JP3451917B2 - Method for manufacturing seamless steel pipe having excellent surface properties without surface hardened layer - Google Patents

Method for manufacturing seamless steel pipe having excellent surface properties without surface hardened layer

Info

Publication number
JP3451917B2
JP3451917B2 JP01037798A JP1037798A JP3451917B2 JP 3451917 B2 JP3451917 B2 JP 3451917B2 JP 01037798 A JP01037798 A JP 01037798A JP 1037798 A JP1037798 A JP 1037798A JP 3451917 B2 JP3451917 B2 JP 3451917B2
Authority
JP
Japan
Prior art keywords
steel pipe
cooling
pressure water
temperature
descaling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01037798A
Other languages
Japanese (ja)
Other versions
JPH11209824A (en
Inventor
茂 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP01037798A priority Critical patent/JP3451917B2/en
Publication of JPH11209824A publication Critical patent/JPH11209824A/en
Application granted granted Critical
Publication of JP3451917B2 publication Critical patent/JP3451917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表面硬化層を有し
ない表面性状に優れた継目無鋼管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a seamless steel pipe having no surface hardened layer and having excellent surface properties.

【0002】[0002]

【従来の技術】まず、従来法における継目無鋼管の製造
方法について説明する。従来にあっては、C:0.05〜0.
5 %、Si:1.0 %以下、Mn:0.1 〜1.5 %、Cr:1.0 %
以下を含有した鉄基合金等の一般機械構造用鋼をマンネ
スマン製管法にて継目無鋼管に製造する場合、所定の温
度に加熱された上記成分の中実丸棒状の金属片 (ビレッ
ト) を、まず穿孔圧延機 (ピアサ) に送給し、熱間で穿
孔する。その後、中空素管を後続する圧延機に輸送して
熱間圧延を行って製管してから、最終寸法に仕上げる。
2. Description of the Related Art First, a conventional method for manufacturing a seamless steel pipe will be described. Conventionally, C: 0.05 to 0.
5%, Si: 1.0% or less, Mn: 0.1 to 1.5%, Cr: 1.0%
When manufacturing a steel for general mechanical structures such as iron-based alloys containing the following into a seamless steel pipe by the Mannesmann pipe manufacturing method, a solid round bar-shaped metal piece (billet) with the above components heated to a predetermined temperature is used. First, it is fed to a piercing and rolling machine (piercer), and hot piercing is performed. After that, the hollow shell is transported to a succeeding rolling mill and hot-rolled to make a tube, and then finished to a final size.

【0003】上記の如く行われる製造過程において、鋼
管表面温度は、常に800 ℃以上の高温域にあるため、表
面に酸化スケールが生成する。酸化スケールは熱間圧延
時に一部剥がれるが、最終圧延温度は700 〜1100℃と高
温のため、その後の冷却時に酸化スケールが成長し、冷
却後に行うロータリ・ストレーナでの曲がり矯正時にお
いて、この酸化スケールが押込まれ、表面肌を悪化させ
る。
In the manufacturing process carried out as described above, the surface temperature of the steel pipe is always in a high temperature range of 800 ° C. or higher, so that oxide scale is formed on the surface. Part of the oxide scale peels off during hot rolling, but since the final rolling temperature is as high as 700 to 1100 ° C, the oxide scale grows during the subsequent cooling and this oxidation occurs during bending correction by the rotary strainer performed after cooling. The scale is pushed in and the surface skin is deteriorated.

【0004】そこで、従来においては、酸化スケールが
原因の表面肌悪化対策として、内周に噴射ノズルを多数
備えたトンネルを搬送経路の途中に設置し、高圧水を鋼
管表面に円周方向に均一に吹き付けることにより、酸化
スケールを一旦除去し、スケール厚を薄くすることによ
り、表面肌の改善を試みている。
Therefore, in the past, as a measure against the deterioration of the surface skin due to oxide scale, a tunnel equipped with a large number of injection nozzles was installed in the middle of the conveying path to uniformly distribute high-pressure water on the surface of the steel pipe in the circumferential direction. By spraying on, the oxide scale is once removed, and the scale thickness is thinned to improve the surface texture.

【0005】また、特開平7−18332 号公報に示される
方法では、定径圧延後、雰囲気調整を行った冷却炉およ
びデスケーラを設け、その冷却炉に800 〜900 ℃で鋼管
を挿入し、500 〜600 ℃まで冷却し、その後デスケール
を行い、450 〜550 ℃の温度領域で矯正することによ
り、酸化スケールの押し込みが原因となる表面疵の発生
を抑制しようとしている。
Further, in the method disclosed in Japanese Unexamined Patent Publication (Kokai) No. 7-18332, a cooling furnace and a descaler whose atmosphere is adjusted after constant-diameter rolling are provided, and a steel pipe is inserted into the cooling furnace at 800 to 900 ° C. By cooling to ~ 600 ℃, then descaling and straightening in the temperature range of 450 ~ 550 ℃, we are trying to suppress the generation of surface defects caused by indentation of oxide scale.

【0006】[0006]

【発明が解決しようとする課題】しかし、上述のように
トンネル搬送路において円周方向から高圧水を吹き付け
たデスケールする方法によれば、確かに酸化スケールの
除去の効果は見られるが、一方で、高圧水を吹き付ける
ことにより、鋼管表面は急激に冷却される。そのため、
鋼管肉厚中央部では温度変化がなく、表面のみに硬化層
ができる。この際、上述の方法のように、鋼管表面部の
抜熱が大きい場合、表面部と肉厚中央部において異なる
ミクロ組織を有することになる。このような硬化層を有
すると、鋼管切断時に工具寿命の劣化、加工時の変形抵
抗の増加の原因となる。
However, according to the descaling method in which high-pressure water is sprayed from the circumferential direction in the tunnel transport path as described above, the effect of removing the oxide scale can be surely seen, but on the other hand By spraying high-pressure water, the steel pipe surface is rapidly cooled. for that reason,
There is no temperature change at the center of the wall thickness of the steel pipe, and a hardened layer is formed only on the surface. At this time, when the heat removal of the surface portion of the steel pipe is large as in the above method, the surface portion and the central portion of the wall thickness have different microstructures. The presence of such a hardened layer causes deterioration of the tool life at the time of cutting the steel pipe and increase of deformation resistance at the time of working.

【0007】このような硬化層を有しない鋼管を製造す
るためには、デスケール温度を高くすればよいが、デス
ケール温度を高温にすると、酸化スケールがデスケール
後に成長し、表面性状が悪化する。
In order to manufacture such a steel pipe having no hardened layer, the descale temperature may be raised, but when the descale temperature is raised, the oxide scale grows after the descale and the surface quality deteriorates.

【0008】一方、上記特開平7−18332 号公報に示さ
れる方法は、異なる寸法の鋼管を処理しようとすると、
生産能率の観点から、巨大で雰囲気制御のできる冷却炉
が必要となり、大規模な設備増設およびエネルギー消費
が必要であるという欠点を有している。
On the other hand, the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 7-18332 has the following problems when processing steel pipes having different sizes.
From the viewpoint of production efficiency, there is a drawback that a huge cooling furnace capable of controlling the atmosphere is required, and large-scale equipment addition and energy consumption are required.

【0009】本発明はこのような事情に鑑みてなされた
ものであり、鋼管外面に付着した酸化スケールを確実に
除去し、かつ鋼管表面部に硬化層を有しない、表面性状
の優れた継目無鋼管の製造方法を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and it is possible to reliably remove oxide scale adhering to the outer surface of a steel pipe and to provide a seamless surface having a hardened layer on the surface of the steel pipe and having excellent surface properties. It is an object to provide a method for manufacturing a steel pipe.

【0010】[0010]

【課題を解決するための手段】本発明者らは上記の課題
を達成するにあたり、鋭意試験研究を重ねた。その結
果、鋼組成を規定するとともに、それと、デスケール時
の鋼管の外面温度および鋼管搬送速度を抑制することに
より、そのような課題が解決されることを知り、本発明
を完成した。
[Means for Solving the Problems] In order to achieve the above-mentioned objects, the inventors of the present invention have conducted extensive studies. As a result, they have found that such a problem can be solved by defining the steel composition and suppressing the outer surface temperature of the steel pipe and the steel pipe conveying speed during descaling, and completed the present invention.

【0011】すなわち、製管後の高圧水の吹き付けによ
るデスケールに際して、冷却床への搬送期間中に所要の
デスケールを行うとともに、高圧水の吹き付けにより低
下した鋼管外表面の温度を、冷却床での冷却時にAc3
以上に復熱させることで、前述のような硬化層の生成を
防止することができることを知り、本発明に到達した。
That is, during descaling by blowing high-pressure water after pipe making, required descaling is carried out during the transportation period to the cooling bed, and the temperature of the outer surface of the steel pipe decreased by blowing high-pressure water is measured in the cooling bed. The present invention has been achieved by knowing that it is possible to prevent the formation of a hardened layer as described above by reheating the Ac 3 point or more during cooling.

【0012】さらに、Cr:1.0 %以下を含有したFe基合
金鋼管に圧延後生成している酸化スケールをデスケール
するに際して、鋼管外表面温度および高圧水を吹き付け
る際の鋼管送り速度を制御することにより、鋼管表面部
のミクロ金属組織が鋼管肉厚中央部と同様であり、硬度
上昇しておらず、かつ、優れた表面性状が得られること
を究明し、本発明に到達した。
Further, when descaling the oxide scale produced after rolling on a Fe-based alloy steel pipe containing Cr: 1.0% or less, by controlling the steel pipe outer surface temperature and the steel pipe feed rate when spraying high-pressure water, It has been clarified that the micro metal structure of the surface portion of the steel pipe is similar to that of the central portion of the wall thickness of the steel pipe, the hardness is not increased, and excellent surface properties are obtained, and the present invention has been achieved.

【0013】ここに、本発明は、Cr:1.0 mass%以下の
のビレットを、加熱後、熱間で穿孔、圧延して継目無
鋼管とした後、得られた鋼管の外表面に、高圧水を吹き
付けてデスケールする継目無鋼管の製造方法において、
熱間での圧延後、冷却床への搬送期間中に、鋼管外表面
が850 〜950 ℃の温度域において、高圧水の吹き付け
よりデスケールを行った後、冷却床での空冷による冷却
時に表面温度をAc3 点以上に復熱させことを特徴とす
る表面硬化層を有しない表面性状に優れた継目無鋼管の
製造方法。
In the present invention, the Cr content is 1.0 mass% or less.
Steel billet, after heating, hot piercing, after rolling to make a seamless steel pipe, on the outer surface of the resulting steel pipe, in the method for producing a seamless steel pipe to spray descaling high pressure water,
After hot rolling, during the transportation period to the cooling floor, the outer surface of the steel pipe can be sprayed with high-pressure water in the temperature range of 850 to 950 ℃.
After descaling more , cooling by air cooling in the cooling bed
Sometimes the front surface temperature of the manufacturing method excellent seamless steel pipe surface properties having no hardened surface layer, characterized in that Ru is recuperation three or more points Ac.

【0014】さらに本発明は、Cr:1.0 mass%以下を含
有したのビレットを、加熱後、例えば、ピアサ機によ
り穿孔し、熱間圧延によって定径仕上げを行う継目無鋼
管製造方法において、熱間圧延後、空冷中に、鋼管外表
面が750 〜950 ℃の温度域において、鋼管を下記に示す
R値以上の鋼管送り速度で搬送しながら、150 〜250kgf
/cm2 の高圧水を鋼管外表面に吹き付けてデスケールを
行い次いで、冷却床に搬送し、冷却床での空冷による
冷却時に表面温度をAc 3 点以上に復熱させることを特徴
とする表面硬化層を有しない表面性状に優れた継目無鋼
管の製造方法である。
The present invention further provides a method for producing a seamless steel pipe in which a billet made of steel containing Cr: 1.0 mass% or less is heated and then perforated by, for example, a piercer machine, and a constant-diameter finish is performed by hot rolling. After hot rolling, during air cooling, while the outer surface of the steel pipe is in the temperature range of 750 to 950 ° C, the steel pipe is conveyed at a steel pipe feed speed of not less than the R value shown below, and 150 to 250 kgf.
/ cm high-pressure water 2 is sprayed on the steel pipe outer table surface descaling
Done , then transported to the cooling bed and by air cooling in the cooling bed
A method for producing a seamless steel pipe having an excellent surface quality, which does not have a surface-hardened layer and is characterized in that the surface temperature is reheated to an Ac 3 point or more during cooling .

【0015】 R=25492.1/(T+273)−20.6 ・・・・・・(1) ただし、T:鋼管外表面温度 (℃) 、R:鋼管送り速度
(m/s) このように、本発明にしたがって、例えば最終圧延温度
が800 〜1100℃で仕上がった鋼管を、鋼管表面温度750
〜950 ℃の温度域において、温度の関数である前記R値
の鋼管送り速度以上で搬送しながら、高圧水を吹き付
け、デスケールすることにより、鋼管表面全域におい
て、均一に酸化スケールを剥がし、かつ、鋼管外表面部
と鋼管肉厚中央部の硬度差がビッカース硬度 (1kg) で
30以下の均一な硬度分布を有する鋼管を得ることができ
る。
R = 25492.1 / (T + 273) −20.6 (1) where T: outer surface temperature of steel pipe (° C.), R: steel pipe feed rate
(m / s) As described above, according to the present invention, for example, a steel pipe finished at a final rolling temperature of 800 to 1100 ° C. has a steel pipe surface temperature of 750.
In the temperature range of up to 950 ° C., while conveying at a steel pipe feed rate equal to or higher than the R value that is a function of temperature, by spraying high-pressure water and descaling, the oxide scale is peeled off uniformly over the entire surface of the steel pipe, and The difference in hardness between the outer surface of the steel pipe and the center of the steel pipe wall thickness is the Vickers hardness (1 kg)
A steel pipe having a uniform hardness distribution of 30 or less can be obtained.

【0016】本発明によれば、高圧水の吹き付けは、熱
間圧延後冷却床への搬送期間中に行われることから、例
えば走行する継目無鋼管を取り囲むノズルから高圧水吹
き付けを行うことにより、全周囲にわたってデスケール
が可能となるばかりでなく、高圧水の吹き付け領域を過
ぎれば抜熱もなくなり、過度の表面温度の低下は避けら
れる。
According to the present invention, the high-pressure water is sprayed during the transportation period to the cooling floor after the hot rolling, so that the high-pressure water is sprayed from the nozzle surrounding the running seamless steel pipe, for example. Not only is descaling possible over the entire circumference, but also after passing through the high-pressure water spray area, heat removal is eliminated, and an excessive decrease in surface temperature can be avoided.

【0017】[0017]

【発明の実施の形態】図1は、本発明にかかる継目無鋼
管の製造方法における熱履歴を示す説明図であり、適宜
ビレットは先ず加熱され、次いで穿孔、熱間圧延の製管
工程を経て継目無鋼管に製造される。これらの工程、条
件は本発明において特に制限はなく、慣用のそれを用い
ればよい。仕上げ圧延によって製管した後は、室温にま
で冷却するが、その際に酸化スケールを除去するのであ
る。図中、デスケールと記載してある酸化スケールの除
去工程は、本発明の場合では、製管後高圧水を吹き付け
て行われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view showing the heat history in the method for producing a seamless steel pipe according to the present invention, in which the billet is first heated and then subjected to a pipe-making process of piercing and hot rolling. Manufactured into seamless steel pipe. These steps and conditions are not particularly limited in the present invention, and conventional ones may be used. After the tube is manufactured by finish rolling, it is cooled to room temperature, and the oxide scale is removed at that time. In the case of the present invention, the step of removing oxide scale described as descale in the figure is performed by spraying high-pressure water after pipe production.
Is done.

【0018】本発明において、請求項1では、高圧水を
吹き付けるデスケール時の鋼管表面温度域を酸化スケー
ルを均一に剥がすことのできる850 〜950 ℃とした。こ
れは、850 ℃未満であると、高圧水を吹き付けた後、鋼
管表面温度がAc3 点に復熱できない場合があるためであ
り、また、950 ℃超では酸化スケール除去後に再び酸化
スケールが厚く生成するためである。請求項2では高圧
水を吹き付けるデスケール時の鋼管表面温度域は、酸化
スケールを最も均一に剥がすことのできる750〜950 ℃
とした。これは、本発明において、高圧水の圧力は、通
常、元圧で150〜250 kgf/cm2 程度であり、この圧力の
水を用いた場合、750 ℃未満では十分に酸化スケールを
除去することができず、また、950 ℃超では、酸化スケ
ール除去後に、再び酸化スケールが厚く生成するためで
ある。
In the present invention, in claim 1, the temperature range of the steel pipe surface at the time of descaling by spraying high-pressure water is set to 850 to 950 ° C. at which the oxide scale can be uniformly peeled off. This is because if the temperature is lower than 850 ° C, the steel pipe surface temperature may not be able to reheat to the Ac 3 point after spraying high-pressure water, and if it exceeds 950 ° C, the oxide scale becomes thick again after the oxide scale is removed. This is to generate. In claim 2, the temperature range of the steel pipe surface at the time of descaling by spraying high-pressure water is 750 to 950 ° C at which the oxide scale can be peeled most uniformly.
And This is because in the present invention, the pressure of the high-pressure water is usually about 150 to 250 kgf / cm 2 at the original pressure, and when water of this pressure is used, oxide scale can be sufficiently removed at a temperature of less than 750 ° C. This is because the oxide scale cannot be formed, and above 950 ° C., the oxide scale is thickly formed again after the oxide scale is removed.

【0019】高圧水を吹き付けるのは、熱間圧延後冷却
床へ搬送する期間中であるが、このとき継目無鋼管は、
例えば図2に模式的に示すように、走行する継目無鋼管
12の全周囲から、通常デスケ水管と呼ばれる円形ノズル
10を用いて高圧水14を吹き付けることによりデスケール
は効果的に行われ、その後は、容易に復熱が行われる。
このようなノズルは必要により複数設けてもよい。従来
のように冷却炉を設け、固定した位置に置かれた鋼管の
全周囲から複数の高圧水ノズルを用いて高圧水を吹き付
ける必要はない。なお、このときのノズルの位置、数
は、酸化スケールが効果的に取り除ける限り、特に制限
はない。
The high-pressure water is sprayed during the period of hot rolling and transportation to the cooling floor. At this time, the seamless steel pipe is
For example, as shown schematically in FIG. 2, a running seamless steel pipe
Circular nozzle, usually called Desuke water pipe, from all around 12
Descaling is effectively performed by spraying high-pressure water 14 with 10, and then recuperation is easily performed.
If desired, a plurality of such nozzles may be provided. It is not necessary to provide a cooling furnace and spray high-pressure water from the entire circumference of a steel pipe placed at a fixed position using a plurality of high-pressure water nozzles as in the conventional case. The position and number of nozzles at this time are not particularly limited as long as the oxide scale can be effectively removed.

【0020】また、本発明の好適態様では、上記温度域
で高圧水を吹き付けた際に、表面硬化層の生成防止方法
として、Ac3 点以上からAc3 点以下に一旦低下した鋼管
外表面温度が、再びAc3 点以上に復熱するように、例え
ばデスケール時の鋼管送り速度と鋼管外表面温度を制御
するが、本発明のさらなる好適態様にあっては、その制
御方法として、デスケール時の鋼管送り速度をデスケー
ル時の各鋼管外表面温度の関数とした計算式を構築し、
臨界鋼管送り速度値Rを求めた。鋼管送り速度R値以上
であるとき、表面硬化層を生成しない条件でデスケール
ができる。
[0020] In the preferred embodiment of the present invention, when sprayed with high pressure water at the above temperature range, as a generation method for preventing surface hardened layer, once reduced steel pipe outer surface temperature below Ac 3 point from the Ac 3 point or more However, so as to reheat to the Ac 3 point or more again, for example, the steel pipe feed rate and the steel pipe outer surface temperature at the time of descaling are controlled, but in a further preferred aspect of the present invention, as a control method thereof, at the time of descaling, Established a formula to calculate the steel pipe feed rate as a function of the outer surface temperature of each steel pipe during descaling,
The critical steel pipe feed rate value R was determined. When the steel pipe feed rate is R value or more, descaling can be performed under the condition that the surface hardened layer is not formed.

【0021】鋼管のミクロ組織がAc3 点以上の温度でデ
スケールした場合、高圧水を吹き付けた後、急冷された
鋼管表面が、再びAc3 点以上の温度に復熱され、十分な
時間だけ、オーステナイト領域の温度にあれば、表面部
と肉厚中央部のミクロ組織が異なることはない。しか
し、高圧水を吹き付けた後、Ac3 点以上の温度に復熱し
ない場合、表面部は急冷された際のミクロ組織が変化せ
ず、肉厚中央部と異なるミクロ組織をもつことになる。
この場合、表面部がベイナイト組織となり、肉厚中央部
がフェライトとパーライトの混合組織となり、表面部の
硬度が上昇する。また、高圧水を吹き付けた後、Ac3
直上に復熱した場合、表面部は、オーステナイト組織に
一旦変態することにより、急冷時に生成したミクロ組織
は消え去るが、十分な時間だけ、オーステナイト領域の
温度に滞在しないため、結晶粒の成長が進まず、表面部
は肉厚中央部より細い粒径のミクロ組織を有することと
なり、表面部に硬い層をつくる。
When the microstructure of the steel pipe is descaled at a temperature of Ac 3 point or higher, after the high pressure water is sprayed, the quenched steel pipe surface is reheated to a temperature of Ac 3 point or higher again for a sufficient time. If the temperature is in the austenite region, the microstructures of the surface portion and the central portion of the wall thickness do not differ. However, after the high-pressure water is sprayed, if the temperature is not reheated to the Ac 3 point or higher, the surface microstructure does not change when it is rapidly cooled, and has a microstructure different from the thickness center part.
In this case, the surface portion has a bainite structure, the central portion of the wall thickness has a mixed structure of ferrite and pearlite, and the hardness of the surface portion increases. Also, after spraying high-pressure water, when reheated to just above the Ac 3 point, the surface portion once transformed into an austenite structure, the microstructure generated during quenching disappears, but for a sufficient time, austenite region Since it does not stay at the temperature, the growth of crystal grains does not proceed, and the surface portion has a microstructure with a grain diameter smaller than the central portion of the wall thickness, forming a hard layer on the surface portion.

【0022】このようなことを回避するために、デスケ
ール時の鋼管外表面温度に合わせて高圧水を吹き付ける
ことによる抜熱量を変化させる必要がある。吹き付ける
水の圧力または水量を減少させると、酸化スケールの剥
離量が小さくなり、鋼管の表面性状が悪化する。
In order to avoid such a situation, it is necessary to change the heat removal amount by spraying high-pressure water according to the outer surface temperature of the steel pipe during descaling. If the pressure or amount of water sprayed is reduced, the amount of oxide scale peeled off will decrease and the surface properties of the steel pipe will deteriorate.

【0023】そこで、本発明においては、より実操業で
制御し易い鋼管送り速度に注目し、鋼管送り速度を鋼管
外表面温度の関数として、前記に記載した計算式によっ
て管理した。このことにより、表面部に硬化層を有しな
い鋼管の製造が可能である。これらの間の関係を規定す
るのが、前述の式(1) である。
Therefore, in the present invention, paying attention to the steel pipe feed rate which is easier to control in the actual operation, the steel pipe feed rate is controlled as a function of the steel pipe outer surface temperature by the above-described calculation formula. This makes it possible to manufacture a steel pipe having no hardened layer on its surface. Equation (1) above defines the relationship between them.

【0024】冷却床においては空冷で室温にまで冷却す
るが、必要により、水冷などの急速冷却を行ってもよ
く、あるいは前半を空冷し、後半を急冷としてもよい。
しかし、冷却床での冷却は、復熱したAc3 点から十分な
時間をかけて室温にまで持ち来すことであり、オーステ
ナイト領域での保持時間を可及的大とすることが望まし
い。
The cooling bed is cooled to room temperature by air cooling, but if necessary, rapid cooling such as water cooling may be performed, or the first half may be air cooled and the latter half may be rapidly cooled.
However, cooling in the cooling bed is to bring the reheated Ac 3 point to room temperature over a sufficient time, and it is desirable to keep the holding time in the austenite region as long as possible.

【0025】次に、本発明の好適態様にあってCr量を1
mass%以下とした理由は、Cr量が増加するに従い酸化ス
ケールの性質が異なり、高圧水を吹き付けただけではス
ケールを剥離することが困難となる。そのため本発明の
方法でスケールを除去できる1mass%以下の鋼とした。
次に、実施例によって本発明の作用効果についてさらに
具体的に説明する。
Next, in the preferred embodiment of the present invention, the Cr content is 1
The reason why the content is less than mass% is that the properties of the oxide scale differ as the amount of Cr increases, and it becomes difficult to exfoliate the scale simply by spraying high-pressure water. Therefore, the steel of which the scale can be removed by the method of the present invention is 1 mass% or less.
Next, the working effects of the present invention will be described more specifically by way of examples.

【0026】[0026]

【実施例】表1に示す成分組成の鋼A〜Fを通常の方法
により溶解し、連続鋳造によって得られた各々の外径の
ビレットを素材とし、図1で示す工程概略図の通り、12
00〜1250℃でビレットを加熱し、ピアサ機にて穿孔、圧
延機において種々の外径、肉厚に仕上げ圧延を行い、継
目無鋼管とした。
EXAMPLES Steels A to F having the compositional compositions shown in Table 1 were melted by a usual method, and billets having respective outer diameters obtained by continuous casting were used as raw materials.
The billet was heated at 00 to 1250 ° C, pierced by a piercer machine, and finish-rolled to various outer diameters and wall thicknesses by a rolling machine to obtain a seamless steel pipe.

【0027】その後、表2に示す種々の条件でデスケー
ルを行った。高圧水の吹き付けは図2に示す円形ノズル
を用い、1ケ所で行った。デスケール時に鋼管外表面に
吹き付けた高圧水の元圧は、150 〜250 kgf/cm2 であっ
た。
After that, descaling was performed under various conditions shown in Table 2. The high-pressure water was sprayed at one place using the circular nozzle shown in FIG. The source pressure of the high-pressure water sprayed on the outer surface of the steel pipe during descaling was 150 to 250 kgf / cm 2 .

【0028】デスケールした鋼管は、冷却床にて空冷
し、ロータリ・ストレートナで曲がり矯正圧延を行った
後、鋼管の表面性状を目視観察し、主として酸化スケー
ルに起因する表面疵の発生頻度と深さを調査した。その
ときの表面疵は次の基準によって評価した。
The descaled steel pipe is air-cooled in a cooling bed, straightened and straightened by a rotary straightener, and then visually observed for surface properties of the steel pipe, and the occurrence frequency and depth of surface defects mainly due to oxide scale are observed. Was investigated. The surface defects at that time were evaluated according to the following criteria.

【0029】<評価基準> 良好 (○) :7個/m2以下で、かつ全ての疵深さが0.2
mm以下 不芳 (×) :上記以外の全ての場合 さらに、鋼管の一部を切断して試料を採取し、その断面
においてエッチングを行い、ミクロ組織観察を行った。
また、併せて、この試料断面においてビッカース硬さ試
験を実施した。ビッカース硬さ試験の荷重は1kgとし、
外表面から0.5mm位置において3点測定し、外表面部の
硬さとした。また、肉厚中央においても3点測定し、こ
れを肉厚中央部の硬さとした。この結果を表2にデスケ
ール条件と併せて記載する。
<Evaluation Criteria> Good (○): 7 pieces / m 2 or less and all the flaw depths are 0.2.
mm or less unfavorable (x): In all cases other than the above, a part of the steel pipe was further cut to obtain a sample, and the cross section was etched for microstructure observation.
In addition, in addition, a Vickers hardness test was performed on the cross section of this sample. The load for the Vickers hardness test is 1 kg,
Three points were measured at a position of 0.5 mm from the outer surface, and the hardness of the outer surface portion was determined. In addition, three points were also measured at the center of the wall thickness, and this was taken as the hardness at the center of the wall thickness. The results are shown in Table 2 together with the descaling conditions.

【0030】図3はこれらの結果を、デスケール時の継
目無鋼管の送り速度と鋼管外表面温度で整理して示すグ
ラフである。 ただし、○:良好な継目無鋼管 △:表面性状が良好であるが、硬化層を有する継目無鋼
管 ×:表面性状が不芳である継目無鋼管
FIG. 3 is a graph showing these results organized by the feed rate of the seamless steel pipe at the time of descaling and the outer surface temperature of the steel pipe. However, ◯: Good seamless steel pipe Δ: Seamless steel pipe having good surface properties but having a hardened layer ×: Seamless steel pipe having poor surface properties

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】表2に示すように、本発明の製造法では、
外表面に酸化スケールの押込みが起因の疵は、ほとんど
発生せず、表面性状に優れている。これに対し、表3に
示す比較材では、デスケール時の鋼管表面温度が750 ℃
未満である場合、および、950 ℃超である場合では、表
面部に酸化スケールの押込みが起因であると推定される
疵が無数に観察され、表面性状は、不芳であった。
As shown in Table 2, in the production method of the present invention,
Defects caused by indentation of oxide scale on the outer surface hardly occur and the surface quality is excellent. On the other hand, in the comparative materials shown in Table 3, the steel pipe surface temperature during descaling is 750 ° C.
When the temperature was less than 950 ° C. and when the temperature was higher than 950 ° C., numerous flaws presumed to be caused by indentation of oxide scale were observed on the surface, and the surface properties were poor.

【0035】表2に示す本発明法では、デスケール時の
鋼管表面温度が変化しても、鋼管表面部に肉厚中央部と
異なるミクロ組織を有しておらず、鋼管外表面部のビッ
カース硬さと肉厚中央部のビッカース硬さの差が30以下
と、硬度上昇も発生していなかった。このように本発明
によれば、高圧水の吹き付けにより低下した鋼管外表面
温度がAc3 点以上に復熱していることが分かる。
In the method of the present invention shown in Table 2, even if the surface temperature of the steel pipe during descaling changes, the steel pipe surface does not have a microstructure different from the central portion of the wall thickness, and the Vickers hardness of the outer surface of the steel pipe is And the difference in Vickers hardness of the central portion of the wall thickness was 30 or less, no increase in hardness was observed. As described above, according to the present invention, it is understood that the outer surface temperature of the steel pipe, which has been lowered by spraying the high-pressure water, is reheated to the Ac 3 point or higher.

【0036】一方、表3に示す比較材では、デスケール
時の温度が本発明の範囲内であって、外表面性状が良好
な鋼管であっても、鋼管表面部に肉厚中央部と異なるミ
クロ組織を有しており、硬度差も大きくなっている。こ
のように、従来のようにデスケール時の温度だけを制御
するデスケール方法では、鋼管外表面に硬化層を有する
こととなる。さらに図3からは、前述の式(1) を満足す
ることにより表面性状が改善されることが分かる。
On the other hand, in the comparative materials shown in Table 3, the temperature at the time of descaling is within the range of the present invention, and even if the steel pipe has a good outer surface property, the microscopic surface of the steel pipe is different from the central portion of the wall thickness. It has a texture and the difference in hardness is large. As described above, in the conventional descaling method in which only the temperature during descaling is controlled, a hardened layer is provided on the outer surface of the steel pipe. Further, it can be seen from FIG. 3 that the surface texture is improved by satisfying the above-mentioned formula (1).

【0037】[0037]

【発明の効果】このように、本発明にしたがって、高圧
水を吹き付ける際の鋼管外表面温度を、鋼管搬送期間中
に制御することで、またさらに鋼管送り速度を特定する
ことにより、表面性状に優れ、かつ硬化層を有しない継
目無鋼管を製造することができる。
As described above, according to the present invention, by controlling the outer surface temperature of the steel pipe when the high-pressure water is sprayed during the steel pipe transportation period, and further by specifying the steel pipe feeding speed, the surface texture can be obtained. It is possible to produce a seamless steel pipe which is excellent and has no hardened layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における継目無鋼管の製造工程の概略図
である。
FIG. 1 is a schematic view of a manufacturing process of a seamless steel pipe in an example.

【図2】本発明において用いる高圧水吹き付け手段の模
式的説明図である。
FIG. 2 is a schematic explanatory view of high-pressure water spraying means used in the present invention.

【図3】実施例における本発明方法により製造した継目
無鋼管と比較した継目無鋼管の評価図である。
FIG. 3 is an evaluation diagram of a seamless steel pipe in comparison with a seamless steel pipe manufactured by the method of the present invention in Examples.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 9/00 - 9/44,9/50 C21D 1/02 - 1/84 C21D 7/00 - 8/10 B21B 45/02 B21B 17/00 - 25/06 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C21D 9/00-9/44, 9/50 C21D 1/02-1/84 C21D 7/00-8 / 10 B21B 45/02 B21B 17/00-25/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Cr:1.0 mass%以下ののビレットを、
加熱後、熱間で穿孔、圧延して継目無鋼管とした後、得
られた鋼管の外表面に、高圧水を吹き付けてデスケール
する継目無鋼管の製造方法において、熱間での圧延後、
冷却床への搬送期間中に、鋼管外表面が850 〜950 ℃の
温度域において、高圧水の吹き付けによりデスケールを
行った後、冷却床での空冷による冷却時に表面温度をAc
3 点以上に復熱させることを特徴とする表面硬化層を有
しない表面性状に優れた継目無鋼管の製造方法。
1. A steel billet containing Cr: 1.0 mass% or less,
After heating, perforating hot, after rolling to make a seamless steel pipe, on the outer surface of the resulting steel pipe, in the method for producing a seamless steel pipe to descale by blowing high pressure water, after hot rolling,
During transportation to the cooling floor, descaling is performed by spraying high-pressure water on the outer surface of the steel pipe in the temperature range of 850 to 950 ° C.
After, Ac surface temperature during cooling by air cooling in the cooling bed
Method for producing a good seamless steel pipe surface properties having no hardened surface layer, characterized in that to recuperation three or more points.
【請求項2】 Cr:1.0 mass%以下ののビレットを、
加熱後、熱間で穿孔、圧延して継目無鋼管とした後、得
られた鋼管の外表面に、鋼管外表面温度が750 〜950 ℃
の温度域で、下記に示すRの値以上の鋼管送り速度で搬
送しながら、150 〜250 kgf/cm2 の高圧水を吹き付け
デスケールを行い、次いで、前記鋼管を冷却床に搬送
し、冷却床での空冷による冷却時に表面温度をAc 3 点以
上に復熱させることを特徴とする表面硬化層を有しない
表面性状に優れた継目無鋼管の製造方法。 R=25492.1/(T+273)−20.6 ただし、T:鋼管外表面温度 (℃) 、R:鋼管送り速度
(m/s)
2. A steel billet containing Cr: 1.0 mass% or less,
After heating, after hot piercing and rolling to make a seamless steel pipe, the steel pipe outer surface temperature is 750 to 950 ℃ on the outer surface of the obtained steel pipe.
In the temperature range, while conveying the value or more steel feed rate R shown below, by spraying high-pressure water of 150 ~250 kgf / cm 2
Descaling was performed , then the steel pipe was transported to the cooling bed, and the surface temperature during cooling by air cooling on the cooling bed was set to Ac 3 points or less.
A method for producing a seamless steel pipe having an excellent surface property, which does not have a surface-hardened layer, which is characterized in that it is reheated . R = 25492.1 / (T + 273) -20.6 However, T: Steel pipe outer surface temperature (° C), R: Steel pipe feed rate
(m / s)
JP01037798A 1998-01-22 1998-01-22 Method for manufacturing seamless steel pipe having excellent surface properties without surface hardened layer Expired - Fee Related JP3451917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01037798A JP3451917B2 (en) 1998-01-22 1998-01-22 Method for manufacturing seamless steel pipe having excellent surface properties without surface hardened layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01037798A JP3451917B2 (en) 1998-01-22 1998-01-22 Method for manufacturing seamless steel pipe having excellent surface properties without surface hardened layer

Publications (2)

Publication Number Publication Date
JPH11209824A JPH11209824A (en) 1999-08-03
JP3451917B2 true JP3451917B2 (en) 2003-09-29

Family

ID=11748455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01037798A Expired - Fee Related JP3451917B2 (en) 1998-01-22 1998-01-22 Method for manufacturing seamless steel pipe having excellent surface properties without surface hardened layer

Country Status (1)

Country Link
JP (1) JP3451917B2 (en)

Also Published As

Publication number Publication date
JPH11209824A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
EP0842715A1 (en) Seamless steel pipe manufacturing method and equipment
EP0787541B1 (en) Method of manufacturing seamless steel pipes and manufacturing equipment therefor
EP1159091B1 (en) Method for manufacturing of strips and rolling mill line
WO2019087510A1 (en) Piercing plug and manufacturing method therefor
JP2000271603A (en) Hot-rolling method of extra-thin strip and rolling apparatus
JP2002086252A (en) Continous casting method
JP3307294B2 (en) Manufacturing method of seamless steel pipe with excellent surface properties and equipment for manufacturing seamless steel pipe
JP4946223B2 (en) Steel pipe manufacturing equipment line
KR20210118394A (en) Method of manufacturing stainless steel strip
JP3451917B2 (en) Method for manufacturing seamless steel pipe having excellent surface properties without surface hardened layer
JP3694967B2 (en) Method for producing martensitic stainless steel seamless steel pipe
JP2586274B2 (en) Method for manufacturing seamless steel pipe of chromium-containing iron-based alloy
JPH10291008A (en) Tool for hot making tube and its manufacture
JP3425017B2 (en) Manufacturing method of hot rolled steel sheet
JPH06145793A (en) Method for preventing decarburization of seamless steel tube
JPH1177142A (en) Production of hot rolled stainless steel plate
JP2019072750A (en) Seamless steel pipe manufacturing method
KR100940658B1 (en) A Manufacturing Method of Hot Rolled Wire Rod Having Excellent Ability of Descaling
JP6943233B2 (en) Descaling method of steel strips for cold rolling
JPH06240357A (en) Production of high toughness and high strength steel pipe
JP3724130B2 (en) Thin scale steel pipe and manufacturing method thereof
JP4655379B2 (en) Surface care method for billets
JPH09291311A (en) Method and equipment for manufacturing hot rolled stainless steel plate excellent in surface characteristic and descaling property
JPH09287024A (en) Production of ferritic stainless steel seamless pipe
JP3422891B2 (en) Manufacturing method of hot rolled steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees