the right area is designated as R. , each area has
Four containers are lined up horizontally to form one row, and in the left area there are four rows (L
-1 to L-4), 5 columns (R-1 to R-4) in the right area
5) Arrange. To move the container, first
-1 column is sequentially moved laterally one by one to the left region L, and titration is performed at the titration position C with respect to the sample in the beaker supported in the container on the left end side. R-
When the titration for one column is completed, the R-1 column is moved to an empty column in the left region L, and the place where the R-1 column was in the right region R becomes vacant. Therefore, R in the right area
All rows -2, R-3, R-4 and R-5 are moved forward in the vertical direction (upward as viewed in FIG. 6) by one row, either all at the same time or one row at a time. As a result, the place where column R-5 was located (the last column of right area R) becomes vacant, so column L-4, which is the last column of left area L, is moved in the horizontal direction. Next, all the columns L-1, L-2, L-3 located in the left area L and R-1 that has moved from the right area are collectively moved one column at a time or one column at a time, vertically backward (first column). (Downward as seen in Figure 6)
, and make the front row of the left area L an empty row again. In the same way, each column after the titration operation was
Move it around as shown by the arrow in the figure. As described above, according to the apparatus of the present invention, the columns except the front row and the rear row can be moved all at once, and the peakers can be moved extremely efficiently.

本発明の搬送用装置は上述の滴定装置のオート
サンプルチエンジヤーに限らず、例えば塗料等の
各種原料、溶剤の混合装置、或は部品加工におけ
る加工用の搬送装置等、各種製造オートメーシヨ
ン装置などにも適用することができる。
The conveying device of the present invention is not limited to the auto sample changer of the above-mentioned titration device, but also various manufacturing automation devices, such as a mixing device for various raw materials such as paint, a solvent, a conveying device for processing in parts processing, etc. It can also be applied to

