JP4655379B2 - Surface care method for billets - Google Patents

Surface care method for billets Download PDF

Info

Publication number
JP4655379B2
JP4655379B2 JP2001036769A JP2001036769A JP4655379B2 JP 4655379 B2 JP4655379 B2 JP 4655379B2 JP 2001036769 A JP2001036769 A JP 2001036769A JP 2001036769 A JP2001036769 A JP 2001036769A JP 4655379 B2 JP4655379 B2 JP 4655379B2
Authority
JP
Japan
Prior art keywords
steel
steel slab
billet
granules
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001036769A
Other languages
Japanese (ja)
Other versions
JP2001300625A (en
Inventor
康善 日高
敏朗 安楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001036769A priority Critical patent/JP4655379B2/en
Publication of JP2001300625A publication Critical patent/JP2001300625A/en
Application granted granted Critical
Publication of JP4655379B2 publication Critical patent/JP4655379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鋼片表面にショット粒等の粒体を噴射して鋼片表面に存在する酸化スケールや不良部を除去し、それらに起因してその後の熱間圧延工程で生じる酸化スケールの噛み込み疵や表面疵を防止するための鋼片の表面手入れ方法に関する。
【0002】
【従来の技術】
継目無鋼管の素材となるビレット、各種の連続鋳造スラブやブルーム等の鋼片表面には、厚さが不均一な厚い酸化スケールや種々の表面不良部が存在し、それ等はその後の熱間加工において酸化スケールの噛み込み疵や表面疵の原因となる。したがって、熱間加工する前に鋼片表面は研削や溶削等による手入れがなされている。
【0003】
以下、継目無鋼管の素材となる丸ビレットの表面手入れ方法について説明する。
【0004】
継目無鋼管は、一般に下記のような工程で製造される。
【0005】
鋼塊を熱間鍛造するかまたは連続鋳造によって製造された素材の丸ビレットは、ビレット加熱炉によって1100〜1300℃に加熱された後、穿孔圧延(ピアシング)により中空素管となる。この中空素管は、内部にマンドレルバーが挿入されてマンドレルミルにより延伸圧延され、圧延用素管とされる。この素管は、再加熱炉によって850〜1100℃に再加熱された後ストレッチレデューサーまたはサイザー等の仕上げ圧延機により管外径を所定サイズにするための圧延が施される。
【0006】
このように継目無鋼管の製造工程においては、数回にわたる圧延の工程がある。素材のビレットの製造工程のうち、鋳造や鍛造工程においては地鉄表面における疵の形成や不均一な部厚いスケールの生成は不可避であり、そのような不良部や酸化スケールを残したまま圧延を実施した場合、それらは各圧延工程において表面疵の発生原因となり、結果的に製品表面の疵となる。そのため、通常は製管工程の前、すなわちビレット加熱炉への挿入前に、ビレットの表面は常温でグラインダーやショットブラストおよびピーラーなどによって表面の不良部や酸化スケールを除去する手入れが施される。
【0007】
前記のグラインダーやピーラによる手入れは、オフラインでの手作業となるため製造効率が低下するばかりでなく、作業者の安全衛生上からも好ましくない。また、ショットブラストによる手入れ方法は、常温の鋼片にショット粒を噴射して鋼片の表面を高速のショット粒で叩く方法であり、酸化スケールの除去は容易であるが、鋼片表面に存在する凹部や疵を除去するにはショット粒の噴射速度を高めても長時間を要し、効率がよくないという問題がある。
【0008】
以上のような問題は、継目無鋼管の製造時のみならず、スラブやブルームの熱間圧延時においても発生しているのが現状である。すなわち、鋼片が熱間圧延される場合における共通した問題である。
【0009】
特開平11−77115号公報には、継目無鋼管を製造するに際し、後工程のストレッチレデューサーによる仕上げ圧延中における酸化スケールの噛み込み疵の発生や加工硬化を防止する方法が開示されている。しかし、この方法ではビレット表面の酸化スケールや地鉄の表面不良に起因する前工程での疵の発生を防止することはできない。
【0010】
【発明が解決しようとする課題】
本発明の課題は、熱間加工前の鋼片表面の酸化スケールや不良部を効率よく除去し、それらに起因してその後の熱間圧延工程で生じる酸化スケールの噛み込み疵や表面疵(例えば、製管工程で鋼管の外表面に生じる製管疵)を防止することができる鋼片の表面手入れ方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべくショット粒のような粒体による手入れ方法に注目して検討を重ねた。その結果、以下の知見を得た。
【0012】
a)鋼の表面に生成する酸化スケールを加熱し、その機械的特性の温度による変化を調査した結果、500℃以上の高温になるとスケール自体が非常に脆くなるとともに母材との密着力も低くなることが判明した。
【0013】
b)500℃以上の高温状態で、鋼片表面に粒体を噴射して酸化スケールに衝撃を与えると、酸化スケールを極めて効率よく除去できる。
【0014】
c)さらに、酸化スケールを除去した後の鋼片自体も粒体による被研掃性が良好で、特に500〜1300℃で極めて良好となる。
【0015】
本発明は、上記の知見に基づきなされたもので、その要旨は、下記の鋼片の表面手入れ方法にある。
【0016】
500〜1300℃の温度範囲にある合金鋼の鋼片表面に粒体を噴射して、酸化スケールを除去すると共に鋼片表面の不良部を除去する鋼片の表面手入れ方法。
【0017】
この鋼片の表面手入れ方法において、鋼片の温度範囲を500〜1100℃とし、粒体の噴射時間t(min)を下記(1)式で表される時間以上とすれば、鋼片表面に存在する酸化スケールや不良部を極めて効率よく除去することができ、好ましい。
【0018】
t=10×(300−Y)/(400・Ts・X) ・・・(1)
ただし、
Ts:鋼片の温度(℃)
X :鋼片表面への粒体の供給量(kg・m−2・min−1
Y :粒体の平均噴射速度(m・s−1
