JPS6253569B2 - - Google Patents

Info

Publication number
JPS6253569B2
JPS6253569B2 JP13641878A JP13641878A JPS6253569B2 JP S6253569 B2 JPS6253569 B2 JP S6253569B2 JP 13641878 A JP13641878 A JP 13641878A JP 13641878 A JP13641878 A JP 13641878A JP S6253569 B2 JPS6253569 B2 JP S6253569B2
Authority
JP
Japan
Prior art keywords
steel
surface layer
melting
present
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13641878A
Other languages
Japanese (ja)
Other versions
JPS5565317A (en
Inventor
Hidemaro Takeuchi
Shogo Matsumura
Takeshi Katayama
Itsuo Ikuno
Koichi Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13641878A priority Critical patent/JPS5565317A/en
Publication of JPS5565317A publication Critical patent/JPS5565317A/en
Publication of JPS6253569B2 publication Critical patent/JPS6253569B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

【発明の詳細な説明】 本発明は、耐粒界腐食性および表面清浄度の優
れたステンレス鋼の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing stainless steel with excellent intergranular corrosion resistance and surface cleanliness.

オーステナイト系ステンレス鋼は400〜850℃の
範囲を徐冷するか又はこの範囲に加熱すると鋭敏
化される。すなわち粒界にCR23C6等のCr炭化物
(以下、単にCr炭化物という)が析出し、その近
傍にCr欠乏域を生じて粒界腐食感受性を有する
ようになる。フエライト系ステンレス鋼も同様に
鋭敏化されるが、その条件は異なり、850℃以上
から冷却したときに粒界腐食されやすくなる。粒
界腐食対策としては、鋼中の炭素含有量を低減さ
せる方法、Ti,Nb等の安定化元素を添加するこ
とにより炭素をTi,Nb等の炭化物として固定す
る方法がある。しかし低炭素化は精錬時に高価な
脱炭元素の添加を要し、又脱炭精錬によりCr歩
留が低下する問題がある。安定化元素を添加する
と、炭素の固定以外に溶鋼中のN2,O2、その他
の元素と結合して非金属介在物となり、これが鋳
片表面層に群状に析出する。析出した非金属介在
物は、以後の圧延、鍛造、押出等の加工により加
工方向に伸び、製品表面に露出して表面疵とな
り、又酸洗むらともなつて製品歩留を低下させ
る。
Austenitic stainless steels are sensitized by slow cooling in the range of 400 to 850°C or by heating to this range. That is, Cr carbides such as CR 23 C 6 (hereinafter simply referred to as Cr carbides) are precipitated at the grain boundaries, and a Cr-deficient region is generated in the vicinity of the precipitates, resulting in susceptibility to intergranular corrosion. Ferritic stainless steels are similarly sensitized, but the conditions are different: they are more susceptible to intergranular corrosion when cooled from 850°C or higher. As countermeasures against intergranular corrosion, there are a method of reducing the carbon content in steel and a method of fixing carbon as carbides such as Ti and Nb by adding stabilizing elements such as Ti and Nb. However, reducing carbon requires the addition of expensive decarburizing elements during refining, and there is also the problem that the Cr yield decreases due to decarburizing refining. When a stabilizing element is added, in addition to fixing carbon, it combines with N 2 , O 2 , and other elements in the molten steel to form nonmetallic inclusions, which precipitate in groups on the surface layer of the slab. The precipitated nonmetallic inclusions are elongated in the processing direction during subsequent processing such as rolling, forging, extrusion, etc., and are exposed on the product surface, resulting in surface flaws and uneven pickling, reducing product yield.

本発明は、ステンレス鋼におけるこのような粒
界腐食、表面性状の劣化の問題を解決することを
目的とする。その要旨は、ステンレス鋼片の特に
半製品段階で、表面層を広巾プラズマアークによ
り不活性ガス雰囲気中にて、2000℃以上に加熱
し、該表面層を深さ1mm以上15mm以下溶融させた
後急冷凝固させることにある。
The present invention aims to solve such problems of intergranular corrosion and deterioration of surface quality in stainless steel. The gist is that after heating the surface layer of a stainless steel piece, especially in the semi-finished product stage, to 2000℃ or higher in an inert gas atmosphere using a wide plasma arc, and melting the surface layer to a depth of 1 mm or more and 15 mm or less. The process consists of rapid cooling and solidification.

本発明で対象とするステンレス鋼は、粒界に
Cr炭化物が析出して粒界腐食が問題となる鋼種
および安定化元素の添加によつてその非金属介在
物が表面層に析出する鋼種である。前者として
は、安定化元素を添加しない、又低炭素化してな
いSUS304等のオーステナイト系ステンレス鋼、
SUS430等のフエライト系ステンレス鋼がある。
後者としては、Tiを添加したSUS321等のオース
テナイト系ステンレス鋼、未だJIS化されていな
いTi添加各種フエライト系ステンレス鋼があ
る。処理工程は、連続鋳造スラブ、ブルーム、ビ
レツト、分塊圧延後のスラブ、ブルーム、ビレツ
ト等の半製品段階(以下本発明ではこれらを総称
して鋼片と呼ぶ)が適している。
The stainless steel targeted by the present invention has grain boundaries.
These are steel types where intergranular corrosion is a problem due to the precipitation of Cr carbides, and steel types where non-metallic inclusions are precipitated in the surface layer due to the addition of stabilizing elements. The former includes austenitic stainless steels such as SUS304 that do not contain stabilizing elements or are not low carbonized.
There are ferrite stainless steels such as SUS430.
The latter include Ti-added austenitic stainless steels such as SUS321 and various Ti-added ferritic stainless steels that have not yet been standardized by JIS. The treatment process is suitable for semi-finished products such as continuously cast slabs, blooms, billets, slabs after blooming, blooms, billets, etc. (hereinafter, in the present invention, these are collectively referred to as billets).

本発明の処理時における鋼片は、粒界にCr炭
化物が析出している状態であつても、又未析出の
状態であつてもよい。粒界にCr炭化物が析出し
た状態では、加熱により該Cr炭化物が溶融し、
引続く急冷によつて炭素が鋼中に固溶した状態と
なる。また溶融時に炭素は鋼中の酸素および雰囲
気中の不純物酸素と反応してCOとなり脱炭され
る。Cr炭化物が粒界に未析出の状態では、溶融
急冷により、粒界近傍に偏析した炭素が均一に固
溶し、又脱炭される。このような炭素の均一固溶
と脱炭により、以後の工程における粒界へのCr
炭化物の析出を防止することができる。又本発明
の処理時における鋼片は安定化元素主としてTi
の窒化物、酸化物等の非金属介在物が表面層に群
状に析出した状態である。このような非金属介在
物は、溶融とその後の急冷により鋼中に微細均一
に分散し、製品表面性状を劣化させることがな
い。
The steel slab subjected to the treatment of the present invention may be in a state in which Cr carbide is precipitated at the grain boundaries, or may be in a state in which Cr carbide is not precipitated. In a state where Cr carbide is precipitated at grain boundaries, heating melts the Cr carbide,
Through the subsequent rapid cooling, carbon becomes a solid solution in the steel. Also, during melting, carbon reacts with oxygen in the steel and impurity oxygen in the atmosphere to become CO and decarburize. When Cr carbide is not precipitated at the grain boundaries, the carbon segregated near the grain boundaries is uniformly dissolved and decarburized by melting and rapid cooling. This uniform solid solution of carbon and decarburization prevents Cr from entering the grain boundaries in subsequent steps.
Precipitation of carbides can be prevented. In addition, the steel billet during the treatment of the present invention mainly contains Ti as a stabilizing element.
Nonmetallic inclusions such as nitrides and oxides are precipitated in groups on the surface layer. Such nonmetallic inclusions are finely and uniformly dispersed in the steel by melting and subsequent rapid cooling, and do not deteriorate the surface properties of the product.

鋼片の加熱温度は安定化元素を添加しない場合
はCr炭化物の溶融する1800℃以上が必要であ
り、安定化元素を添加した場合は、2000℃以上が
必要である。鋼片の溶融深さは、1mm以上15mm以
下とすることが必要である。製品に耐粒界腐食性
を改善するためには、少なくとも製品表面から1
結晶粒の粒界が鋭敏化されていないことが必要で
あり、又以後の熱間加工によるスケールオフ量を
も考慮すると、以後の圧下率が低い場合でも鋼片
段階で最小1mmに溶融深さが必要である。15mmを
超えて溶融すると、急冷速度が小となつて必要な
固溶状態が得られない。
The heating temperature of the steel slab needs to be 1800°C or higher to melt the Cr carbide when no stabilizing element is added, and 2000°C or higher when a stabilizing element is added. The melting depth of the steel slab needs to be 1 mm or more and 15 mm or less. In order to improve the intergranular corrosion resistance of a product, it is necessary to remove at least one layer from the product surface.
It is necessary that the grain boundaries of the grains are not sensitized, and considering the amount of scale-off due to subsequent hot working, even if the subsequent reduction rate is low, the fusion depth must be at least 1 mm at the slab stage. is necessary. If it melts beyond 15 mm, the quenching rate becomes too low and the necessary solid solution state cannot be obtained.

鋼片表面を溶融するための熱源としてはプラズ
マアークを用いる。プラズマアークはエネルギー
密度が高く、3000℃以上の高温にまで急速に加熱
することが可能なため、鋼片表面層のみを必要深
さ溶融することができる。鋼片表面を均一に溶融
するためには、プラズマトーチを鋼片幅方向に移
動させるか、又はトーチを固定してアークのみを
鋼片幅方向に振らせつつ、鋼片もしくはプラズマ
トーチを鋼片長さ方向に移動させる。
A plasma arc is used as a heat source to melt the surface of the steel piece. Plasma arc has a high energy density and can rapidly heat up to a high temperature of over 3000°C, making it possible to melt only the surface layer of a steel billet to the required depth. In order to uniformly melt the surface of the steel billet, the plasma torch must be moved in the width direction of the steel billet, or the torch may be fixed and only the arc can be swung in the width direction of the billet, while the steel billet or plasma torch is moved along the length of the billet. move it in the opposite direction.

(このように鋼片幅方向に移動もしくは振動さ
せるプラズマアークを以下広幅プラズマアークと
呼ぶ。)鋼片長さ方向の移動速度を調整すること
により溶融深さを調整する。このように表面を連
続的に溶融することにより、該溶融部の熱は逐時
鋼片内部に伝達され、急速に凝固し、通常の鋼片
であれば、溶融深さ15mm以下のときは、特に冷却
手段を用いることなく、必要な炭素の固溶状態、
介在物の分散状態が得られる。
(The plasma arc that is moved or vibrated in the width direction of the steel piece in this manner is hereinafter referred to as a wide plasma arc.) The melting depth is adjusted by adjusting the moving speed in the length direction of the steel piece. By continuously melting the surface in this way, the heat of the molten part is transferred to the inside of the steel slab, and it solidifies rapidly. The necessary solid solution state of carbon can be achieved without using any particular cooling means.
A dispersed state of inclusions is obtained.

鋼片表面の溶融の際、雰囲気中に酸素が存在す
ると、溶融部が酸化され、新らたに酸化物介在物
が生成する等の品質劣化を伴う。したがつて、溶
融部を不活性雰囲気とし、空気濃度を1%以下に
することが必要である。
If oxygen is present in the atmosphere during melting of the surface of the steel billet, the melted portion will be oxidized, resulting in quality deterioration such as the formation of new oxide inclusions. Therefore, it is necessary to provide an inert atmosphere in the melting zone and to keep the air concentration to 1% or less.

以下本発明の具体例を図面に基いて説明する。
第1図は本発明を実施するための好ましい装置の
一例を示すもので、プラズマトーチ1を鋼片4の
幅方向に1列に配置し、鋼片表面の溶融部周囲を
不活性雰囲気に制御するためにプラズマトーチ1
の周囲をシールケース3で囲み酸化を防止する。
プラズマトーチ1と鋼片4との間に電磁コイル2
を配置し、プラズマアーク電流と垂直する交番磁
界を与えてプラズマアーク5を往復運動させるこ
とによりアーク巾6の拡大を行なうものである。
このようなプラズマアークで鋼片表層を加熱溶融
すると鋼片幅方向に帯状の溶融部ができる。この
鋼片を該鋼片の長さ方向に移動させることにより
溶融帯が鋼片移動方向上流側に連続的に移動して
ゆくとともに下流側は連続的に急冷凝固され鋼片
表層をその長さ方向に沿つて連続的に溶融凝固処
理することができる。
Hereinafter, specific examples of the present invention will be explained based on the drawings.
FIG. 1 shows an example of a preferred apparatus for carrying out the present invention, in which plasma torches 1 are arranged in a row in the width direction of a steel piece 4, and the area around the molten part on the surface of the steel piece is controlled to be an inert atmosphere. plasma torch 1
is surrounded by a seal case 3 to prevent oxidation.
An electromagnetic coil 2 is placed between the plasma torch 1 and the steel piece 4.
The arc width 6 is expanded by applying an alternating magnetic field perpendicular to the plasma arc current to cause the plasma arc 5 to reciprocate.
When the surface layer of a steel slab is heated and melted with such a plasma arc, a band-shaped molten zone is formed in the width direction of the steel slab. By moving this steel piece in the longitudinal direction of the steel piece, the molten zone continuously moves upstream in the direction of movement of the steel piece, and the downstream side is continuously rapidly solidified, reducing the surface layer of the steel piece to its length. The melting and solidifying process can be performed continuously along the direction.

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

実施例 1 SUS304連続鋳造ブルーム210mm×210mm×5000
mmの表面層約4mmをプラズマアークの熱源を利用
して溶解し急冷凝固処理を行なつた。第2図は該
処理後の鋼片表層域の炭素分布を示したものであ
る。高温溶融による脱炭反応により鋼片表層部が
低炭素鋼になつたことがわかる。
Example 1 SUS304 continuous casting bloom 210mm x 210mm x 5000
Approximately 4 mm of the surface layer was melted using a plasma arc heat source and subjected to rapid solidification treatment. FIG. 2 shows the carbon distribution in the surface layer region of the steel slab after the treatment. It can be seen that the surface layer of the steel slab became a low-carbon steel due to the decarburization reaction caused by high-temperature melting.

該ブルームを熱間圧延後熱間押出、冷間引抜に
より継目無鋼管を製造した。
A seamless steel pipe was manufactured by hot rolling the bloom, followed by hot extrusion and cold drawing.

第3図Aは該継目無鋼管の縦断面をJIS法によ
りエツチテストした組織写真である。
FIG. 3A is a photograph of the structure of a vertical section of the seamless steel pipe subjected to an etching test using the JIS method.

第3図Bは第3図Aのa部を拡大した組織写真
であり本発明を適用した領域にあたる組織であり
粒界腐食に感受性のない段状組織を示している。
第3図Cは第3図Aのb部を拡大した組織写真で
あり本発明を適用しなかつた領域にあたり、組織
は粒界腐食に感受性のある溝状組織を示してい
る。以上の如く再溶解、急冷により析出層を鋼中
に固溶しかつ低炭素鋼とすることにより粒界腐食
性に対して優れた効果が認められた。
FIG. 3B is an enlarged photograph of the structure of part a in FIG. 3A, which corresponds to the region to which the present invention is applied, and shows a stepped structure that is not susceptible to intergranular corrosion.
FIG. 3C is an enlarged photograph of the structure of section b in FIG. 3A, which corresponds to the area to which the present invention was not applied, and the structure shows a groove-like structure susceptible to intergranular corrosion. As described above, by remelting and quenching, the precipitated layer is dissolved in the steel and a low carbon steel is produced, which has an excellent effect on intergranular corrosion.

実施例 2 SUS321連続鋳造スラブ130mm×1000mm×5000mm
の表層4mmを全面溶融した。
Example 2 SUS321 continuous casting slab 130mm x 1000mm x 5000mm
The entire surface layer of 4 mm was melted.

第4図は該処理系の鋼片の表層域における清浄
度分布を示す。
FIG. 4 shows the cleanliness distribution in the surface layer region of the steel slab in the treatment system.

本処理を行つた鋼片の表面から4mmの深さまで
はTiN,TiC、およびTiO2の非金属介在物が鋼中
に固溶し、非金属介在物として析出していないこ
とがわかる。
It can be seen that non-metallic inclusions of TiN, TiC, and TiO 2 are dissolved in the steel up to a depth of 4 mm from the surface of the steel slab subjected to this treatment, and are not precipitated as non-metallic inclusions.

該スラブを熱間圧延した後冷間圧延により板厚
1mmの薄板を製造した。従来該薄板鋼板にはスト
リーク状疵や酸洗むら欠陥が発生し、平均歩留が
96%であつたが本発明法の実施により非金属介在
物に起因する表面欠陥は全く発出せず平均歩留は
100%であつた。
The slab was hot rolled and then cold rolled to produce a thin plate with a thickness of 1 mm. Conventionally, streak-like defects and pickling defects occur in thin steel sheets, and the average yield is reduced.
However, by implementing the method of the present invention, there were no surface defects caused by non-metallic inclusions, and the average yield was 96%.
It was 100%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施した装置の1例を示す説
明図、第2図はSUS304ステンレス鋼に本発明を
適用した鋼片表層域の炭素濃度分布を示す線図、
第3図Aは継目無鋼管の縦断面におけるJISエツ
チテスト結果を示す顕微鏡写真(×100)。第3図
Bはブルームにて本発明を適用した領域にあたる
組織を示す顕微鏡写真〔第4図Aのa部拡大召真
(×500)〕。第3図Cはブルームにて本発明を適用
しなかつた領域にあたる組織を示す顕微鏡写真
〔第4図Aのb部拡大写真(×500)〕。第4図は
SUS321ステンレス鋼に本発明を適用した鋼片表
層域の清浄度分布を示す線図である。 図中、1はプラズマ トーチ、2は電磁コイ
ル、3はシールケース、4は鋼片、5はプラズマ
アーク、6はアーク巾、7は鋼片表面層溶解後
の表面、8は鋼片表面層溶解前の表面である。
FIG. 1 is an explanatory diagram showing an example of an apparatus implementing the present invention, and FIG. 2 is a diagram showing the carbon concentration distribution in the surface layer region of a steel slab in which the present invention is applied to SUS304 stainless steel.
Figure 3A is a micrograph (x100) showing the results of a JIS etch test on a longitudinal section of a seamless steel pipe. FIG. 3B is a micrograph showing the tissue in the area where the present invention was applied in Bloom [an enlarged view of section a in FIG. 4A (×500)]. FIG. 3C is a microscopic photograph showing the structure of the area in Bloom where the present invention was not applied [an enlarged photograph (×500) of part b in FIG. 4A]. Figure 4 is
FIG. 2 is a diagram showing the cleanliness distribution in the surface layer region of a steel billet obtained by applying the present invention to SUS321 stainless steel. In the figure, 1 is the plasma torch, 2 is the electromagnetic coil, 3 is the seal case, 4 is the steel piece, 5 is the plasma arc, 6 is the arc width, 7 is the surface after melting the steel piece surface layer, 8 is the steel piece surface layer This is the surface before dissolution.

Claims (1)

【特許請求の範囲】[Claims] 1 広幅プラズマアークにより不活性雰囲気中で
ステンレス鋼片の表面層を2000℃以上に加熱し、
該表面層を深さ1mm以上15mm以下溶融させた後急
冷凝固させることを特徴とする耐粒界腐食性およ
び表面清浄度の優れたステンレス鋼の製造法。
1 The surface layer of a stainless steel piece is heated to over 2000℃ using a wide plasma arc in an inert atmosphere,
A method for producing stainless steel with excellent intergranular corrosion resistance and surface cleanliness, characterized by melting the surface layer to a depth of 1 mm or more and 15 mm or less, followed by rapid solidification.
JP13641878A 1978-11-06 1978-11-06 Manufacture of stainless steel excellent in intergranular corrosion resistance and surface cleanness Granted JPS5565317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13641878A JPS5565317A (en) 1978-11-06 1978-11-06 Manufacture of stainless steel excellent in intergranular corrosion resistance and surface cleanness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13641878A JPS5565317A (en) 1978-11-06 1978-11-06 Manufacture of stainless steel excellent in intergranular corrosion resistance and surface cleanness

Publications (2)

Publication Number Publication Date
JPS5565317A JPS5565317A (en) 1980-05-16
JPS6253569B2 true JPS6253569B2 (en) 1987-11-11

Family

ID=15174684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13641878A Granted JPS5565317A (en) 1978-11-06 1978-11-06 Manufacture of stainless steel excellent in intergranular corrosion resistance and surface cleanness

Country Status (1)

Country Link
JP (1) JPS5565317A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923814A (en) * 1982-07-28 1984-02-07 Toyota Motor Corp Method for fining partial metallic carbide of metallic member
KR100783884B1 (en) 2006-12-15 2007-12-10 현대자동차주식회사 Mounting method and system of oil pan using plasma
DE102009017701A1 (en) * 2009-01-22 2010-07-29 Sms Siemag Aktiengesellschaft Method and apparatus for annealing and descaling stainless steel strip

Also Published As

Publication number Publication date
JPS5565317A (en) 1980-05-16

Similar Documents

Publication Publication Date Title
US10995387B2 (en) Weathering steel
JP3276151B2 (en) Twin roll continuous casting method
JP2011047054A (en) Thin strip comprising trip steel
CN107438487A (en) Light-duty martensite steel plate of hot rolling and preparation method thereof
US5766378A (en) Stainless steel surface claddings of continuous caster rolls
CN115233081A (en) Method for producing 30CrMo hot-rolled thin strip steel based on double-roller casting rolling
JP2002086252A (en) Continous casting method
JPS6253569B2 (en)
JP3453990B2 (en) Cooling method for continuous casting bloom
JP3190319B2 (en) Twin roll continuous casting machine
JP3264795B2 (en) Method and apparatus for correcting warpage of hot rolled material
JP2008261036A (en) Method for cooling continuously cast bloom
JPH0688125A (en) Method for hot-working continuously cast slab and steel ingot
JP3406459B2 (en) Cooling method for continuous casting bloom
JPH0639505A (en) Method for casting molten titanium-containing stainless steel
JPH0890182A (en) Method for continuously casting wide and thin cast slab
JPH11254115A (en) Method for on-line judging surface quality of cast slab and steel slab in continuous casting and blooming and judging instrument
KR101258764B1 (en) Martensite stainless steel with the high quenched hardness and the method of manufacturing the same
JPH06246414A (en) Continuous casting of high carbon steel
JP4207324B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP3388933B2 (en) Continuous casting method of titanium-added ultra low carbon steel
JPH0730403B2 (en) Method for producing chromium-containing steel having excellent corrosion resistance
JP3192449B2 (en) Sheet roll and manufacturing method thereof
JPH0687054A (en) Production of stainless steel cast slab
Thakkar et al. Production of IMT Burs by Direct Rolling from Continuous Cast Billets