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の搬送用装置によ
れば被搬送物を載置した支持台の駆動装置が不要
となり、搬送装置全体の構造を簡素化すること
が、ひいてはその補修も簡素化することができ
る。また被搬送物の搬送経路に電磁石を配置する
ことにより、どんな複雑な搬送経路にも適用する
ことができる。また、被搬送物の移動方向や速さ
は電磁石に流す電流の大きさを電流制御手段によ
り連続的に変化させると共に極性を操作すること
により容易にコントロールすることができ、かつ
被搬送物を滑らかに移動させることがきる。さら
に、第5図及び第6図に示されるように、被搬送
物を支持台上に蜜に配置して搬送することも可能
であり、この場合はベルトコンベヤーのようにそ
の始点及び終点において被搬送物を支持台にのせ
たり、おろしたりする手間も省け、ターンテーブ
ルよりも面積効率よく被搬送物を搬送することが
できる。更に、本発明によれば、被搬送物に設け
られた永久磁石に対し磁気的に吸引関係にある多
数個の電磁石がガス室の下側に設けられているこ
とにより、ガス室の容積を小さくすることができ
ることから装置全体の小型化が達成でき、しかも
上面板からのガスの噴出を短時間で中断、再開す
ることが容易となると共に前記電磁石がガス室外
に存在するためガス室に流入する水や微粉粒等か
ら当該移動手段の汚染を防止することができる。
さらに、第5図及び第6図に示されるように、被
搬送物を支持台上に密に配置して搬送することも
可能であり、この場合はベルトコンベヤーのよう
にその始点及び終点において被搬送物を支持台に
のせたり、おろしたりする手間も省け、ターンテ
ーブルよりも面積効率よく被搬送物を搬送するこ
とができる。
As explained above, according to the conveying device of the present invention, a drive device for the support base on which the transported object is placed is not required, which simplifies the structure of the entire conveying device and, in turn, simplifies its repair. be able to. Furthermore, by arranging electromagnets along the conveyance path of the transported object, it can be applied to any complicated conveyance path. In addition, the moving direction and speed of the transported object can be easily controlled by continuously changing the magnitude of the current flowing through the electromagnet using a current control means and by manipulating the polarity. can be moved to Furthermore, as shown in FIGS. 5 and 6, it is also possible to arrange the objects to be conveyed tightly on a support stand, and in this case, the objects can be conveyed at the starting and ending points like a belt conveyor. It also eliminates the trouble of placing the conveyed object on and off the support stand, and allows the conveyed object to be conveyed more efficiently than with a turntable. Furthermore, according to the present invention, the volume of the gas chamber can be reduced by providing a large number of electromagnets in a magnetically attractive relationship with the permanent magnets provided on the conveyed object under the gas chamber. Since the electromagnet is located outside the gas chamber, the entire device can be miniaturized, and the gas ejection from the top plate can be easily interrupted and restarted in a short period of time. Contamination of the transportation means from water, fine particles, etc. can be prevented.
Furthermore, as shown in FIGS. 5 and 6, it is also possible to arrange the objects to be conveyed densely on a support stand, and in this case, the objects can be conveyed at the starting and ending points like a belt conveyor. It also eliminates the trouble of placing the conveyed object on and off the support stand, and allows the conveyed object to be conveyed more efficiently than with a turntable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明の搬送用装置の搬送機構の1
部の概略を示す断面図、第1図bは第1図aの搬
送機構を構成する電磁石へ通電する時の電流の変
化と電磁石の磁力の変化の関係を示す図、第2図
は前記搬送用装置のガス室並びに電磁石収納室の
一部及びガス室へガスを供給するためのガス供給
手段への接続部並びにガス溜めの断面図、第3図
は電磁石へ通電する電流のコントロール系統を示
す模式図、第4図は本発明の搬送用装置を滴定装
置のオートサンプルチエンジヤーに適用した場合
の滴定装置の全体を示す斜視図、第5図及び第6
図は該オートサンプルチエンジヤーにおける被搬
送物の移動状態を説明するための概略的な説明図
である。 1……上面板、2……通気孔、4……ガス室、
5……被搬送物、7……永久磁石、a〜m……電
磁石。
FIG. 1a shows one of the conveying mechanisms of the conveying device of the present invention.
Fig. 1b is a diagram showing the relationship between the change in current and the change in the magnetic force of the electromagnet when electricity is applied to the electromagnet constituting the transport mechanism in Fig. 1a, and Fig. 2 is a cross-sectional view schematically showing the transport mechanism in Fig. A cross-sectional view of the gas chamber of the equipment, a part of the electromagnet storage chamber, the connection to the gas supply means for supplying gas to the gas chamber, and the gas reservoir, and Figure 3 shows the control system for the current flowing to the electromagnet. A schematic diagram, FIG. 4 is a perspective view showing the entire titration device when the conveyance device of the present invention is applied to an auto sample changer of the titration device, and FIGS. 5 and 6 are
The figure is a schematic explanatory diagram for explaining the moving state of objects to be transported in the auto sample changer. 1...Top plate, 2...Vent hole, 4...Gas chamber,
5... Object to be transported, 7... Permanent magnet, a to m... Electromagnet.

Claims (1)

【特許請求の範囲】[Claims] 1 多数の通気孔を有する上面板と、該上面板の
下側に形成され、前記通気孔に連通するガス室及
び該ガス室にガスを供給する手段からなり、前記
上面板の下側から該通気孔にガスを供給する手段
と、該上面板上に該通気孔の少なくとも1個を被
覆するように載置され、かつ、永久磁石が装着さ
れている被搬送物と、前記上面板上における前記
被搬送物の移動経路に沿いかつ前記ガス室の下側
に該ガス室とは別個に形成された電磁石収納室に
設置された多数個の電磁石と、該電磁石に電流を
通電する装置と、該電流の大きさを連続的に変化
させかつ前記被搬送物に設けられた前記永久磁石
に対して個々の前記電磁石が磁気的に吸引関係に
なるように極性を変化させる電流制御手段とを含
む搬送用装置。
1 Consisting of a top plate having a large number of ventilation holes, a gas chamber formed on the lower side of the top plate and communicating with the ventilation holes, and means for supplying gas to the gas chamber, and a means for supplying gas to the gas chamber from the bottom of the top plate. means for supplying gas to the ventilation holes; a conveyed object placed on the top plate so as to cover at least one of the ventilation holes and equipped with a permanent magnet; A large number of electromagnets installed in an electromagnet storage chamber formed separately from the gas chamber along the moving path of the transported object and below the gas chamber, and a device for supplying current to the electromagnets; current control means for continuously changing the magnitude of the current and changing the polarity so that each of the electromagnets is magnetically attracted to the permanent magnet provided on the conveyed object; Transport equipment.
JP5629185A 1984-10-12 1985-03-20 Conveying device Granted JPS61217434A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5629185A JPS61217434A (en) 1985-03-20 1985-03-20 Conveying device
GB08524359A GB2165515A (en) 1984-10-12 1985-10-02 Conveyor
DE19853536151 DE3536151A1 (en) 1984-10-12 1985-10-10 BRACKET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5629185A JPS61217434A (en) 1985-03-20 1985-03-20 Conveying device