ここで、「粒体」とは、鋳鋼、鋳鉄およびアルミナ等の硬質の固体からなるショット、グリッド、カットワイヤ等であり、粒の形状は特に限定されない。
【0019】
また、「鋼片表面に存在する不良部」とは、鋼片の製造工程で形成される表面欠陥であり、例えばビレットの場合では、前述したように、鋳造や鍛造工程で地鉄表面に形成される疵などである。以下、「表面不良部」または単に「不良部」という。
【0020】
【発明の実施の形態】
以下、本発明の鋼片の表面手入れ方法について具体的に説明する。
【0021】
合金鋼の鋼片:
本発明の方法で表面手入れの対象とする合金鋼の鋼片において、合金鋼とは、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼、オーステナイト系ステンレス鋼、二相ステンレス鋼、低合金鋼および高合金鋼である。炭素鋼は、熱間加工前の鋼片の段階では表面不良は問題にならないので除外する。
【0022】
また、鋼片とは、連続鋳造スラブ、鍛造スラブ、ビレット、ブルーム等であり、熱間加工の前に表面の手入れが必要となる鋼片である。
【0023】
鋼片の温度:
粒体の噴射による鋼片表面の酸化スケールおよび不良部の除去効率は、鋼片の温度の上昇とともに著しく向上する。特に、500℃以上では研掃効率が極めて高くなる。しかし、1300℃を超えると地鉄が軟化し、噴射した粒体が鋼中にめり込むようになる。したがって、ショット粒などの粒体を噴射するときの鋼片の温度は500〜1300℃とした。好ましくは800〜1000℃で、さらに好ましくは800〜900℃である。
【0024】
粒体の噴射条件:
本発明の最も特徴とする点は、酸化スケールおよび表面不良部の研掃を高温で行うことにある。粒体は従来から脱スケール等に使用されている微小な球や、カットワイヤ状の粒でよく、材質としては、鋳鋼および鋳鉄を始めアルミナ等の適用も可能である。噴射速度(粒体の平均噴射速度)も、従来と同様80〜200m・s−1程度で十分である。ただし、効率をさらに向上させるためには、粒体供給量を多くし、より高速で噴射する方が好ましい。噴射角度も従来と同様で、被研掃面に対して5〜90度の高範囲で実施可能である。
【0025】
上記本発明の方法において、鋼片の温度範囲を500〜1100℃とし、粒体の噴射時間t(min)を下記(1)式で表される時間以上とすれば、研掃効果をさらに高め、酸化スケールや表面不良部を極めて効率よく除去することができるので好ましい。なお、(1)式において、Tsは鋼片の温度(℃)であり、Xは鋼片表面に向けて噴射した粒体の量、つまり粒体の供給量を鋼片表面1m当たりおよび1分間当たりに換算した量(kg・m−2・min−1)、Yは粒体の平均噴射速度(m・s−1)である。
【0026】
t=10×(300−Y)/(400・Ts・X) ・・・(1)
鋼片表面への粒体の噴射は、従来から使用されているショットブラスト設備を用いて行うことができる。噴射は短時間なので、実際の操業時には、粒体の噴射開始時の鋼片の温度(Ts)が前記鋼片の温度範囲内に入っていればよい。
【0027】
前記(1)式は、鋼片表面に向けて噴射する粒体の噴射速度、噴射開始時の鋼片の温度および粒体の供給量を広い範囲で変化させて行った実験の結果に基づいて得られた式である。
【0028】
図1〜図3は、鋼片としてビレットを用いて継目無鋼管を製造する際に、ビレットにショットブラスト処理を施したときのビレット表面への粒体の噴射速度、ビレットの温度または粒体の供給量と、粒体噴射時間(単位:sで表示)および製管疵の発生の有無との関係を示す図で、後述する実施例で得られた結果を図示したものである。なお、図中の○印は製管疵が発生しなかったことを、×印は製管疵(許容できない製管疵)が発生したことを表す。また、△印は製管疵は発生したが許容できる程度であったことを表す。
【0029】
図1は、ビレットの温度および粒体の供給量を一定とした場合の製管疵に及ぼす粒体の噴射時間と噴射速度の影響を示す図である。粒体の噴射速度が大きいほど研削性が良好で、酸化スケールや表面不良部を効率よく除去することができる。
【0030】
ビレット表面の研削が良好にかつ効率よく(短時間に)行われる場合の粒体の噴射速度と噴射時間の関係は、図中に破線で示すように、ほぼ一次関数で表される。この関数で表される噴射時間(s)以上の時間にわたって噴射を行えば、その後の、前述した数回にわたる圧延の工程を経ても製管疵は発生しない。
【0031】
図2は、粒体の噴射速度および供給量を一定とした場合の製管疵に及ぼす粒体の噴射時間とビレットの温度の影響を示す図である。研削性はビレット温度が高いほど良好であり、研削が良好にかつ効率よく行われる場合のビレットの温度と粒体の噴射時間の関係は、図1の場合と同様、ほぼ一次関数で表される(図中に破線で表示)。この関数で表される噴射時間(s)以上の噴射を行えば、製管疵は発生しない。
【0032】
図3は、粒体の噴射速度およびビレットの温度を一定とした場合の製管疵に及ぼす粒体の噴射時間と供給量の影響を示す図である。粒体供給量が多いほど研削性は良好である。研削が良好にかつ効率よく行われる場合の粒体の供給量と噴射時間の関係は、図1および図2の場合と同様、ほぼ一次関数で表される(図中に破線で表示)。この関数で表される噴射時間(s)以上の噴射を行えば、製管疵は発生しない。
【0033】
上記の図1〜図3に示した結果を考慮して、ショットブラストによるビレット表面の研削における好ましい条件、すなわち酸化スケールや表面不良部が短時間に効率よく除去される条件を数式で表示したものが前記の(1)式である。
【0034】
この(1)式を用いれば、鋼片表面への粒体の噴射条件を最適化することが可能で、例えば、ビレットの温度、ビレット表面への粒体の噴射速度および粒体の供給量が決まった場合に、上記(1)式から求められる粒体の噴射時間t(min)が最適噴射時間になる。この最適噴射時間以上の時間にわたり上記所定の高温状態にあるビレット表面へ向けて粒体を噴射することにより、その後の製管工程で疵を発生しないビレットを提供することができる。
【0035】
以上、本発明の鋼片の表面手入れ方法を鋼片がビレットの場合を例にとって説明したが、ビレットに限らず、それとは形状が異なるスラブやブルーム等にも適用可能である。
【0036】
本発明の表面手入れ方法では、上述したように鋼片が高温になっている間に鋼片表面に粒体を噴射しなければならない。したがって、製造工程を考慮した生産性の観点から、オンラインで実施するのが好ましく、さらに熱エネルギーの有効利用の観点からすると、熱間鍛造直後または連続鋳造直後の冷却過程で鋼片が上記所定の温度範囲内にある間に行うことが最も好ましい。
【0037】
【実施例】
(実施例1)
鋼片として表1に示す化学組成の合金鋼の鍛造ビレットを用いた。鋼種は、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼、オーステナイト系ステンレス鋼、二相ステンレス鋼および高合金鋼である。
【0038】
【表1】

Figure 0004655379
表1に示す化学組成の合金鋼を溶解して得られたインゴットを熱間鍛造によって外径192mmの丸ビレットとした。このビレットに、熱間鍛造直後の1300℃から後述する表3〜表10に示す各温度で、表2に示す8種類の粒体を平均噴射速度を120〜180m・s−1の範囲で変化させて噴射し、表面研掃を行った。鋼片表面に向けて噴射した粒体の量、つまり粒体供給量は、いずれも、ビレット表面1mあたり1kg・s−1とし、粒体の鋼片表面への平均衝突角は45度となるよう調節した。
【0039】
【表2】
Figure 0004655379
この後、回転炉床加熱炉において1250℃に加熱し、マンネスマンピアサ−によって外径192mm、肉厚16mmの中空素管を製造し、続いてマンドレルミルによって外径151mm、肉厚6.5mmの圧延用素管とし、再加熱炉で1100℃、20分加熱後ストレッチレデューサーによって外径63.5mm、肉厚5.5mmの仕上げ用素管とした。仕上げ用素管は980℃で65分間加熱した後高圧水による焼入れ処理を施し、さらに700℃で焼戻し処理をした。
【0040】
この後、酸洗処理によって表面スケ−ルを除去し、表面疵の有無を目視により調査した。
【0041】
結果を表3〜表10に示す。各表の右上欄外に記した噴射条件の記号A〜Hは表2に示した噴射条件の記号A〜Hにそれぞれ対応する。なお、各表には、実際の噴射時間を「実噴射時間」として、また、前述した(1)式から求めた粒体噴射時間を「最適噴射時間」として付記した。
【0042】
表中の評価記号の◎印は疵が全く無いことを、○印は多少の疵はあるが製品として許容できることを、△印は冷却中にスケールが生成し、脱スケールが必要であるが疵は許容できる程度であることを、×印は許容できない疵が発生することを、それぞれ示す。
【0043】
【表3】
Figure 0004655379
【表4】
Figure 0004655379
【表5】
Figure 0004655379
【表6】
Figure 0004655379
【表7】
Figure 0004655379
【表8】
Figure 0004655379
【表9】
Figure 0004655379
【表10】
Figure 0004655379
表3〜表10に示した結果から明らかなように、鋼No.1〜10のいずれの鋼においても、また、A〜Hのいずれの噴射条件においても、500〜1300℃の温度域のビレットを粒体噴射により表面研掃した場合は、製管後の鋼管の外表面には疵が全く無いか、許容できる程度の疵であり、表面状態は良好であった。なお、ビレット温度が1300℃を超えた状態で粒体による研掃を行った場合は、ビレット表層部への粒体のめりこみが生じ、製管後の表面状態が斑となり不良であった。また、ビレットが室温の状態で粒体により研掃した場合は、鋼No.1〜10のいずれの鋼においても、また、A〜Hのいずれの噴射条件においても、許容できない表面疵が発生していた。
(実施例2)
鋼片として表11に示す化学組成の合金鋼の鍛造ビレットを用いた。
【0044】
【表11】
Figure 0004655379
表11に示す化学組成の合金鋼を溶解して得られたインゴットを熱間鍛造によって外径192mmの丸ビレットとした。このビレットに、種々の条件で粒体を噴射し、表面研削試験を行った。粒体には市販のアルミナ(60番)を用いた。
【0045】
表面研削試験は、ビレットの温度を600、800または1000℃、ビレット表面への粒体の供給量を2000、4000、6000または8000kg・m−2・min−1、粒体の噴射速度を80、100、120、140または160m・s−1とし、粒体噴射時間を種々変化させて行った。粒体の鋼片表面への平均衝突角は45度とした。
【0046】
この後、実施例1の場合と同様に、回転炉床加熱炉において1250℃で加熱し、マンネスマンピアサ−によって外径192mm、肉厚16mmの中空素管を製造し、続いてマンドレルミルによって外径151mm、肉厚6.5mmの圧延用素管とし、再加熱炉で1100℃、20分加熱後ストレッチレデューサーによって外径63.5mm、肉厚5.5mmの仕上げ用素管とした。仕上げ用素管は980℃で65分間加熱した後高圧水による焼入れ処理を施し、さらに700℃で焼戻し処理をした。
【0047】
この後、酸洗処理によって表面スケ−ルのみを除去し、表面疵の有無を目視により調査した。
【0048】
結果を図1〜図3に示す。この結果は鋼No.Bについての結果であるが、鋼No.Aでも同等の結果が得られた。
【0049】
図1は製管疵に及ぼす粒体の噴射時間と噴射速度の影響(ビレット温度は800℃、粒体供給量は4000kg・m−2・min−1で一定)を示す図、図2は製管疵に及ぼす粒体の噴射時間とビレットの温度の影響(粒体噴射速度は100m・s−1、粒体供給量は4000kg・m−2・min−1で一定)を示す図、また、図3は製管疵に及ぼす粒体の噴射時間と供給量の影響(粒体噴射速度は100m・s−1、ビレット温度は800℃で一定)を示す図である。なお、図中の○印は製管疵が発生しなかったことを、×印は製管疵(許容できない製管疵)が発生したことを表す。また、△印は製管疵は発生したが許容できる程度であったことを表す。
【0050】
図1〜図3に示した結果から、粒体の噴射速度が大きいほど(図1参照)、粒体噴射時のビレットの温度が高いほど(図2参照)、また粒体の供給量が多いほど(図3参照)、研削性が良好になることが明らかである。また、図1〜図3のの図中に示した破線から上の部分では、つまり破線が示す噴射時間(単位:s)以上の時間にわたって粒体の噴射を行った場合は、その後の製管工程で製管疵は発生しなかった。
【0051】
【発明の効果】
本発明の鋼片の手入れ方法によれば、熱間加工前の鋼片表面の酸化スケールや不良部を効率よく容易に除去することができ、これによって、熱間圧延工程で生じる酸化スケールの噛み込み疵や表面疵の発生を防止して表面性状のよい製品を効率よく製造することができる。
【図面の簡単な説明】
【図1】製管疵に及ぼす粒体の噴射時間と噴射速度の影響(ビレットの温度および粒体の供給量は一定)を示す図である。
【図2】製管疵に及ぼす粒体の噴射時間とビレットの温度の影響(粒体の噴射速度および供給量は一定)を示す図である。
【図3】製管疵に及ぼす粒体の噴射時間と供給量の影響(粒体の噴射速度およびビレットの温度は一定)を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention sprays grains such as shot grains on the steel slab surface to remove oxidized scales and defective parts existing on the steel slab surface, resulting in the biting of the oxide scale caused in the subsequent hot rolling process. The present invention relates to a method of surface care of a steel slab for preventing encroachment and surface flaws.
[0002]
[Prior art]
Billet, which is the material of seamless steel pipes, and various slab surfaces such as various continuous casting slabs and blooms have thick oxide scales with various thicknesses and various surface defects. This causes oxide scale bites and surface flaws during processing. Therefore, before hot working, the surface of the steel slab is maintained by grinding or hot-melting.
[0003]
Hereinafter, the surface care method of the round billet used as the raw material of a seamless steel pipe is demonstrated.
[0004]
A seamless steel pipe is generally manufactured by the following process.
[0005]
A round billet made of a steel ingot produced by hot forging or continuous casting is heated to 1100 to 1300 ° C. in a billet heating furnace, and then formed into a hollow shell by piercing and rolling (piercing). This hollow shell is inserted into a mandrel bar and stretched and rolled by a mandrel mill to form a rolling tube. The raw tube is reheated to 850 to 1100 ° C. by a reheating furnace, and then subjected to rolling to make the outer diameter of the tube a predetermined size by a finish rolling machine such as a stretch reducer or a sizer.
[0006]
Thus, in the manufacturing process of a seamless steel pipe, there are several rolling processes. Of the manufacturing process of the billet of the material, in the casting and forging processes, it is inevitable to form wrinkles on the surface of the steel bar and generate uneven thick scales, and rolling with such defective parts and oxide scales left. When implemented, they cause surface defects in each rolling process, resulting in product surface defects. Therefore, before the pipe making process, that is, before insertion into the billet heating furnace, the billet surface is subjected to care to remove defective portions of the surface and oxide scale by a grinder, shot blast, peeler, etc. at room temperature.
[0007]
The above-mentioned care with a grinder or peeler is not preferable from the viewpoint of worker safety and health as well as a reduction in production efficiency because it is an off-line manual operation. In addition, the shot blasting method is a method in which shot grains are sprayed onto a steel slab at room temperature and the surface of the steel slab is struck with high-speed shot grains. In order to remove the recesses and wrinkles, it takes a long time to increase the spraying speed of the shot grains, and there is a problem that the efficiency is not good.
[0008]
The above problems are occurring not only during the production of seamless steel pipes but also during the hot rolling of slabs and blooms. That is, it is a common problem when steel slabs are hot-rolled.
[0009]
Japanese Patent Application Laid-Open No. 11-77115 discloses a method for preventing the occurrence of oxide scale biting and work hardening during finish rolling by a stretch reducer in the subsequent process when manufacturing a seamless steel pipe. However, this method cannot prevent the occurrence of soot in the previous process due to the oxidized scale on the billet surface or the surface defect of the ground iron.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to efficiently remove oxide scales and defective parts on the surface of a steel slab before hot working, and to cause oxide scale bites and surface defects (for example, generated in a subsequent hot rolling process) An object of the present invention is to provide a method of cleaning the surface of a steel slab that can prevent a pipe-making flaw generated on the outer surface of the steel pipe in the pipe-making process.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problems, the present inventors have repeatedly studied paying attention to a care method using granules such as shot grains. As a result, the following knowledge was obtained.
[0012]
a) As a result of heating the oxidized scale formed on the surface of the steel and investigating the change of the mechanical properties due to the temperature, the scale itself becomes very brittle and the adhesion to the base material becomes low when the temperature is higher than 500 ° C. It has been found.
[0013]
b) In a high temperature state of 500 ° C. or higher, when the particles are sprayed on the surface of the steel piece to give an impact to the oxide scale, the oxide scale can be removed extremely efficiently.
[0014]
c) Furthermore, the steel piece itself after removal of the oxide scale also has good grindability by the granules, and is extremely good particularly at 500 to 1300 ° C.
[0015]
This invention was made | formed based on said knowledge, and the summary exists in the surface care method of the following steel piece.
[0016]
A method of surface care of a steel slab in which grains are sprayed onto the steel slab surface of an alloy steel in a temperature range of 500 to 1300 ° C. to remove oxide scale and to remove defective parts on the steel slab surface.
[0017]
In this steel slab surface care method, if the temperature range of the steel slab is 500 to 1100 ° C. and the injection time t (min) of the granules is equal to or longer than the time represented by the following formula (1), The existing oxide scale and defective portion can be removed very efficiently, which is preferable.
[0018]
t = 10 6 × (300−Y) / (400 · Ts · X) (1)
However,
Ts: Steel slab temperature (° C)
X: Supply amount of granules to the surface of the steel slab (kg · m −2 · min −1 )
Y: Average jetting speed of particles (m · s −1 )
Here, the “particles” are shots, grids, cut wires and the like made of hard solid such as cast steel, cast iron and alumina, and the shape of the particles is not particularly limited.
[0019]
In addition, the “defective part existing on the surface of the steel slab” is a surface defect formed in the manufacturing process of the steel slab. It is a trap to be done. Hereinafter, it is referred to as “surface defective portion” or simply “defective portion”.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method for cleaning the surface of the steel slab of the present invention will be specifically described.
[0021]
Alloy steel billets:
In the steel pieces of alloy steel to be surface-treated by the method of the present invention, the alloy steel is ferritic stainless steel, martensitic stainless steel, austenitic stainless steel, duplex stainless steel, low alloy steel and high alloy. It is steel. Carbon steel is excluded because surface defects do not become a problem at the stage of the billet before hot working.
[0022]
The steel slab is a continuously cast slab, a forged slab, a billet, a bloom, or the like, and is a steel slab that requires surface maintenance before hot working.
[0023]
Billet temperature:
The removal efficiency of the oxide scale and defective parts on the surface of the steel slab by the injection of the granular material is remarkably improved as the temperature of the steel slab increases. In particular, the cleaning efficiency becomes extremely high at 500 ° C. or higher. However, when the temperature exceeds 1300 ° C., the ground iron softens, and the sprayed particles come into the steel. Therefore, the temperature of the steel slab when spraying grains such as shot grains was set to 500 to 1300 ° C. Preferably it is 800-1000 degreeC, More preferably, it is 800-900 degreeC.
[0024]
Granule injection conditions:
The most characteristic feature of the present invention is that the oxide scale and the defective surface portion are cleaned at a high temperature. The granule may be a fine sphere conventionally used for descaling or the like, or a cut wire-like grain, and as the material, it is possible to apply cast steel, cast iron and alumina. As for the injection speed (average injection speed of the granules), about 80 to 200 m · s −1 is sufficient as in the conventional case. However, in order to further improve the efficiency, it is preferable to increase the supply amount of particles and inject at higher speed. The injection angle is the same as in the prior art, and can be implemented in a high range of 5 to 90 degrees with respect to the surface to be polished.
[0025]
In the method of the present invention, if the temperature range of the steel slab is 500 to 1100 ° C. and the injection time t (min) of the granule is set to the time represented by the following formula (1) or more, the scouring effect is further enhanced. It is preferable because oxide scale and defective surface portions can be removed very efficiently. In the equation (1), Ts is the temperature (° C.) of the steel slab, and X is the amount of particles injected toward the surface of the steel slab, that is, the supply amount of the particles per 1 m 2 of the steel slab surface. The amount converted per minute (kg · m −2 · min −1 ), Y is the average jet velocity (m · s −1 ) of the granules.
[0026]
t = 10 6 × (300−Y) / (400 · Ts · X) (1)
The injection of the particles onto the surface of the steel slab can be performed using shot blasting equipment that has been conventionally used. Since the injection is performed for a short time, the temperature (Ts) of the steel slab at the start of injection of the granule may be within the temperature range of the steel slab during actual operation.
[0027]
The equation (1) is based on the results of experiments conducted by changing the injection speed of the particles injected toward the surface of the steel slab, the temperature of the steel slab at the start of injection, and the supply amount of the particles within a wide range. It is the obtained formula.
[0028]
FIGS. 1 to 3 show that when a seamless steel pipe is manufactured using a billet as a steel slab, the injection speed of the granule onto the billet surface when the billet is subjected to shot blasting, the temperature of the billet or the particle It is a figure which shows the relationship between supply_amount | feed_rate, the granular material injection time (unit: displayed with s), and the presence or absence of generation | occurrence | production of a pipe making fist, and shows the result obtained in the Example mentioned later. In the figure, a circle mark indicates that no tube-making slag has occurred, and a cross indicates that a tube-making slag (unacceptable tube-making slag) has occurred. In addition, the Δ mark indicates that pipe making flaws occurred but were acceptable.
[0029]
FIG. 1 is a diagram showing the influence of the spraying time and spraying speed of the granular material on the tube making tub when the billet temperature and the granular supply amount are constant. The higher the injection speed of the granules, the better the grindability, and the oxide scale and the defective surface portion can be efficiently removed.
[0030]
The relationship between the jetting speed of the granule and the jetting time when the billet surface is ground satisfactorily and efficiently (in a short time) is substantially expressed by a linear function as indicated by a broken line in the figure. If injection is performed for a time equal to or longer than the injection time (s) represented by this function, pipe making flaws do not occur even after the above-described several rolling steps.
[0031]
FIG. 2 is a diagram showing the influence of the granule spraying time and billet temperature on the tube-making tub when the spraying speed and supply amount of the granule are constant. The grindability is better as the billet temperature is higher, and the relationship between the billet temperature and the grain injection time when grinding is performed efficiently and efficiently is expressed by a linear function as in FIG. (Indicated by broken lines in the figure). If injection is carried out for at least the injection time (s) represented by this function, pipe making flaws do not occur.
[0032]
FIG. 3 is a diagram showing the influence of the spraying time and the supply amount of the granules on the pipe making tub when the spraying speed of the granules and the temperature of the billet are constant. The greater the grain supply, the better the grindability. The relationship between the supply amount of the granular material and the injection time when the grinding is performed satisfactorily and efficiently is expressed by a linear function (indicated by a broken line in the figure), as in the case of FIGS. If injection is carried out for at least the injection time (s) represented by this function, pipe making flaws do not occur.
[0033]
In consideration of the results shown in FIGS. 1 to 3 above, preferable conditions for grinding the billet surface by shot blasting, that is, conditions for efficiently removing oxide scale and defective surface portions in a short time are expressed in mathematical formulas. Is the equation (1).
[0034]
By using this equation (1), it is possible to optimize the injection conditions of the particles to the steel slab surface. For example, the temperature of the billet, the injection speed of the particles to the billet surface, and the supply amount of the particles When determined, the injection time t (min) of the particles obtained from the above equation (1) becomes the optimal injection time. By injecting the particles toward the billet surface in the predetermined high temperature state for a time longer than the optimum injection time, a billet that does not generate wrinkles in the subsequent pipe making process can be provided.
[0035]
The method for surface treatment of a steel slab according to the present invention has been described by taking the case where the steel slab is a billet as an example. However, the method is applicable not only to billets but also to slabs and blooms having different shapes.
[0036]
In the surface care method of the present invention, as described above, particles must be sprayed onto the surface of the steel slab while the steel slab is at a high temperature. Therefore, it is preferable to carry out on-line from the viewpoint of productivity in consideration of the manufacturing process. Further, from the viewpoint of effective use of thermal energy, the steel slab is in the cooling process immediately after hot forging or immediately after continuous casting. Most preferably, it is carried out while in the temperature range.
[0037]
【Example】
Example 1
A forged billet of alloy steel having the chemical composition shown in Table 1 was used as a steel piece. The steel types are ferritic stainless steel, martensitic stainless steel, austenitic stainless steel, duplex stainless steel and high alloy steel.
[0038]
[Table 1]
Figure 0004655379
An ingot obtained by melting alloy steel having the chemical composition shown in Table 1 was formed into a round billet having an outer diameter of 192 mm by hot forging. In this billet, the average injection speed is changed in the range of 120 to 180 m · s −1 for each of the 8 types of granules shown in Table 2 at 1300 ° C. immediately after hot forging at each temperature shown in Tables 3 to 10 below. The surface was cleaned by spraying. The amount of particles sprayed toward the steel slab surface, that is, the amount of supplied granules is 1 kg · s −1 per 1 m 2 of the billet surface, and the average collision angle of the particles with the steel slab surface is 45 degrees. Adjusted to be.
[0039]
[Table 2]
Figure 0004655379
Then, it is heated to 1250 ° C. in a rotary hearth heating furnace, and a hollow shell having an outer diameter of 192 mm and a wall thickness of 16 mm is manufactured by a Mannesman Piercer, and subsequently, an outer diameter of 151 mm and a wall thickness of 6.5 mm is manufactured by a mandrel mill. A rolling element tube was heated at 1100 ° C. for 20 minutes in a reheating furnace, and then a finishing element tube having an outer diameter of 63.5 mm and a wall thickness of 5.5 mm was formed by a stretch reducer. The finishing tube was heated at 980 ° C. for 65 minutes, then subjected to quenching with high-pressure water, and further tempered at 700 ° C.
[0040]
Thereafter, the surface scale was removed by pickling treatment, and the presence or absence of surface defects was visually examined.
[0041]
The results are shown in Tables 3 to 10. The symbols A to H of the injection conditions shown in the upper right column of each table correspond to the symbols A to H of the injection conditions shown in Table 2, respectively. In each table, the actual injection time was added as “actual injection time”, and the granule injection time obtained from the above-described equation (1) was added as “optimum injection time”.
[0042]
In the table, the symbol ◎ indicates that there is no wrinkle, ○ indicates that there is a slight wrinkle but is acceptable as a product, and Δ indicates that a scale is generated during cooling and descaling is necessary. Indicates that it is acceptable, and x indicates that unacceptable wrinkles occur.
[0043]
[Table 3]
Figure 0004655379
[Table 4]
Figure 0004655379
[Table 5]
Figure 0004655379
[Table 6]
Figure 0004655379
[Table 7]
Figure 0004655379
[Table 8]
Figure 0004655379
[Table 9]
Figure 0004655379
[Table 10]
Figure 0004655379
As is clear from the results shown in Tables 3 to 10, the steel No. In any of the steels 1 to 10 and in any of the injection conditions A to H, when the surface of a billet in the temperature range of 500 to 1300 ° C. is cleaned by grain injection, The outer surface had no wrinkles or acceptable wrinkles, and the surface condition was good. In addition, when the grinding | polishing with a granule was performed in the state in which billet temperature exceeded 1300 degreeC, the penetration of the granule to a billet surface layer part arises, and the surface state after pipe making becomes uneven, and was unsatisfactory. In addition, when the billet was cleaned by the granular material at room temperature, the steel No. In any of the steels 1 to 10 and in any of the injection conditions A to H, an unacceptable surface flaw occurred.
(Example 2)
A forged billet of alloy steel having the chemical composition shown in Table 11 was used as a steel piece.
[0044]
[Table 11]
Figure 0004655379
An ingot obtained by melting an alloy steel having a chemical composition shown in Table 11 was formed into a round billet having an outer diameter of 192 mm by hot forging. Particles were sprayed on this billet under various conditions, and a surface grinding test was conducted. Commercially available alumina (No. 60) was used for the granules.
[0045]
In the surface grinding test, the billet temperature is 600, 800, or 1000 ° C., the amount of granules supplied to the billet surface is 2000, 4000, 6000, or 8000 kg · m −2 · min −1 , and the jetting speed of the granules is 80, It was set to 100, 120, 140, or 160 m · s −1 , and the particle injection time was changed variously. The average collision angle of the granules to the steel slab surface was 45 degrees.
[0046]
Thereafter, in the same manner as in Example 1, heating was performed at 1250 ° C. in a rotary hearth heating furnace, a hollow shell tube having an outer diameter of 192 mm and a wall thickness of 16 mm was manufactured by a Mannesman piercer, and subsequently the outer tube was manufactured by a mandrel mill. A blank for rolling with a diameter of 151 mm and a thickness of 6.5 mm was used, and after heating at 1100 ° C. for 20 minutes in a reheating furnace, a finishing blank with a diameter of 63.5 mm and a thickness of 5.5 mm was obtained by a stretch reducer. The finishing tube was heated at 980 ° C. for 65 minutes, then subjected to quenching with high-pressure water, and further tempered at 700 ° C.
[0047]
Thereafter, only the surface scale was removed by pickling, and the presence or absence of surface defects was visually examined.
[0048]
The results are shown in FIGS. This result shows that the steel no. Although it is a result about B, steel no. Similar results were obtained with A as well.
[0049]
FIG. 1 is a diagram showing the influence of the spraying time and spraying speed of the granules on the tube-making machine (the billet temperature is 800 ° C., and the supply of the granules is constant at 4000 kg · m −2 · min −1 ), FIG. effect of the temperature of the injection time and the billet of the granules on Kankizu (granules injection speed 100 m · s -1, granules supply amount constant in 4000kg · m -2 · min -1) Figure shows a hand, FIG. 3 is a view showing the influence of the spraying time and the supply amount of the granules on the pipe making (the spray speed of the granules is 100 m · s −1 , and the billet temperature is constant at 800 ° C.). In the figure, a circle mark indicates that no tube-making slag has occurred, and a cross indicates that a tube-making slag (unacceptable tube-making slag) has occurred. In addition, Δ marks indicate that pipe making flaws occurred but were acceptable.
[0050]
From the results shown in FIGS. 1 to 3, the larger the injection speed of the granules (see FIG. 1), the higher the temperature of the billet during the injection of granules (see FIG. 2), and the larger the supply amount of granules. It is clear that the grindability is improved (see FIG. 3). Moreover, in the upper part from the broken line shown in the drawing of FIGS. 1 to 3, that is, when the granular material is sprayed over a time longer than the spraying time (unit: s) indicated by the broken line, the subsequent pipe making There were no tube defects in the process.
[0051]
【The invention's effect】
According to the billet care method of the present invention, it is possible to efficiently and easily remove the oxidized scale and defective portions on the surface of the billet before hot working, and thereby the bite of the oxide scale generated in the hot rolling process. It is possible to efficiently produce a product having a good surface property by preventing the occurrence of burrs and surface flaws.
[Brief description of the drawings]
FIG. 1 is a diagram showing the influence of the injection time and injection speed of granules on pipe making (the billet temperature and the supply amount of granules are constant).
FIG. 2 is a diagram showing the influence of the granule spraying time and billet temperature on the tube-making rod (the spraying speed and the supply amount of the granule are constant).
FIG. 3 is a diagram showing the influence of the spraying time and the supply amount of the granules on the pipe making machine (the spraying speed of the granules and the temperature of the billet are constant).

Claims (2)

500〜1300℃の温度範囲にある合金鋼の鋼片表面に粒体を噴射して、酸化スケールを除去すると共に鋼片表面の不良部を除去することを特徴とする鋼片の表面手入れ方法。A method for cleaning the surface of a steel slab characterized by spraying grains onto the surface of a steel slab of alloy steel in a temperature range of 500 to 1300 ° C. to remove oxidized scale and to remove defective portions on the surface of the steel slab. 鋼片の温度範囲を500〜1100℃とし、粒体の噴射時間t(min)を下記(1)式で表される時間以上とする請求項1に記載の鋼片の表面手入れ方法。
t=10×(300−Y)/(400・Ts・X) ・・・(1)
ただし、
Ts:鋼片の温度(℃)
X :鋼片表面への粒体の供給量(kg・m−2・min−1
Y :粒体の平均噴射速度(m・s−1
The surface treatment method of a steel slab according to claim 1, wherein the temperature range of the steel slab is 500 to 1100 ° C, and the injection time t (min) of the granules is equal to or longer than the time represented by the following formula (1).
t = 10 6 × (300−Y) / (400 · Ts · X) (1)
However,
Ts: Steel slab temperature (° C)
X: Supply amount of granules to the surface of the steel slab (kg · m −2 · min −1 )
Y: Average jetting speed of particles (m · s −1 )
JP2001036769A 2000-02-18 2001-02-14 Surface care method for billets Expired - Fee Related JP4655379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001036769A JP4655379B2 (en) 2000-02-18 2001-02-14 Surface care method for billets

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000041773 2000-02-18
JP2000-41773 2000-02-18
JP2001036769A JP4655379B2 (en) 2000-02-18 2001-02-14 Surface care method for billets

Publications (2)

Publication Number Publication Date
JP2001300625A JP2001300625A (en) 2001-10-30
JP4655379B2 true JP4655379B2 (en) 2011-03-23

Family

ID=26585696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001036769A Expired - Fee Related JP4655379B2 (en) 2000-02-18 2001-02-14 Surface care method for billets

Country Status (1)

Country Link
JP (1) JP4655379B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531533A (en) * 1978-08-22 1980-03-05 Nippon Steel Corp Shot blast device for high temperature rolled material
JPS60149718A (en) * 1984-01-17 1985-08-07 Kobe Steel Ltd Manufacture of hot extruded material using cast billet as blank
JPS6195718A (en) * 1984-10-18 1986-05-14 Daido Steel Co Ltd Descaling method of steel material
JPH0550202A (en) * 1991-08-22 1993-03-02 Nippon Steel Corp Method for grinding billet
JPH0885061A (en) * 1994-09-16 1996-04-02 Nippon Steel Corp Method for maintaining metallic piece
JPH08174034A (en) * 1994-12-21 1996-07-09 Nippon Steel Corp Manufacture of cr stainless steel sheet
JPH0994610A (en) * 1995-09-28 1997-04-08 Kawasaki Steel Corp Production of butt-welded steel tube and equipment line
JPH09192724A (en) * 1996-01-08 1997-07-29 Sumitomo Metal Ind Ltd Manufacture of seamless steel tube by hot extrusion
JPH10128412A (en) * 1996-10-25 1998-05-19 Sumitomo Metal Ind Ltd Manufacture of seamless 13-chromium base stainless steel tube covered with mill scale

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531533A (en) * 1978-08-22 1980-03-05 Nippon Steel Corp Shot blast device for high temperature rolled material
JPS60149718A (en) * 1984-01-17 1985-08-07 Kobe Steel Ltd Manufacture of hot extruded material using cast billet as blank
JPS6195718A (en) * 1984-10-18 1986-05-14 Daido Steel Co Ltd Descaling method of steel material
JPH0550202A (en) * 1991-08-22 1993-03-02 Nippon Steel Corp Method for grinding billet
JPH0885061A (en) * 1994-09-16 1996-04-02 Nippon Steel Corp Method for maintaining metallic piece
JPH08174034A (en) * 1994-12-21 1996-07-09 Nippon Steel Corp Manufacture of cr stainless steel sheet
JPH0994610A (en) * 1995-09-28 1997-04-08 Kawasaki Steel Corp Production of butt-welded steel tube and equipment line
JPH09192724A (en) * 1996-01-08 1997-07-29 Sumitomo Metal Ind Ltd Manufacture of seamless steel tube by hot extrusion
JPH10128412A (en) * 1996-10-25 1998-05-19 Sumitomo Metal Ind Ltd Manufacture of seamless 13-chromium base stainless steel tube covered with mill scale

Also Published As

Publication number Publication date
JP2001300625A (en) 2001-10-30

Similar Documents

Publication Publication Date Title
KR100313619B1 (en) Process and processing lines for manufacturing cold rolled stainless steel strips, titanium alloy strips and other metal strips
JP5220115B2 (en) Titanium slab for hot rolling, its melting method and rolling method
JPH06269839A (en) Descaling method and rolling method for slab
CN111315906A (en) Piercing-rolling machine plug and manufacturing method thereof
JP4655379B2 (en) Surface care method for billets
JP2018099704A (en) Continuous casting method for steel
JPH09271811A (en) Method for manufacturing seamless steel pipe made of duplex stainless steel
CN106140843B (en) A kind of high-pressure water descaling method for alloy-steel plate
JP2586274B2 (en) Method for manufacturing seamless steel pipe of chromium-containing iron-based alloy
JP3024411B2 (en) Brush roll and method of descaling steel material using the same
JP3122545B2 (en) Descaling method of heated slab for rolling
JP2003181522A (en) Method and device for manufacturing steel plate having excellent surface property
JP4001264B2 (en) Manufacturing method of steel with few surface defects
JP3451917B2 (en) Method for manufacturing seamless steel pipe having excellent surface properties without surface hardened layer
JP2011115851A (en) Method of manufacturing seamless steel pipe
JP2624599B2 (en) Method of treating strip-shaped metal body with excellent surface properties
KR200167196Y1 (en) Apparatus for removing surface scale of hot-rolling steel sheet
JPH08103812A (en) Rotary cutting tool for scale removing of hot steel stock and scale removing method
JP2007118028A (en) Method for mechanically descaling steel material
JP2002316206A (en) Shape excellent in surface property, steel for the shape, and method and device for manufacturing them
JP3621736B2 (en) Hot rolling method of pure titanium slab
JP4872478B2 (en) Special steel hot-rolled steel strip and manufacturing method thereof
JP2853559B2 (en) Descaling method in hot rolling
JPH06306455A (en) Manufacture of ferritic stainless steel having little surface flaw
CA1089259A (en) Sheet rolling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees