JPH057989A - Continuously cast billet and its surface reforming method and continuous casting device - Google Patents

Continuously cast billet and its surface reforming method and continuous casting device

Info

Publication number
JPH057989A
JPH057989A JP24121291A JP24121291A JPH057989A JP H057989 A JPH057989 A JP H057989A JP 24121291 A JP24121291 A JP 24121291A JP 24121291 A JP24121291 A JP 24121291A JP H057989 A JPH057989 A JP H057989A
Authority
JP
Japan
Prior art keywords
slab
continuous casting
discontinuous
steel
continuously cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24121291A
Other languages
Japanese (ja)
Inventor
Setsuo Mishima
節夫 三嶋
Fujitaka Kono
藤孝 河野
Kazuo Karashima
一生 辛島
Hideki Nakamura
秀樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP24121291A priority Critical patent/JPH057989A/en
Publication of JPH057989A publication Critical patent/JPH057989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide a continuously cast billet excellent in plastic workability such as grinding work, hot working, successively casting in a steel having no crystallization of eutectic carbide. CONSTITUTION:This cast billet has resolidified layer in a discontinuous solidified corresponding part on a surface layer and as the concrete surface reforming method for cast billet, this is obtd. by melting or half-melting the discontinuous solidified part. Further, in a continuous casting device by using the continuous casting device providing a heating means between a cooling zone and a cutting device, the discontinuous solidified corresponding part in the surface layer part on the cast billet is made to the resolidified layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ステンレス鋼、耐熱鋼
の他に、炭素工具鋼および合金工具鋼などのうち比較的
低Cの鋼を指し、いわゆる共晶炭化物を晶出しない鋼の
連続鋳造鋳片およびその表面改質方法ならびに表面鋳造
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention refers to a relatively low C steel such as carbon tool steel and alloy tool steel in addition to stainless steel and heat resistant steel, and is a continuous steel that does not crystallize so-called eutectic carbide. The present invention relates to a cast slab, a surface modification method thereof, and a surface casting apparatus.

【0002】[0002]

【従来の技術】本発明が対象とする鋼とは、共晶炭化物
を晶出しない鋼を指し、たとえばフェライト系ステンレ
ス鋼、マルテンサイト系ステンレス鋼、オーステナイト
系ステンレス鋼や内燃機関部材用耐熱鋼の他に、JIS
やASTMなどの外国の規格に炭素工具鋼、合金工具鋼
として規定されている鋼のうち比較的低Cの工具鋼およ
びこれらの改良鋼として、工業的に使用される鋼一般を
意味する。連続鋳造のうち、水平連続鋳造(以下水平連
鋳と記す)において、鋳片は間欠引抜きにより引抜き開
始時点で存在した旧凝固殻と引抜き過程で新たに生成し
た新凝固殻との接合部にウィットネスマークまたはコー
ルドシャットと称される不連続凝固部を伴う表面欠陥が
発生する。
2. Description of the Related Art The steel targeted by the present invention refers to steel that does not crystallize eutectic carbides, such as ferritic stainless steel, martensitic stainless steel, austenitic stainless steel and heat-resistant steel for internal combustion engine members. In addition, JIS
Among steels defined as carbon tool steels and alloy tool steels in foreign standards such as and ASTM, tool steels having a relatively low C and steels generally used industrially as their improved steels are meant. Among the continuous casting, in horizontal continuous casting (hereinafter referred to as horizontal continuous casting), the slab is wit at the joint between the old solidified shell that was present at the start of drawing by intermittent drawing and the new solidified shell that was newly created during the drawing process. Surface defects with discontinuous solidification called Nesmark or cold shut occur.

【0003】また、竪形連続鋳造においても、モールド
を振動させることに伴って、新−旧凝固殻が発生し、鋳
片表層部の接合部にオッシレーションマークと称される
前記水平連鋳に類似した表面欠陥が生成する(以下、代
表してウィットネスマークと記す)。これらの表面は、
鋳片の長手方向に対して直角方向に線状の不連続マーク
として観察され、鋳造条件によってはこの不連続マーク
部が未圧着部としてV溝状に開口する場合がある。さら
に不連続マーク部の直下には鋳造組織の不連続面が存在
する。
Also, in vertical continuous casting, new and old solidified shells are generated as the mold is vibrated, and the horizontal continuous casting referred to as an oscillation mark is formed in the joint portion of the surface layer of the slab. Similar surface defects are generated (hereinafter, typically referred to as witness mark). These surfaces are
It is observed as a linear discontinuous mark in a direction perpendicular to the longitudinal direction of the slab, and depending on the casting conditions, this discontinuous mark portion may open as a V-groove as an unbonded portion. Further, immediately below the discontinuous mark portion, there is a discontinuous surface of the cast structure.

【0004】なかでもパウダー等の潤滑剤が使用できな
い水平式連続鋳造法の場合、不連続凝固部が未圧着によ
りV溝状に開口する傾向が顕著となる。一例として、代
表的な合金工具鋼であるSKD61について水平連続鋳
造を行なった際、鋳片表層部に発生した不連続凝固部の
ミクロ組織の模式図を示す。図1は不連続凝固部がV溝
状に開口しており、その直下は鋳造組織が不連続である
ことがわかる。また、図2は不連続凝固部は開口してい
ないものの図1と同様、鋳造組織が不連続である。図
1、2に示すように鋳片表面に発生した不連続マークの
直下には鋳造組織の不連続面が存在し、この面に対して
それぞれ反対方向に樹枝状組織が成長している様子がわ
かる。
In particular, in the case of a horizontal continuous casting method in which a lubricant such as powder cannot be used, the discontinuous solidification portion tends to open in a V-groove shape due to no pressure bonding. As an example, a schematic view of the microstructure of the discontinuous solidification portion generated in the surface layer of the slab when horizontal continuous casting is performed on SKD61, which is a typical alloy tool steel, is shown. In FIG. 1, it can be seen that the discontinuous solidification portion opens in a V-groove shape, and the cast structure is discontinuous immediately below it. Further, in FIG. 2, the discontinuous solidification portion is not opened, but the cast structure is discontinuous as in FIG. 1. As shown in FIGS. 1 and 2, there is a discontinuous surface of the cast structure immediately below the discontinuous mark generated on the surface of the slab, and the dendritic structure is growing in the opposite direction to this surface. Recognize.

【0005】[0005]

【発明が解決しようとする課題】一般に連続鋳造鋳片の
不連続凝固部は特に脆弱で、その後の塑性加工を著しく
阻害している。すなわち、不連続凝固部が開口している
場合は、塑性加工時に応力集中の原因になるだけでな
く、不連続凝固部が開口していない場合でも鋳造組織の
不連続部が延性を著しく低下させるためである。そのた
め、従来は連続鋳造後の鋳片の不連続凝固部を研削ある
いは切削により完全に除去することが行なわれていた。
しかし、研削の場合は加工熱によって開口部がより拡大
するかまたは新しく開口してしまうことがあり、切削加
工の場合は不連続凝固部を開口することはないが、鋳片
の曲りや変形等のため、加工時間が著しく長くなり、歩
留も低下する問題があった。
DISCLOSURE OF THE INVENTION Generally, the discontinuously solidified portion of a continuously cast slab is particularly fragile and significantly hinders subsequent plastic working. That is, when the discontinuous solidification portion is open, not only causes stress concentration during plastic working, but even when the discontinuous solidification portion is not open, the discontinuous portion of the cast structure significantly reduces ductility. This is because. Therefore, conventionally, the discontinuous solidified portion of the cast piece after continuous casting has been completely removed by grinding or cutting.
However, in the case of grinding, the opening may be expanded or newly opened due to the processing heat. In the case of cutting, the discontinuous solidification part is not opened, but bending or deformation of the slab, etc. Therefore, there is a problem that the processing time becomes remarkably long and the yield decreases.

【0006】さらに鋳片の不連続凝固部だけを集中的に
除去しようとすると鋳片の表面が凹凸状になり、その後
の塑性加工の障害になるため、できるだけ平面状にしよ
うとすると、工数の増大をまねくだけでなく、材料歩留
の点で問題がある。本発明の目的は、特に共晶炭化物を
晶出しない鋼について鋳造に引き続いて行なわれる熱間
加工などの塑性加工性に優れた連続鋳造鋳片および表面
改質方法ならびに連続鋳造装置を提供することである。
Further, if it is attempted to intensively remove only the discontinuously solidified portion of the slab, the surface of the slab becomes uneven, which hinders the subsequent plastic working. There is a problem in terms of material yield as well as increase. An object of the present invention is to provide a continuous casting slab excellent in plastic workability such as hot working performed following casting particularly for steel that does not crystallize eutectic carbide, a surface reforming method, and a continuous casting apparatus. Is.

【0007】[0007]

【課題を解決するための手段】本発明者は、鋼の連続鋳
造を研究している過程で、ウィットネスマーク部の直下
には鋳造組織の不連続面が存在し、未圧着部としてV溝
状に開口する頻度が大きいことを知見した。そして、ウ
ィットネスマーク部の組織不連続面の深さは、鋳造する
組成の他、溶湯温度、鋳片寸法、引抜サイクルやモール
ドの振動数などの鋳造条件にもよるが、通常1〜3mmの深
さである。したがって、この深さの一部または全部を溶
融または半溶融させてやれば不連続凝固相当部(ウィッ
トネスマーク部)が再凝固層となって解消され、同時に
開口部も閉口するので次工程である研削加工や熱間加工
も支障なく行なえることがわかった。
In the process of studying continuous casting of steel, the inventor of the present invention has a discontinuous surface of the cast structure immediately below the witness mark portion and has a V groove as an unbonded portion. It was found that there was a high frequency of opening in a shape. And, the depth of the structure discontinuity surface of the witness mark part, in addition to the composition to be cast, the melt temperature, the slab size, it depends on the casting conditions such as the drawing cycle and the frequency of the mold, but it is usually 1 to 3 mm. Depth. Therefore, if a part or all of this depth is melted or semi-melted, the discontinuous solidification equivalent part (witness mark part) is eliminated as a resolidification layer, and the opening part is closed at the same time, so in the next step. It turned out that some grinding and hot working can be done without any problems.

【0008】すなわち、本発明のうち第1発明は、共晶
炭化物を晶出しない鋼の連続鋳造鋳片の不連続凝固相当
部が再凝固層を有することを特徴とする連続鋳造鋳片で
あり、第2発明は、共晶炭化物を晶出しない鋼の連続鋳
造鋳片の表面改質方法において、前記連続鋳造鋳片の表
層部の一部または全周部を溶融または半溶融させること
を特徴とする連続鋳造鋳片の表面改質方法であり、第3
発明は共晶炭化物を晶出しない鋼の連続鋳造装置の冷却
帯と切断装置の間にあって、鋳片のウィットネスマーク
部またはオッシレーションマーク部の一部または全部の
深さを溶融または半溶融させる加熱手段を設けたことを
特徴とする連続鋳造装置である。
That is, the first aspect of the present invention is a continuous cast slab characterized in that a portion corresponding to discontinuous solidification of a continuous cast slab of steel that does not crystallize eutectic carbide has a resolidification layer. According to a second aspect of the present invention, in the method for continuously modifying a continuously cast slab of steel in which eutectic carbide is not crystallized, a part or all of the surface layer of the continuously cast slab is melted or semi-molten. The method for surface modification of continuously cast slabs is
The invention is between a cooling zone and a cutting device of a continuous casting device for steel that does not crystallize eutectic carbides, and melts or semi-melts part or all of the witness mark part or the oscillation mark part of the slab. It is a continuous casting apparatus characterized by comprising heating means.

【0009】[0009]

【作用】本発明の不連続凝固相当部が再凝固層を有する
連続鋳造鋳片は、加熱手段により不連続凝固部を溶融ま
たは半溶融させて再凝固層としたものである。その結
果、不連続凝固部に開口した部分が閉口するだけでな
く、鋳造組織の不連続部が消失し、その後の熱間加工な
どの塑性加工性が良好になる。本発明で対象の鋼を共晶
炭化物を晶出しない鋼と限定したのは、共晶炭化物を晶
出する鋼を共晶温度以上に再加熱すると、溶融または半
溶融させた層の炭化物が再晶出することにより、炭化物
粒度や分布の均一性が損なわれる可能性があるが、共晶
炭化物を有しない鋼ではそのような心配は少なくなり、
加熱可能温度の範囲が広くなるのでプロセス的に有利に
なるからである。また、上記再凝固層を形成するための
加熱は、不連続凝固部だけに集中して行ない、溶融また
は半溶融させることが好ましいが、鋳片表層部の全周部
について実施する方が工業的には加熱手段の制御が容易
となる。
In the continuously cast slab of the present invention in which the portion corresponding to discontinuous solidification has the resolidified layer, the discontinuous solidified portion is melted or semi-melted by the heating means to form the resolidified layer. As a result, not only the portion opened to the discontinuous solidification portion is closed, but also the discontinuous portion of the cast structure disappears, and the plastic workability such as hot working thereafter becomes good. In the present invention, the target steel is limited to the steel which does not crystallize eutectic carbides, because when the steel crystallizing eutectic carbides is reheated to a temperature higher than the eutectic temperature, the carbides in the molten or semi-molten layer are regenerated. By crystallization, the uniformity of carbide grain size and distribution may be impaired, but in steels that do not have eutectic carbides, such concerns are reduced,
This is because the range of heatable temperature is widened, which is advantageous in terms of process. Further, the heating for forming the re-solidified layer is preferably concentrated only in the discontinuous solidified portion, and is preferably melted or semi-molten, but it is industrially preferable to carry out the entire circumference of the slab surface layer portion. Therefore, it becomes easy to control the heating means.

【0010】ところで、鋳片表層部を溶融または半溶融
するには短時間に昇温でき、しかも短時間で降温するこ
とができる局所加熱が効果的で、熱源として高周波、プ
ラズマアークまたはレーザビーム等を採用するのがよ
い。さらに、表層部を溶融または半溶融させる時期は、
一旦連続鋳造を終えた常温の鋳片を再加熱して行なうこ
ともできるが、連続鋳造後の冷却途中でパーライト変態
やマルテンサイト変態など低温側で変態が起こる材料の
場合には変態応力によって不連続凝固部が開口する頻度
が著しく高くなる。
In order to melt or semi-melt the surface layer of the cast slab, local heating that can raise the temperature in a short time and lower the temperature in a short time is effective. As a heat source, high frequency, plasma arc or laser beam is used. Should be adopted. Furthermore, the time for melting or semi-melting the surface layer is
Although it is possible to reheat the slab at room temperature after the continuous casting is completed, it is not possible due to the transformation stress in the case of a material that undergoes transformation on the low temperature side such as pearlite transformation or martensite transformation during cooling after continuous casting. The frequency at which the continuous solidification part opens is significantly increased.

【0011】したがって、連続鋳造終了直後、鋳片の変
態が始まらない高温側で行なうのが良く、鋳造時の熱を
利用して熱エネルギーの損失を防ぐうえでも有利であ
る。具体的な装置として、連続鋳造装置の冷却帯と切断
装置の間に加熱手段を設けた連続鋳造装置を用いて連続
ラインの中で鋳片の表層部を溶融または半溶融させると
効果的である。本発明の表面改質方法および装置の加熱
手段は竪形連続鋳造装置にも水平連続鋳造装置にも適用
できる。図3はその一例として加熱手段を水平連続鋳造
装置に適用した例である。また溶融または半溶融させる
深さは不連続凝固層の深さ、すなわちウィットネスマー
ク部の全部を再凝固層にするのが望ましいが、鋳片表層
部に開口部が存在する場合などにおいては、ウィットネ
スマーク部の一部を再凝固層にするだけで開口部が閉口
するため効果が認められる。
Therefore, it is preferable to carry out immediately after the end of continuous casting on the high temperature side where the transformation of the slab does not begin, which is advantageous in preventing the loss of thermal energy by utilizing the heat during casting. As a concrete device, it is effective to melt or semi-melt the surface layer part of the slab in a continuous line using a continuous casting device provided with heating means between the cooling zone of the continuous casting device and the cutting device. . The heating means of the surface modification method and apparatus of the present invention can be applied to both a vertical continuous casting apparatus and a horizontal continuous casting apparatus. FIG. 3 shows an example in which the heating means is applied to a horizontal continuous casting apparatus as an example. Further, the depth to be melted or semi-melted is the depth of the discontinuous solidification layer, that is, it is desirable to make the entire witness mark portion into a resolidification layer, but in the case where there is an opening in the slab surface layer portion, The effect is recognized because the opening is closed only by making a part of the witness mark part a re-solidified layer.

【0012】[0012]

【実施例】【Example】

(実施例1)JIS規格SKD61相当の合金工具鋼を
溶解し、水平式の連続鋳造装置を用いて断面が120mm角
の鋳片を製造した。この鋳片を830℃×3時間の焼なまし
処理を実施した。この鋳片を1200℃に予熱後150KW,周波
数 400KHWの高周波電源を用い、一巻型で外周断面が3×
3mmの銅製角パイプで内部が水冷されたコイルを用い、
鋳片とのギャップが5mmで電力 35KW、電流 1500A、加熱
時間 0.5secで、鋳片の不連続凝固部に高周波電源を印
加した。鋳片の移動距離は不連続凝固部のピッチ間隔に
合わせ、1500mmlのビレット全長の不連続凝固部につい
て局部加熱を実施した。この表面改質の間に目視観察し
た結果は、不連続凝固部がかすかににじむような液相の
発生がみられ、半溶融状態であることが確認された。
(Example 1) An alloy tool steel corresponding to JIS standard SKD61 was melted, and a slab having a cross section of 120 mm square was manufactured using a horizontal continuous casting machine. This slab was annealed at 830 ° C for 3 hours. After preheating this slab to 1200 ° C, a high-frequency power source of 150 KW and frequency of 400 KHW was used.
Using a coil whose inside is water-cooled with a 3 mm copper square pipe,
A high-frequency power source was applied to the discontinuous solidification part of the slab with a gap of 5 mm, power of 35 KW, current of 1500 A, and heating time of 0.5 sec. The moving distance of the slab was adjusted to the pitch interval of the discontinuous solidification portion, and local heating was carried out on the discontinuous solidification portion of the billet length of 1500 mml. As a result of visual observation during the surface modification, it was confirmed that the discontinuous solidified portion had a liquid phase slightly blurring and was in a semi-molten state.

【0013】本発明方法によって得られた鋳片の改質表
層部では図1,2の非改質材と比較して、最表層部の未
圧着部が閉口し、鋳造組織の不連続組織は消失している
ことが確認された。次いで、本発明による上記改質材と
改質処理を行なわなかった非改質材の両者を830℃で再
焼鈍した。まず第1段階として、改質材と非改質材の鋳
片の表面酸化皮膜を冷間グラインダーで除去する工程を
実施した。改質材は、鋳片表面の凹凸もあるため、片肉
約1mmの除去で金属肌となり、カラーチェックでも全長
にわたってクラック状の欠陥を見出すことはできなかっ
た。
In the modified surface layer portion of the cast slab obtained by the method of the present invention, as compared with the non-modified material of FIGS. 1 and 2, the unbonded portion of the outermost surface layer portion is closed and the discontinuous structure of the cast structure is It was confirmed that it had disappeared. Next, both the modified material according to the present invention and the non-modified material that had not been modified were reannealed at 830 ° C. First, as the first step, a step of removing the surface oxide film of the slab of the modified material and the non-modified material with a cold grinder was carried out. Since the modified material also had irregularities on the surface of the cast slab, removal of about 1 mm of the flesh gave a metallic surface, and no crack-like defects could be found over the entire length by color checking.

【0014】これに対し非改質材は同様の2mmの除去で
多数の欠陥が検出された。各1mm研磨毎にカラーチェッ
クを実施したが、表面欠陥が完全に除去できず、最終的
に片肉約3mmの深さまで研削が必要であった。改質材の
研磨歩留が95%であったのに対し、非改質材のそれは89%
であり、6%の歩留向上が認められた。
On the other hand, in the non-modified material, many defects were detected by the same removal of 2 mm. A color check was performed every 1 mm polishing, but the surface defects could not be completely removed, and it was necessary to finally grind to a depth of about 3 mm on each side. The polishing yield of the modified material was 95%, while that of the non-modified material was 89%.
The yield improvement was 6%.

【0015】(実施例2)実施例1と同一条件の鋳片を
90mm角の寸法まで圧延し、表層部の疵の発生状況を改質
材と非改質材で比較した。圧延後830℃焼鈍した鋳片の
表面を0.5〜1.0mmグラインダーで除去し、カラーチェッ
クで表面疵を調査した。1500mmlの全周、全長で非改質
材は8ヶ所にクラック不連続凝固部で開口しているのが
認められた。これに対して、改質材は全く欠陥が検出で
きなかった。非改質材は結局、片肉1.5mmのグラインダ
ーで欠陥が除去できた。実施例1のグラインダー削り量
と合わせると非改質材は合計で83%の歩留となった。こ
れに対して本発明による改質材の歩留は90%で大幅な改
善が認められた。
(Example 2) A slab under the same conditions as in Example 1 was used.
After rolling to a size of 90 mm square, the state of defects on the surface layer was compared between the modified material and the non-modified material. The surface of the slab annealed at 830 ° C after rolling was removed with a 0.5 to 1.0 mm grinder, and the surface flaw was examined by color check. It was confirmed that the unmodified material was opened at 8 crack discontinuous solidification portions in the entire circumference of 1500 mml and the entire length. In contrast, no defects could be detected in the modifier. In the non-modified material, defects could be removed with a grinder with a thickness of 1.5 mm. When combined with the grinding amount of Example 1, the non-modified material had a total yield of 83%. On the other hand, the yield of the modified material according to the present invention was 90%, which was a significant improvement.

【0016】(実施例3)実施例1と同一条件のビレッ
トを7mmφのコイルに圧延した。830℃でコイル焼鈍後、
酸洗し、コイル表面の疵を改質材と非改質材で比較調査
した。非改質材はコイル全長の1/12に深さ0.2〜0.5mmの
カブリ疵が存在していることが認められた。これに対
し、改質材には表面疵が検出できなかった。以上のよう
に、本発明の表面改質を付加することにより、グライン
ダー時の不連続凝固部のクラック開口や、熱間圧延時
や、小径材仕上圧延時の割れ感受性が著しく改善される
ことが確認された。
Example 3 A billet under the same conditions as in Example 1 was rolled into a 7 mmφ coil. After coil annealing at 830 ° C,
After pickling, scratches on the coil surface were compared and investigated between the modified material and the non-modified material. It was found that the unmodified material had fog defects with a depth of 0.2 to 0.5 mm on 1/12 of the total length of the coil. On the other hand, no surface flaw was detected in the modified material. As described above, by adding the surface modification of the present invention, crack opening of the discontinuous solidification portion at the time of grinder, hot rolling, and crack susceptibility at the time of small diameter material finish rolling can be significantly improved. confirmed.

【0017】(実施例4)実施例1の連続鋳造後に焼な
まし処理した鋳片の不連続凝固部をTIGアーク熱で溶
融処理を実施した。付設した赤外線温度計で加熱部温度
が1490〜1540℃の範囲に入るように赤熱し、鋳片長1500
mmlについて漸次改質処理を実施した。なお、電流60Aで
溶融層の深さは表面から約3.0mmであった。改質後の不
連続凝固相当部のミクロ組織は、再溶融後の再凝固層組
織であり、不連続凝固部はこの処理で完全に消失した。
本材を実施例1と同じくグライダー後の研削歩留を測定
した。改質材は片肉1mmの研削でクラック状の欠陥が解
消した。研削歩留は97%で非改質材に比べ約10%向上し
た。
(Example 4) The discontinuous solidified portion of the cast piece annealed after the continuous casting of Example 1 was melted by TIG arc heat. With the infrared thermometer attached, the temperature of the heating part is red-heated so that it falls within the range of 1490 to 1540 ℃, and the cast length is 1500.
The gradual modification treatment was performed on mml. At a current of 60 A, the depth of the molten layer was about 3.0 mm from the surface. The microstructure of the portion corresponding to the discontinuous solidification after the modification was the resolidified layer structure after remelting, and the discontinuous solidification portion was completely disappeared by this treatment.
The grinding yield of this material after the glider was measured as in Example 1. The modified material eliminated crack-like defects by grinding 1 mm on one side. The grinding yield was 97%, which was about 10% higher than that of the unmodified material.

【0018】(実施例5)図3に示す水平式連続鋳造設
備ライン中の冷却帯6と切断装置9の間に出力150KW周
波数400KHZ、コイル断面3mm×10mmで、鋳片7とコイル
2の間隔7mmの高周波電源1を付設した。水平式連続鋳
造後、鋳片の材温が1100℃の時、出力33KW、電力1500A
の高周波を投入した。鋳片の移動速度は1.4m/minとし、
全周部を高周波加熱する方法とした。なお、この時の鋳
片の表面温度は1380℃であった。鋳片の材質はJISの
SKS3相当で、その断面寸法は120mm角であった。
(Embodiment 5) Between the cooling zone 6 and the cutting device 9 in the horizontal continuous casting facility line shown in FIG. 3, an output of 150 KW, a frequency of 400 KHZ, a coil cross section of 3 mm × 10 mm, and a gap between the slab 7 and the coil 2 A 7 mm high frequency power source 1 was attached. After horizontal continuous casting, when the slab temperature is 1100 ° C, output 33KW, power 1500A
High frequency. The moving speed of the slab is 1.4 m / min,
A method of heating the entire circumference with high frequency was used. The surface temperature of the slab at this time was 1380 ° C. The material of the slab was equivalent to JIS SKS3, and its cross-sectional dimension was 120 mm square.

【0019】この表面改質を実施した鋳片を780℃で焼
鈍後、グラインダーで表層黒皮部を除去した。表面改質
の効果を表面欠陥が消失するまでのグラインダー除去量
で比較した。表面改質材96%であり、非改質材は87%であ
ったので、本発明の実施によりSKS3の連続鋳造で従
来の方法より9%の歩留向上が達成できた。以上のごと
く、連続鋳造した鋳片の不連続凝固部を溶融または半溶
融することによって、鋳片のグラインダーに対する被研
削性と熱間加工性能が向上した。
After the surface-modified slab was annealed at 780 ° C., the surface black skin was removed with a grinder. The effect of surface modification was compared by the amount of grinder removed until the surface defects disappeared. Since the surface modified material was 96% and the non-modified material was 87%, the yield improvement of 9% could be achieved by the continuous casting of SKS3 by the practice of the present invention as compared with the conventional method. As described above, by melting or semi-melting the discontinuously solidified portion of the continuously cast slab, the grindability of the slab with respect to the grinder and the hot working performance were improved.

【0020】(実施例6)図3に示す水平連続鋳造設備
ライン中の冷却帯6と切断装置9の間に出力150KW周波
数400KHZ、コイル断面3mm×10mmで、鋳片7とコイル2
の間隔7mmの高周波電源1を付設した。水平式連続鋳造
後、鋳片の材温が1150℃の時、出力33KW、電力1500Aの
高周波を投入した。鋳片の移動速度は1.6m/minとし、全
周部を高周波加熱する方法とした。なお、この時の鋳片
の表面温度は1430℃であった。鋳片の材質はJISのS
US304相当で、その断面寸法は120mm角であった。
Example 6 Between the cooling zone 6 and the cutting device 9 in the horizontal continuous casting equipment line shown in FIG. 3, an output of 150 KW, a frequency of 400 KHZ, a coil cross section of 3 mm × 10 mm, a slab 7 and a coil 2 were used.
A high frequency power source 1 having a distance of 7 mm was attached. After horizontal continuous casting, when the material temperature of the slab was 1150 ° C, a high frequency power of 33KW output and 1500A power was applied. The moving speed of the slab was 1.6 m / min, and the entire circumference was subjected to high frequency heating. The surface temperature of the slab at this time was 1430 ° C. The material of the slab is JIS S
It is equivalent to US304, and its cross-sectional size was 120 mm square.

【0021】この表面改質を実施した鋳片をグラインダ
ーで表層黒皮部を除去した。表面改質の効果を表面欠陥
が消失するまでのグラインダー除去量で比較した。表面
改質材96%であり、非改質材は92%であったので、本発明
の実施によりSUS304の連続鋳造で従来の方法より
4%の歩留向上が達成できた。以上のごとく、連続鋳造し
た鋳片の不連続凝固部を溶融または半溶融することによ
って、鋳片のグラインダーに対する被研削性と熱間加工
性能が向上した。
The surface-modified black slab was removed from the surface-modified slab with a grinder. The effect of surface modification was compared by the amount of grinder removed until the surface defects disappeared. Since the surface modified material was 96% and the non-modified material was 92%, the continuous casting of SUS304 by the practice of the present invention was more than the conventional method.
A yield improvement of 4% was achieved. As described above, by melting or semi-melting the discontinuously solidified portion of the continuously cast slab, the grindability of the slab with respect to the grinder and the hot working performance were improved.

【0022】(実施例7)図3に示す水平連続鋳造設備
ライン中の冷却帯6と切断装置9の間に出力150KW周波
数400KHZ、コイル断面3mm×10mmで、鋳片7とコイル2
の間隔7mmの高周波電源1を付設した。水平式連続鋳造
後、鋳片の材温が1050℃の時、出力33KW、電力1500Aの
高周波を投入した。鋳片の移動速度は1.0m/minとし、全
周部を高周波加熱する方法とした。なお、この時の鋳片
の表面温度は1340℃であった。鋳片の材質はJISのS
UH36相当で、その断面寸法は120mm角であった。
(Embodiment 7) Between the cooling zone 6 and the cutting device 9 in the horizontal continuous casting facility line shown in FIG. 3, an output of 150 KW, a frequency of 400 KHZ, a coil cross section of 3 mm × 10 mm, a slab 7 and a coil 2 were used.
A high frequency power source 1 having a distance of 7 mm was attached. After the horizontal continuous casting, when the material temperature of the slab was 1050 ° C, a high frequency power with an output of 33 KW and an electric power of 1500 A was applied. The moving speed of the slab was 1.0 m / min, and the entire circumference was subjected to high frequency heating. The surface temperature of the slab at this time was 1340 ° C. The material of the slab is JIS S
Equivalent to UH36, its cross-sectional size was 120 mm square.

【0023】この表面改質を実施した鋳片をグラインダ
ーで表層黒皮部を除去した。表面改質の効果を表面欠陥
が消失するまでのグラインダー除去量で比較した。表面
改質材91%であり、非改質材は78%であったので、本発明
の実施によりSUH36の連続鋳造で従来の方法より13
%の歩留向上が達成できた。以上のごとく、連続鋳造し
た鋳片の不連続凝固部を溶融または半溶融することによ
って、鋳片のグラインダーに対する被研削性と熱間加工
性能が向上した。
The surface black skin of the slab subjected to this surface modification was removed by a grinder. The effect of surface modification was compared by the amount of grinder removed until the surface defects disappeared. Since the surface modified material was 91% and the non-modified material was 78%, the continuous casting of SUH36 by the practice of the present invention made it 13% less than the conventional method.
A yield improvement of% has been achieved. As described above, by melting or semi-melting the discontinuously solidified portion of the continuously cast slab, the grindability of the slab with respect to the grinder and the hot working performance were improved.

【0024】(実施例8)竪形連続鋳造用の実験機を用
いてJIS SUS430相当材を溶解して85mm角の鋳
片を得た。それぞれ長さが1200mmの鋳片2本を用意して
焼なまし処理を実施した。1本目の鋳片は線状に見える
オッシレーションの上だけをTIGアーク熱で温度が14
80〜1500℃に加熱しながら再凝固層とした。1本目の改
質鋳片と2本目の非改質鋳片についてカラーチェックを
行ない、表面疵が完全になくなるまで研削を続けた。続
いて、研削後の鋳片を加熱して圧延比 1.5の熱間圧延を
施した後、疵の有無を確認しながら研削を行なった。こ
れらの鋳片歩留および熱間圧延後の研削歩留は、非改質
材の歩留を100として改質材の歩留を指数で評価し表1
に示す。
(Example 8) A JIS SUS430 equivalent material was melted using an experimental machine for vertical continuous casting to obtain a slab of 85 mm square. Two slabs each having a length of 1200 mm were prepared and annealed. The first slab has a temperature of 14 degrees due to TIG arc heat only on the oscillation that looks like a line.
A resolidified layer was formed while heating at 80 to 1500 ° C. A color check was performed on the first modified slab and the second non-modified slab, and grinding was continued until surface defects were completely eliminated. Subsequently, the slab after grinding was heated to carry out hot rolling with a rolling ratio of 1.5, and then grinding was carried out while confirming the presence or absence of a flaw. The slab yield and the grinding yield after hot rolling were evaluated by indexing the yield of the modified material with the yield of the non-modified material being 100.
Shown in.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】以上述べたように、共晶炭化物を晶出し
ない鋼を連続鋳造した鋳片の表層部の不連続凝固相当部
が再凝固層を有する鋳片、および具体的な表面改質方法
として不連続凝固部の一部または全部の深さを溶融また
は半溶融することにより、その後の塑性加工が著しく改
善され、安定して次工程の熱間加工を行なえる点、およ
び材料歩留のうえからも極めて有益であることが確認さ
れた。
Industrial Applicability As described above, a cast product obtained by continuously casting a steel in which eutectic carbide is not crystallized has a resolidified layer in the surface layer corresponding to discontinuous solidification, and a specific surface modification. By melting or semi-melting part or all of the depth of the discontinuous solidification part as a method, the subsequent plastic working is significantly improved, and stable hot working in the next step can be performed, and material yield. From the above, it was confirmed to be extremely useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】JIS SKD61鋼の水平式連続鋳造におい
て、鋳片表層部に発生したV溝状の開口不連続凝固部を
示す鋳造組織の模式図である。
FIG. 1 is a schematic diagram of a casting structure showing a V-groove-shaped open discontinuous solidification portion generated in a surface layer portion of a slab in horizontal continuous casting of JIS SKD61 steel.

【図2】JIS SKD61鋼の水平式連続鋳造におい
て、鋳片表層部に発生した非開口不連続凝固部を示す鋳
造組織の模式図である。
FIG. 2 is a schematic diagram of a casting structure showing a non-open discontinuous solidification portion generated in a surface layer of a slab in horizontal continuous casting of JIS SKD61 steel.

【図3】本発明の装置の一例として水平式連続鋳造装置
を示す概念図である。
FIG. 3 is a conceptual diagram showing a horizontal continuous casting device as an example of the device of the present invention.

【符号の説明】[Explanation of symbols]

1 高周波電源 2 コイル 3 タンディッシュ 4 溶鋼 5 モールド 6 スプレー 61 冷却帯 7 鋳片 8 ピンチロール 9 切断装置 1 high frequency power supply 2 coils 3 tundish 4 Molten steel 5 mold 6 spray 61 cooling zone 7 slab 8 pinch rolls 9 cutting device

フロントページの続き (72)発明者 中村 秀樹 島根県安来市安来町2107番地の2 日立金 属株式会社安来工場内Continued front page    (72) Inventor Hideki Nakamura             2 Hitachi, Kin, 2107 Yasugi-cho, Yasugi-shi, Shimane Prefecture             Yasugi factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 共晶炭化物を晶出しない鋼の連続鋳造鋳
片の不連続凝固相当部が再凝固層を有することを特徴と
する連続鋳造鋳片。
1. A continuously cast slab, wherein a portion corresponding to discontinuous solidification of a continuously cast slab of steel that does not crystallize eutectic carbide has a resolidified layer.
【請求項2】 共晶炭化物を晶出しない鋼の連続鋳造鋳
片の表面改質方法において、前記連続鋳造鋳片の表層部
の一部または全周部を溶融または半溶融させることを特
徴とする連続鋳造鋳片の表面改質方法。
2. A surface reforming method for a continuously cast slab of steel in which eutectic carbide is not crystallized, characterized in that part or all of the surface layer of the continuously cast slab is melted or semi-molten. Surface modification method for continuously cast slab.
【請求項3】 共晶炭化物を晶出しない鋼の連続鋳造装
置の冷却帯と切断装置の間にあって、鋳片のウィットネ
スマーク部またはオッシレーションマーク部の一部また
は全部の深さを溶融または半溶融させる加熱手段を設け
たことを特徴とする連続鋳造装置。
3. A part or all of the depth of the witness mark part or oscillation mark part of the slab is melted or located between the cooling zone and the cutting device of the continuous casting device for steel that does not crystallize eutectic carbides. A continuous casting apparatus provided with heating means for semi-melting.
JP24121291A 1991-04-26 1991-09-20 Continuously cast billet and its surface reforming method and continuous casting device Pending JPH057989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24121291A JPH057989A (en) 1991-04-26 1991-09-20 Continuously cast billet and its surface reforming method and continuous casting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-125547 1991-04-26
JP12554791 1991-04-26
JP24121291A JPH057989A (en) 1991-04-26 1991-09-20 Continuously cast billet and its surface reforming method and continuous casting device

Publications (1)

Publication Number Publication Date
JPH057989A true JPH057989A (en) 1993-01-19

Family

ID=26461961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24121291A Pending JPH057989A (en) 1991-04-26 1991-09-20 Continuously cast billet and its surface reforming method and continuous casting device

Country Status (1)

Country Link
JP (1) JPH057989A (en)

Similar Documents

Publication Publication Date Title
JP4414983B2 (en) Titanium material manufacturing method and hot rolling material
US5766378A (en) Stainless steel surface claddings of continuous caster rolls
JP3453990B2 (en) Cooling method for continuous casting bloom
JPH0414171B2 (en)
JPH057989A (en) Continuously cast billet and its surface reforming method and continuous casting device
CN1332255A (en) Reinforcing laser treatment for surface of cast steel roll
JPH05357A (en) Continuously cast slab and method for reforming this surface and continuous casting apparatus
JPH0688125A (en) Method for hot-working continuously cast slab and steel ingot
JPH07251265A (en) Method for scarfing cast steel slab
JP3149763B2 (en) Prevention method of placing cracks in continuous cast slabs of bearing steel
JPS6328829A (en) Manufacture of sheet metal for cr stainless steel
KR900004844B1 (en) Process for reducing the edge cracks of steel billet in hot rolled processing
JP2580936B2 (en) Method for producing steel with few surface defects
JPH0533036A (en) Continuously casting slab and method for reforming its surface
JPS6253569B2 (en)
JPS58138501A (en) Surface finishing method of steel ingot or slab
JPH04356340A (en) Surface reforming method for cast slab in continuous casting
SU961888A1 (en) Blank cutting method
JP4021245B2 (en) Heating method for continuous casting bloom
JP2592499B2 (en) Manufacturing method of aluminum plate
JPS624818A (en) Manufacture of martensitic stainless steel slab
JPS62156056A (en) Continuous casting method for low alloy steel
JP2000246411A (en) Manufacture of continuously cast bloom
JPH07238322A (en) Method for preventing surface cracking in steel slab
JP4655379B2 (en) Surface care method for billets