Publications (2)

Publication Number Publication Date
JPS61217434A JPS61217434A (en) 1986-09-27
JPH0581489B2 true JPH0581489B2 (en) 1993-11-15

Family

ID=13022996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5629185A Granted JPS61217434A (en) 1984-10-12 1985-03-20 Conveying device

Country Status (1)

Country Link
JP (1) JPS61217434A (en)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581066B2 (en) * 1987-03-31 1997-02-12 富士通株式会社 Wafer transfer method and apparatus
EP1612849B1 (en) 2003-04-09 2012-05-30 Nikon Corporation Exposure method and apparatus, and device manufacturing method
TWI573175B (en) 2003-10-28 2017-03-01 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
TW201809801A (en) 2003-11-20 2018-03-16 日商尼康股份有限公司 Optical illuminating apparatus, exposure device, exposure method, and device manufacturing method
TWI366219B (en) 2004-02-06 2012-06-11 Nikon Corp Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method
US20090046268A1 (en) 2005-05-12 2009-02-19 Yasuhiro Omura Projection optical system, exposure apparatus, and exposure method
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
DE102010028769A1 (en) 2010-05-07 2011-11-10 Pvt Probenverteiltechnik Gmbh System for transporting containers between different stations and container carriers
EP2589967A1 (en) 2011-11-04 2013-05-08 Roche Diagnostics GmbH Laboratory sample distribution system and corresponding method of operation
EP2589966A1 (en) * 2011-11-04 2013-05-08 Roche Diagnostics GmbH Laboratory sample distribution system and corresponding method of operation
EP2589968A1 (en) * 2011-11-04 2013-05-08 Roche Diagnostics GmbH Laboratory sample distribution system, laboratory system and method of operating
DE102011090044A1 (en) * 2011-12-28 2013-07-04 Siemens Healthcare Diagnostics Products Gmbh Transport system and method of operation
DE102014202838B3 (en) 2014-02-17 2014-11-06 Roche Pvt Gmbh Transport device, sample distribution system and laboratory automation system
DE102014202843B3 (en) 2014-02-17 2014-11-06 Roche Pvt Gmbh Transport device, sample distribution system and laboratory automation system
EP2927168A1 (en) 2014-03-31 2015-10-07 Roche Diagniostics GmbH Transport device, sample distribution system and laboratory automation system
EP2927625A1 (en) 2014-03-31 2015-10-07 Roche Diagniostics GmbH Sample distribution system and laboratory automation system
EP2927695B1 (en) 2014-03-31 2018-08-22 Roche Diagniostics GmbH Sample distribution system and laboratory automation system
EP2927167B1 (en) 2014-03-31 2018-04-18 F. Hoffmann-La Roche AG Dispatch device, sample distribution system and laboratory automation system
EP2927163B1 (en) 2014-03-31 2018-02-28 Roche Diagnostics GmbH Vertical conveyor, sample distribution system and laboratory automation system
EP2957914B1 (en) 2014-06-17 2018-01-03 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
EP2977766A1 (en) 2014-07-24 2016-01-27 Roche Diagniostics GmbH Laboratory sample distribution system and laboratory automation system
EP2995580A1 (en) 2014-09-09 2016-03-16 Roche Diagniostics GmbH Laboratory sample distribution system and laboratory automation system
EP2995960B1 (en) 2014-09-09 2020-07-15 Roche Diagniostics GmbH Laboratory sample distribution system and method for calibrating magnetic sensors
US9952242B2 (en) 2014-09-12 2018-04-24 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
EP2995958A1 (en) 2014-09-15 2016-03-16 Roche Diagniostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3006943B1 (en) 2014-10-07 2020-04-22 Roche Diagniostics GmbH Module for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3016116A1 (en) 2014-11-03 2016-05-04 Roche Diagniostics GmbH Printed circuit board arrangement, coil for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3070479B1 (en) 2015-03-16 2019-07-03 Roche Diagniostics GmbH Transport carrier, laboratory cargo distribution system and laboratory automation system
EP3073270B1 (en) 2015-03-23 2019-05-29 Roche Diagniostics GmbH Laboratory sample distribution system and laboratory automation system
EP3096145B1 (en) 2015-05-22 2019-09-04 Roche Diagniostics GmbH Method of operating a laboratory automation system and laboratory automation system
EP3096146A1 (en) 2015-05-22 2016-11-23 Roche Diagniostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3095739A1 (en) 2015-05-22 2016-11-23 Roche Diagniostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3112874A1 (en) 2015-07-02 2017-01-04 Roche Diagnostics GmbH Storage module, method of operating a laboratory automation system and laboratory automation system
EP3121603A1 (en) 2015-07-22 2017-01-25 Roche Diagnostics GmbH Sample container carrier, laboratory sample distribution system and laboratory automation system
EP3139175B1 (en) 2015-09-01 2021-12-15 Roche Diagnostics GmbH Laboratory cargo distribution system, laboratory automation system and method of operating a laboratory cargo distribution system
EP3153866A1 (en) 2015-10-06 2017-04-12 Roche Diagnostics GmbH Method of determining a handover position and laboratory automation system
EP3153867B1 (en) 2015-10-06 2018-11-14 Roche Diagniostics GmbH Method of configuring a laboratory automation system, laboratory sample distribution system and laboratory automation system
EP3156352B1 (en) 2015-10-13 2019-02-27 Roche Diagniostics GmbH Laboratory sample distribution system and laboratory automation system
EP3156353B1 (en) 2015-10-14 2019-04-03 Roche Diagniostics GmbH Method of rotating a sample container carrier, laboratory sample distribution system and laboratory automation system
EP3211429A1 (en) 2016-02-26 2017-08-30 Roche Diagnostics GmbH Transport device having a tiled driving surface
EP3211430A1 (en) 2016-02-26 2017-08-30 Roche Diagnostics GmbH Transport device with base plate modules
EP3211428A1 (en) 2016-02-26 2017-08-30 Roche Diagnostics GmbH Transport device unit for a laboratory sample distribution system
CN109196363A (en) 2016-06-03 2019-01-11 豪夫迈·罗氏有限公司 Laboratory sample distribution system and laboratory automation system
EP3255519B1 (en) 2016-06-09 2019-02-20 Roche Diagniostics GmbH Laboratory sample distribution system and method of operating a laboratory sample distribution system
EP3260867A1 (en) 2016-06-21 2017-12-27 Roche Diagnostics GmbH Method of setting a handover position and laboratory automation system
JP6752350B2 (en) 2016-08-04 2020-09-09 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Laboratory sample distribution system and laboratory automation system
EP3330717B1 (en) 2016-12-01 2022-04-06 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
EP3343232B1 (en) 2016-12-29 2021-09-15 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
EP3355065B1 (en) 2017-01-31 2021-08-18 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
EP3357842B1 (en) 2017-02-03 2022-03-23 Roche Diagnostics GmbH Laboratory automation system
EP3410123B1 (en) * 2017-06-02 2023-09-20 Roche Diagnostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3428653B1 (en) 2017-07-13 2021-09-15 Roche Diagnostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3457144B1 (en) 2017-09-13 2021-10-20 Roche Diagnostics GmbH Sample container carrier, laboratory sample distribution system and laboratory automation system
EP3456415B1 (en) 2017-09-13 2021-10-20 Roche Diagnostics GmbH Sample container carrier, laboratory sample distribution system and laboratory automation system
EP3537159B1 (en) 2018-03-07 2022-08-31 Roche Diagnostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3540443B1 (en) 2018-03-16 2023-08-30 Roche Diagnostics GmbH Laboratory system, laboratory sample distribution system and laboratory automation system
JP7300281B2 (en) 2019-03-08 2023-06-29 株式会社日立ハイテク Transporting device, sample analysis system provided with same, sample pretreatment device, and transporting method for transported object
EP3925911B1 (en) 2020-06-19 2023-05-24 Roche Diagnostics GmbH Laboratory sample distribution system and corresponding method of operation
EP3940388B1 (en) 2020-07-15 2024-04-10 Roche Diagnostics GmbH Laboratory sample distribution system and method for operating the same
DE102020120295A1 (en) 2020-07-31 2022-02-03 Krones Aktiengesellschaft Device for equipping containers
EP4001923B1 (en) * 2020-11-23 2024-06-05 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
US11747356B2 (en) 2020-12-21 2023-09-05 Roche Diagnostics Operations, Inc. Support element for a modular transport plane, modular transport plane, and laboratory distribution system
JP7422652B2 (en) * 2020-12-24 2024-01-26 株式会社日立ハイテク Sample transport device
US20240036068A1 (en) * 2021-03-29 2024-02-01 Hitachi High-Tech Corporation Specimen inspection system, and conveyance method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124710A (en) * 1974-08-23 1976-02-28 Tokyo Shibaura Electric Co
JPS536428A (en) * 1976-07-01 1978-01-20 Astra Laekemedel Ab Preventing method of virus infection
JPS5742424A (en) * 1980-08-28 1982-03-10 Nec Home Electronics Ltd Transport apparatus for axial lead-out lead parts
JPS5817018A (en) * 1981-07-16 1983-02-01 Nippon Telegr & Teleph Corp <Ntt> Apparatus for transferring wafer
JPS6194925A (en) * 1984-10-12 1986-05-13 Mitsubishi Chem Ind Ltd Conveying apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117421U (en) * 1982-02-04 1983-08-10 日立機電工業株式会社 Conveying device for plate-shaped objects

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124710A (en) * 1974-08-23 1976-02-28 Tokyo Shibaura Electric Co
JPS536428A (en) * 1976-07-01 1978-01-20 Astra Laekemedel Ab Preventing method of virus infection
JPS5742424A (en) * 1980-08-28 1982-03-10 Nec Home Electronics Ltd Transport apparatus for axial lead-out lead parts
JPS5817018A (en) * 1981-07-16 1983-02-01 Nippon Telegr & Teleph Corp <Ntt> Apparatus for transferring wafer
JPS6194925A (en) * 1984-10-12 1986-05-13 Mitsubishi Chem Ind Ltd Conveying apparatus

Also Published As

Publication number Publication date
JPS61217434A (en) 1986-09-27

Similar Documents

Publication Publication Date Title
JPH0581489B2 (en)
JPH0578492B2 (en)
US10126317B2 (en) Laboratory sample distribution system, laboratory system and method of operating
JPS6169604A (en) Transfer apparatus
JP6207665B2 (en) Laboratory sample delivery system and corresponding operating method
JPS6181323A (en) Moving device for aligned bodies
JP3329151B2 (en) How to pack batteries
CN103826998A (en) System and method for providing vacuum to a moving element
CN103298326A (en) Electronic component supply device and electronic component installation apparatus
JPS5817018A (en) Apparatus for transferring wafer
JPH11180549A (en) Workpiece aligning device, workpiece aligning/stacking method and workpiece aligning/stacking device
CN115385100A (en) Conveying device and ink jet printing apparatus
JP2547403B2 (en) Magnetic levitation transport device for vacuum equipment
JPH03293222A (en) Carrying device
KR20080062398A (en) Cassette for transferring plate
JP2002160887A (en) Piling magnet device
JPS6326343Y2 (en)
JPH0312057Y2 (en)
KR20240062100A (en) Gas supply system
JPH0826462A (en) Article holder and article arranging device
CN114975200A (en) Wafer box carrying device
KR100622409B1 (en) TFT-LCD Panel loading apparatus
JPS61295926A (en) Magnetically floated conveying device for vacuum device
JPH054718A (en) Magnetic levitation carrier device
JPH0594027A (en) Drum transporting pallet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees