JPH10291008A - Tool for hot making tube and its manufacture - Google Patents

Tool for hot making tube and its manufacture

Info

Publication number
JPH10291008A
JPH10291008A JP10146197A JP10146197A JPH10291008A JP H10291008 A JPH10291008 A JP H10291008A JP 10146197 A JP10146197 A JP 10146197A JP 10146197 A JP10146197 A JP 10146197A JP H10291008 A JPH10291008 A JP H10291008A
Authority
JP
Japan
Prior art keywords
steel
tool
hot
plug
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10146197A
Other languages
Japanese (ja)
Inventor
Yasutaka Okada
康孝 岡田
Tetsuya Nakanishi
哲也 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10146197A priority Critical patent/JPH10291008A/en
Publication of JPH10291008A publication Critical patent/JPH10291008A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an inexpensive tool for hot making tubes which is used for a tool for rolling the inside surface at the time of manufacturing a long-size thin-wall seamless tube of carbon steel and low-alloy steel and its manufacturing method. SOLUTION: This tool is the tool for hot making the tubes which has a scale layer on the surface of the substrate made of steel having composition consisting of 0.10 to <0.20% C, 0.01-1.0% Si, 0.3-1.0% Mn, 0.5-4.0% Ni, 1.0-4.0% Cr, 0.05-1.0% Mo, 0-0.040% Al, 0-1.0% W, 0-1.0% Ti, 0-0.01% B, <=0.035% P, <=0.035% S and the balance Fe with impurities and the inner layer of the scale layer which is a spinel type multiple oxide of 50-300 μm thick. In the manufacturing method thereof, the steel having the above-mentioned composition is made into a tool shape by casting, machining after casting and machining after hot- working and, after that, heat treatment for scaling is executed. Shot-peening may be executed before the heat treatment for scaling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マンネスマン製管
方式により継目無管を製造する際の穿孔圧延や延伸圧延
で内面圧延工具として使用される熱間製管用工具及びそ
の製造方法に関し、より詳しくは、マンネスマン製管方
式により炭素鋼や低合金鋼の継目無管、なかでも薄肉・
長尺継目無管を製造する際の内面圧延工具として使用さ
れる耐シワ・肌荒れ発生特性、耐熱亀裂発生特性及び耐
亀裂進展性に優れた熱間製管用工具及びその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot pipe making tool used as an inner rolling tool in piercing and elongation rolling when manufacturing a seamless pipe by a Mannesmann pipe making method, and a method for manufacturing the same. Is a seamless pipe made of carbon steel or low alloy steel by the Mannesmann pipe method,
The present invention relates to a hot pipe making tool which is used as an inner rolling tool for producing a long seamless pipe and has excellent wrinkle and rough surface generation resistance, heat crack generation resistance and crack propagation resistance, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】マンネスマン製管方式による継目無管の
製造工程は、大別して傾斜ロール式の2ロール式ピアサ
ーや3ロール式ピアサーあるいは孔型ロール式のプレス
ロールピアシングミルなどの圧延機を使用する穿孔圧延
工程と、これに続く傾斜ロール式の2ロールエロンゲー
ター(延伸機)などを使用する延伸圧延工程とからなっ
ている。そして、これらの圧延工程には内面圧延用工具
(ピアサープラグやマンドレルなど、以下、「内面圧延
用工具」を単に「工具」ともいう)を欠くことができな
い。
2. Description of the Related Art The process of manufacturing a seamless pipe by the Mannesmann pipe method generally uses a rolling machine such as an inclined roll type two-roll piercer, a three-roll piercer, or a roll-type press roll piercing mill. The piercing and rolling process is followed by a stretching and rolling process using an inclined roll type two-roll elongator (stretching machine) or the like. In these rolling steps, an internal rolling tool (a piercer plug, a mandrel, or the like, hereinafter, the “internal rolling tool” is also simply referred to as a “tool”) cannot be omitted.

【0003】炭素鋼や低合金鋼の継目無管を製造する際
の内面圧延用工具、例えば穿孔圧延用工具であるピアサ
ープラグなどとしては、従来、重量%で0.3%C−3
%Cr−1%Niを主成分とする鋼(以下、3Cr−1
Ni鋼という)の鋳造材を切削加工した鋼製基体の表面
に酸化スケ−ルを形成させたものが使用されてきた。こ
れは、酸化スケ−ルが工具表面の断熱性を高めて工具表
面が高温にさらされるのを防止し、しかも高温での潤滑
性を高める機能を有しているためである。なお、本明細
書における以下の記載においては「外表面」のことを単
に「表面」といい、「内表面」を指す場合には特に「内
表面」という。
[0003] Conventionally, as a tool for inner surface rolling when producing a seamless pipe of carbon steel or low alloy steel, for example, a piercer plug which is a tool for piercing and rolling, conventionally, 0.3% by weight of C-3 is used.
% Cr-1% Ni-based steel (hereinafter referred to as 3Cr-1
A steel substrate obtained by cutting a cast material of Ni steel) and forming an oxide scale on the surface thereof has been used. This is because the oxide scale has the function of increasing the heat insulation of the tool surface, preventing the tool surface from being exposed to high temperatures, and improving the lubricity at high temperatures. In the following description of the present specification, the “outer surface” is simply referred to as “surface”, and the “inner surface” is particularly referred to as “inner surface”.

【0004】しかし、ステンレス鋼や高Cr鋼の継目無
管を製造する場合には、製管温度での変形抵抗が高い。
したがって、上記の3Cr−1Ni鋼製基体の表面に酸
化スケ−ルを形成させた工具をステンレス鋼や高Cr鋼
の継目無管の製造に用いると、工具寿命が極めて短いも
のとなってしまいコストが嵩んでしまう。このため、本
発明者らは、先に特開平7−60314号公報において
ステンレス鋼や高Cr鋼の継目無管を製造する際に使用
する「熱間製管用工具及びその製造方法」を提案した。
[0004] However, when a seamless pipe of stainless steel or high Cr steel is manufactured, the deformation resistance at the pipe forming temperature is high.
Therefore, if a tool in which an oxide scale is formed on the surface of the above 3Cr-1Ni steel base is used for the production of a seamless tube of stainless steel or high Cr steel, the tool life becomes extremely short and the cost is reduced. Will increase. For this reason, the present inventors have previously proposed, in Japanese Patent Application Laid-Open No. 7-60314, "a tool for hot pipe making and a method of manufacturing the same" used for manufacturing a seamless pipe of stainless steel or high Cr steel. .

【0005】なお、化学成分として重量%で、C:0.
20〜0.40%、Si:0.30〜1.00%、M
n:0.30〜1.00%、Cr:1.00〜4.00
%、Ni:0.50〜4.00%を含有する鋼が一般的
な3Cr−1Ni鋼として知られている。
[0005] In addition, C: 0.
20-0.40%, Si: 0.30-1.00%, M
n: 0.30 to 1.00%, Cr: 1.00 to 4.00
%, Ni: 0.50 to 4.00% is known as a general 3Cr-1Ni steel.

【0006】一方、最近マンネスマン製管方式により炭
素鋼や低合金鋼の薄肉・長尺継目無管を製造することが
増えてきた。薄肉・長尺の継目無管を製造する場合に
は、穿孔長さが増加することにより工具に負荷される面
圧が高くなり、表面温度も上昇するので工具寿命は著し
く低下してしまう。このため、炭素鋼や低合金鋼の薄肉
・長尺継目無管を製造する場合に、前記の特開平7−6
0314号公報で提案した工具を使用して工具寿命を改
善することが考えられる。
On the other hand, recently, a thin and long seamless pipe made of carbon steel or low alloy steel has been increasingly manufactured by the Mannesmann pipe system. In the case of manufacturing a thin and long seamless pipe, the surface pressure applied to the tool increases due to the increase in the perforation length, and the surface temperature also increases, so that the tool life is significantly reduced. For this reason, when manufacturing a thin-walled and long-seamless seamless pipe of carbon steel or low alloy steel, the above-mentioned Japanese Patent Application Laid-Open No.
It is conceivable to use the tool proposed in Japanese Patent No. 0314 to improve the tool life.

【0007】しかし、本発明者らが前記の公報で提案し
た工具は、重量%でMo及びWの1種以上を合計で1.
5〜8.0%も含むため素材コストが高く、しかもスケ
ール付けの熱処理条件が複雑なためコストが嵩んでしま
う。したがって、従来タイプの3Cr−1Ni鋼を基本
とした安価な組成の鋼製基体からなる工具の寿命を向上
させ、これを使用してマンネスマン製管方式により炭素
鋼や低合金鋼の薄肉・長尺継目無管を製造することが望
まれている。
[0007] However, the tool proposed by the present inventors in the above-mentioned gazette contains at least one of Mo and W in weight% for a total of 1.%.
The material cost is high because it contains 5 to 8.0%, and the cost increases because the heat treatment conditions for scaling are complicated. Therefore, the life of a tool made of a steel base having an inexpensive composition based on a conventional type 3Cr-1Ni steel is improved, and a thin and long carbon steel or low alloy steel made of a carbon steel or a low alloy steel is manufactured by using the tool. It is desired to produce a seamless tube.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記現状に
鑑みなされたもので、マンネスマン製管方式により炭素
鋼や低合金鋼の継目無管、なかでも薄肉・長尺の継目無
管を製造する際の内面圧延工具として使用される耐シワ
・肌荒れ発生特性、耐熱亀裂発生特性及び耐亀裂進展性
に優れた廉価な熱間製管用工具及びその製造方法を提供
することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has been developed to manufacture a seamless pipe of carbon steel or low alloy steel, especially a thin-walled and long seamless pipe by a Mannesmann pipe manufacturing method. An object of the present invention is to provide an inexpensive hot pipe making tool excellent in wrinkle and rough surface generation characteristics, heat crack generation characteristics, and crack growth resistance used as an internal rolling tool when performing the inside rolling tool, and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、下記
(1)に示す熱間製管用工具及び(2)〜(4)に示す
熱間製管用工具の製造方法にある。
The gist of the present invention resides in a method for manufacturing a hot pipe making tool shown in the following (1) and a hot pipe making tool shown in the following (2) to (4).

【0010】(1)重量%で、C:0.10%以上0.
20%未満、Si:0.01〜1.0%、Mn:0.3
〜1.0%、Ni:0.5〜4.0%、Cr:1.0〜
4.0%、Mo:0.05〜1.0%、Al:0〜0.
040%、W:0〜1.0%、Ti:0〜1.0%、
B:0〜0.01%、不純物としてのP:0.035%
以下、S:0.035%以下、残部はFe及び不可避不
純物の組成の鋼製基体の表面にスケール層を有し、その
スケール層の内層が厚さ50〜300μmのスピネル型
の複合酸化物であることを特徴とする熱間製管用工具。
(1) By weight%, C: 0.10% or more.
Less than 20%, Si: 0.01 to 1.0%, Mn: 0.3
1.0%, Ni: 0.5 to 4.0%, Cr: 1.0 to
4.0%, Mo: 0.05-1.0%, Al: 0-0.
040%, W: 0 to 1.0%, Ti: 0 to 1.0%,
B: 0 to 0.01%, P as an impurity: 0.035%
Hereinafter, S: 0.035% or less, the balance having a scale layer on the surface of a steel substrate having a composition of Fe and unavoidable impurities, and an inner layer of the scale layer being a spinel-type composite oxide having a thickness of 50 to 300 μm. A hot pipe making tool characterized by the following.

【0011】(2)重量%で、C:0.10%以上0.
20%未満、Si:0.01〜1.0%、Mn:0.3
〜1.0%、Ni:0.5〜4.0%、Cr:1.0〜
4.0%、Mo:0.05〜1.0%、Al:0〜0.
040%、W:0〜1.0%、Ti:0〜1.0%、
B:0〜0.01%、不純物としてのP:0.035%
以下、S:0.035%以下、残部はFe及び不可避不
純物の組成からなる鋼を、鋳造により又は鋳造後に機械
加工して工具形状とし、その後スケール付けのための熱
処理を行うことを特徴とする熱間製管用工具の製造方
法。
(2) C: 0.10% to 0.1% by weight.
Less than 20%, Si: 0.01 to 1.0%, Mn: 0.3
1.0%, Ni: 0.5 to 4.0%, Cr: 1.0 to
4.0%, Mo: 0.05-1.0%, Al: 0-0.
040%, W: 0 to 1.0%, Ti: 0 to 1.0%,
B: 0 to 0.01%, P as an impurity: 0.035%
In the following, S: 0.035% or less, the balance being steel having a composition of Fe and unavoidable impurities is machined by casting or after casting into a tool shape, and then heat treatment for scaling is performed. Manufacturing method for hot pipe making tools.

【0012】(3)重量%で、C:0.10%以上0.
20%未満、Si:0.01〜1.0%、Mn:0.3
〜1.0%、Ni:0.5〜4.0%、Cr:1.0〜
4.0%、Mo:0.05〜1.0%、Al:0〜0.
040%、W:0〜1.0%、Ti:0〜1.0%、
B:0〜0.01%、不純物としてのP:0.035%
以下、S:0.035%以下、残部はFe及び不可避不
純物の組成からなる鋼を、熱間加工後に機械加工して工
具形状とし、その後スケール付けのための熱処理を行う
ことを特徴とする熱間製管用工具の製造方法。
(3) By weight%, C: 0.10% or more.
Less than 20%, Si: 0.01 to 1.0%, Mn: 0.3
1.0%, Ni: 0.5 to 4.0%, Cr: 1.0 to
4.0%, Mo: 0.05-1.0%, Al: 0-0.
040%, W: 0 to 1.0%, Ti: 0 to 1.0%,
B: 0 to 0.01%, P as an impurity: 0.035%
In the following, S: 0.035% or less, the balance being steel having a composition of Fe and unavoidable impurities is machined after hot working to form a tool shape, and then heat treatment for scaling is performed. A method for manufacturing tools for pipe making.

【0013】(4)工具形状とした後スケール付けのた
めの熱処理の前にショットピーニングを行うことを特徴
とする上記(2)又は(3)に記載の熱間製管用工具の
製造方法。
(4) The method for producing a hot pipe making tool according to the above (2) or (3), wherein shot peening is performed before heat treatment for scaling after forming the tool shape.

【0014】以下、上記の(1)〜(4)をそれぞれ
(1)〜(4)の発明ということがある。
Hereinafter, the above (1) to (4) may be referred to as the inventions of (1) to (4), respectively.

【0015】なお、既に述べたように上記の「表面」と
は「外表面」のことを指す。
[0015] As described above, the above "surface" refers to the "outer surface".

【0016】スピネル型の複合酸化物とは、スピネル型
の結晶構造を有する酸化物であって、その組成としてF
e以外に、例えば、Crなど他の合金元素を含むものを
いう。
The spinel-type composite oxide is an oxide having a spinel-type crystal structure, and has a composition of F
In addition to e, for example, those containing other alloy elements such as Cr.

【0017】[0017]

【発明の実施の形態】本発明者らは前記した課題を解決
するため、先ず、3Cr−1Ni鋼製基体の表面に酸化
スケ−ルを形成させた工具(以下、単に3Cr−1Ni
鋼製工具という)としてプラグを用いてマンネスマン製
管方式により種々の炭素鋼や低合金鋼の薄肉・長尺継目
無管を製造し、上記プラグが寿命に達するまでの過程を
調査した。
BEST MODE FOR CARRYING OUT THE INVENTION In order to solve the above-mentioned problems, the present inventors have first made a tool (hereinafter simply referred to as 3Cr-1Ni steel) having an oxide scale formed on the surface of a 3Cr-1Ni steel substrate.
Using a plug as a steel tool), various thin and long seamless pipes of carbon steel and low alloy steel were manufactured by the Mannesmann pipe method, and the process until the plug reached the end of its life was investigated.

【0018】その結果、従来の継目無管を製造する場合
の3Cr−1Ni鋼製工具としてのプラグの寿命がシワ
疵や肌荒れ(以下、単にシワと総称する)を起点とした
割れ部の開口や破壊に基づくものが主であったのに対し
て、薄肉・長尺継目無管を製造する場合の上記プラグの
寿命は、シワに基づく表面焼付きによるものの他に、プ
ラグの表面に発生した微細な熱亀裂を起点とし、更にこ
れが疲労亀裂となって進展して割れ部が開口するかプラ
グ本体が破壊することに基づいて寿命に到る場合が多く
なることが判明した。
As a result, the life of a plug as a tool made of 3Cr-1Ni steel in the case of manufacturing a conventional seamless pipe is limited to the opening of a cracked portion starting from wrinkle flaws and rough skin (hereinafter, simply referred to as wrinkles). The life of the plug when manufacturing a thin and long seamless pipe is not only due to surface seizure due to wrinkles, but also to the fine It has been found that, in many cases, the life is extended based on a thermal crack as a starting point, which further becomes a fatigue crack and propagates to open a crack or break the plug body.

【0019】つまり、薄肉・長尺の継目無管を製造する
際の3Cr−1Ni鋼製工具の寿命を向上させるために
は、シワの生成を抑制することに加えて耐熱亀裂発生特
性及び耐亀裂進展性を高める必要があることがわかっ
た。
In other words, in order to improve the life of a 3Cr-1Ni steel tool when manufacturing a thin and long seamless pipe, it is necessary to suppress the formation of wrinkles, the heat crack initiation characteristics and the crack resistance. It turns out that progress is necessary.

【0020】そこで次に、3Cr−1Ni鋼を基本組成
として化学組成を種々変えた鋼製基体の表面に酸化スケ
−ルを形成させたプラグを用いてマンネスマン製管方式
により種々の炭素鋼や低合金鋼の薄肉・長尺継目無管を
製造し、前記プラグの表面部及び内部(以下、母材部と
いう)を詳細に調査した。その結果、下記(a)〜
(i)の事項が明らかになった。
Then, various carbon steels and low carbon steels are manufactured by a Mannesmann tube method using a plug having an oxide scale formed on the surface of a steel base having various chemical compositions based on 3Cr-1Ni steel as a basic composition. A thin and long seamless pipe of alloy steel was manufactured, and the surface portion and the inside (hereinafter, referred to as a base material portion) of the plug were investigated in detail. As a result, the following (a) to
The matter of (i) became clear.

【0021】(a)プラグの素材となる鋼の靭性及び延
性を高めると熱亀裂に起因した割れの進展を抑制するこ
とができるためプラグ寿命が向上する。
(A) When the toughness and ductility of the steel used as the material of the plug are increased, the progress of cracks due to thermal cracks can be suppressed, so that the life of the plug is improved.

【0022】(b)プラグの素材となる鋼の高温変形抵
抗を高めるとシワの生成を抑制することができるのでプ
ラグ寿命を延長することができる。
(B) If the high-temperature deformation resistance of the steel used as the material of the plug is increased, the generation of wrinkles can be suppressed, so that the life of the plug can be extended.

【0023】(c)プラグ表面部は製管中の温度上昇に
よって局所的に、特にプラグ先端の表面部がオ−ステナ
イト化し、その後の冷却課程で焼きが入って著しく硬化
する。この硬化によって熱間における強度が高くなるた
めシワの発生は回避できる。しかし一方では、硬化部の
室温引張強度が1600MPaを超えて高くなると、延
性や靭性が低下するため却って熱亀裂が生じ易くなり、
一旦熱亀裂が発生するとその亀裂は急激に進展してしま
う。
(C) The surface of the plug is locally aged by the rise in temperature during pipe production, particularly the surface at the tip of the plug is austenitized, and is hardened significantly by burning in the subsequent cooling process. Due to this curing, the strength during hot work is increased, so that wrinkles can be avoided. However, on the other hand, when the room temperature tensile strength of the hardened portion is higher than 1600 MPa, ductility and toughness are reduced, so that thermal cracks are more likely to occur,
Once a thermal crack has occurred, the crack will grow rapidly.

【0024】(d)一方、プラグの表面部硬化層以外で
は、プラグ内表面側の製管中に温度上昇を受けた母材部
が焼戻し脆性を生じ、その部分の靭性が著しく低下して
しまう。なお、前記の焼戻し脆性を生じた母材部の靭性
はプラグ表面の硬化層における靭性より更に低いもので
ある。
(D) On the other hand, except for the hardened layer at the surface of the plug, the base material portion, which has been subjected to a temperature rise during pipe production on the inner surface side of the plug, undergoes temper embrittlement and the toughness of the portion is significantly reduced. . Incidentally, the toughness of the base material portion where the tempering embrittlement has occurred is even lower than the toughness of the hardened layer on the plug surface.

【0025】(e)プラグにおける割れは表面部の硬化
層を貫通し、母材部の前記脆化層に達するもので、極端
な場合には割れは内表面にまで達していた。
(E) The crack in the plug penetrates through the hardened layer on the surface and reaches the embrittled layer on the base material. In an extreme case, the crack reaches the inner surface.

【0026】(f)表面部硬化層の靭性を高めるには、
Cの含有量を低めて焼入れままでの硬度を低下させるこ
とが最も効果的である。
(F) To increase the toughness of the hardened surface layer,
It is most effective to lower the content of C to reduce the hardness as-quenched.

【0027】(g)上記(d)で述べた母材部脆化層の
靭性を改善するには鋼に適正量のMoを添加したり、不
純物元素としてのP及びSの含有量を低減したりするこ
とが有効である。
(G) To improve the toughness of the base material embrittlement layer described in (d) above, an appropriate amount of Mo is added to steel, or the contents of P and S as impurity elements are reduced. Is effective.

【0028】(h)工具(鋼材)のリサイクル性という
点からは、P及びSを低減することなく靭性を高めるこ
とができるMoの添加が望ましい。なお、Moの添加は
靭性を改善するだけではなく高温強度も上昇させるの
で、プラグ表面部の塑性流動に起因して生ずるシワの低
減にも有効である。
(H) From the viewpoint of the recyclability of tools (steel materials), it is desirable to add Mo which can increase the toughness without reducing P and S. The addition of Mo not only improves toughness but also increases high-temperature strength, and is therefore effective in reducing wrinkles caused by plastic flow on the plug surface.

【0029】(i)適正な条件で熱間加工を受けて工具
形状に加工された工具(つまり(3)の発明によって製
造された工具)は、偏析の軽減や結晶粒の微細化がなさ
れているので、鋳造によって工具形状にされた工具又は
鋳造と機械加工で工具形状にされた工具(つまり(2)
の発明によって製造された工具)に比べて靭性及び延性
が優れる。なお、工具形状に加工するに際して熱間加工
を施す(3)の発明の場合には、鋼の組成としてのSi
を低減すれば一層良好な靭性が確保できる。
(I) A tool which has been subjected to hot working under appropriate conditions and processed into a tool shape (that is, a tool manufactured according to the invention of (3)) has reduced segregation and refined crystal grains. Tool that has been cast into a tool shape by casting or tool that has been tool shaped by casting and machining (ie (2)
The tool and the ductility produced according to the invention of the present invention are excellent in toughness and ductility. In the case of the invention (3) in which hot working is performed when working into a tool shape, Si as a steel composition is used.
, A better toughness can be secured.

【0030】本発明は上記の知見に基づいて完成された
ものである。
The present invention has been completed based on the above findings.

【0031】以下、本発明の各要件について詳しく説明
する。なお、成分含有量の「%」は「重量%」を意味す
る。
Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the component content means “% by weight”.

【0032】(A)鋼の化学組成 C:0.10%以上0.20%未満 Cは、鋼の高温強度及び焼入れ性を高める作用を有す
る。更に、工具の表面に硬化部を形成させて耐摩耗性を
高める作用を有する。しかし、その含有量が0.10%
未満では表面部硬化層の室温での引張強さが1000M
Paを下回るため製管時に工具表面の変形が大きくな
り、所望の製管作業が行えない場合がある。一方、C含
有量が0.20%以上では、表面部硬化層の室温での引
張強さが1600MPaを超えてしまうため、延性・靭
性がともに劣化する。したがって、Cの含有量を0.1
0%以上0.20%未満とした。
(A) Chemical composition of steel C: 0.10% or more and less than 0.20% C has the effect of increasing the high-temperature strength and hardenability of steel. Further, it has an effect of forming a hardened portion on the surface of the tool to enhance wear resistance. However, its content is 0.10%
If it is less than 1, the tensile strength at room temperature of the hardened surface layer is 1000M.
Since the pressure is lower than Pa, the surface of the tool is greatly deformed during pipe production, and a desired pipe production operation may not be performed. On the other hand, when the C content is 0.20% or more, the tensile strength at room temperature of the hardened surface portion layer exceeds 1600 MPa, so that both ductility and toughness deteriorate. Therefore, the content of C is 0.1
0% or more and less than 0.20%.

【0033】Si:0.01〜1.0% Siは、鋼の脱酸作用及びAc1 点を上昇させて製管時
の昇温による工具表面のオーステナイト領域の広さや深
さを小さくしてその後の冷却過程での硬化による靭性と
延性の劣化を防止する作用を有する。更に、工具表面の
酸化スケ−ル層を緻密化する作用もある。しかし、その
含有量が0.01%未満では添加効果に乏しい。一方、
1.0%を超えると靭性の劣化を招くとともに工具表面
のスケ−ル層の厚みが小さくなるので潤滑性が低下す
る。したがって、Si含有量を0.01〜1.0%とし
た。
Si: 0.01 to 1.0% Si reduces the width and depth of the austenitic region on the tool surface due to the deoxidizing action of steel and the Ac 1 point, thereby increasing the temperature during pipe making. It has the effect of preventing the deterioration of toughness and ductility due to hardening in the subsequent cooling process. Further, it has the effect of densifying the oxide scale layer on the tool surface. However, if the content is less than 0.01%, the effect of addition is poor. on the other hand,
If it exceeds 1.0%, the toughness is deteriorated and the thickness of the scale layer on the tool surface is reduced, so that the lubricity is reduced. Therefore, the Si content is set to 0.01 to 1.0%.

【0034】なお、鋼の脱酸作用、Ac1 点上昇作用、
工具表面の酸化スケ−ル層を緻密化する作用を充分に確
保するためにはSiの含有量は0.3%以上とすること
が好ましい。
Incidentally, the deoxidizing action of steel, the action of raising the Ac 1 point,
In order to sufficiently secure the effect of densifying the oxide scale layer on the tool surface, the content of Si is preferably 0.3% or more.

【0035】3Cr−1Ni鋼を基本組成とする鋼にお
いて、Siの含有量が0.15%未満の場合には靭性改
善効果が特に大きくなる。このため、工具に対して優れ
た靭性が特に要求される場合には、Si含有量を0.1
5%未満としても良い。なお、Si含有量を0.15%
未満に抑える場合には、工具形状とするに際して熱間加
工を行う(3)の発明による方法を採ることが好まし
い。
In a steel having a basic composition of 3Cr-1Ni steel, when the content of Si is less than 0.15%, the effect of improving toughness is particularly large. For this reason, when excellent toughness is particularly required for the tool, the Si content is set to 0.1%.
It may be less than 5%. In addition, the Si content is 0.15%
In the case where the shape is suppressed to less than 1, it is preferable to adopt the method according to the invention of (3) in which hot working is performed when forming the tool shape.

【0036】Mn:0.3〜1.0% Mnは、鋼の焼入れ性を高めて表面硬化層を厚くするの
に有効な元素である。その効果を確保するためには0.
3%以上の含有量を必要とする。しかし、1.0%を超
えて含有すると靭性の著しい劣化を招く。したがって、
Mn含有量を0.3〜1.0%とした。
Mn: 0.3 to 1.0% Mn is an element effective for increasing the hardenability of steel and increasing the thickness of a hardened surface layer. In order to secure the effect, it is necessary to use 0.
Requires a content of 3% or more. However, when the content exceeds 1.0%, remarkable deterioration of toughness is caused. Therefore,
The Mn content was set to 0.3 to 1.0%.

【0037】Ni:0.5〜4.0% Niは、鋼の焼入れ性を高めて表面硬化層を厚くするが
他の元素とは異なって表面硬化層及び母材部の靭性を高
める作用を有する。更に、工具表面のスケ−ル層に金属
粒子として残り、スケ−ルの耐剥離性を高める作用もあ
る。しかし、その含有量が0.5%未満では前記効果が
得難い。一方、4.0%を超えて含有させると、変態点
(Ac1 点)が大きく低下して700℃以下の温度にな
るので、高温強度が低下してしまう。したがって、Ni
の含有量を0.5〜4.0%とした。
Ni: 0.5 to 4.0% Ni enhances the hardenability of steel to increase the thickness of the hardened surface layer. Unlike other elements, Ni has the effect of increasing the toughness of the hardened surface layer and the base material. Have. Further, it remains as metal particles in the scale layer on the tool surface, and also has the effect of increasing the peel resistance of the scale. However, if the content is less than 0.5%, it is difficult to obtain the above effect. On the other hand, if the content exceeds 4.0%, the transformation point (Ac 1 point) is greatly reduced to a temperature of 700 ° C. or less, and the high-temperature strength is reduced. Therefore, Ni
Was set to 0.5 to 4.0%.

【0038】Cr:1.0〜4.0% Crは、鋼の焼入れ性を高めて表面硬化層を厚くすると
ともに、工具表面の酸化スケール層を緻密化して母材と
の密着性を高めるのに有効な元素である。しかし、その
含有量が1.0%未満では表面硬化層の形成が困難であ
る。加えてスケ−ルがポ−ラス化して剥離してしまうの
で、工具寿命の低下を招く。一方、Crを4.0%を超
えて含有させると靭性の劣化を招く。更に、耐酸化性が
向上し過ぎるため酸化スケール層の厚さが十分大きくな
らず、酸化スケール層による工具の保護作用が確保でき
なくなる。したがって、Crの含有量を1.0〜4.0
%とした。
Cr: 1.0 to 4.0% Cr enhances the hardenability of steel to increase the thickness of a hardened surface layer, and at the same time, densifies the oxide scale layer on the tool surface to increase the adhesion to the base material. It is an effective element. However, if the content is less than 1.0%, it is difficult to form a surface hardened layer. In addition, since the scale becomes porous and peels off, the tool life is shortened. On the other hand, when Cr is contained in excess of 4.0%, toughness is deteriorated. Furthermore, since the oxidation resistance is excessively improved, the thickness of the oxide scale layer does not become sufficiently large, and the protection effect of the tool by the oxide scale layer cannot be secured. Therefore, the content of Cr is set to 1.0 to 4.0.
%.

【0039】Mo:0.05〜1.0% Moは、鋼の焼入れ性と高温強度を高めるとともに靭性
を改善する作用を有する。更に、Moには工具表面の酸
化スケール層の母材との密着性を高める作用もある。と
りわけ、3Cr−1Ni鋼を基本組成とする鋼において
は、焼戻し又は製管時の温度上昇を受けた部分の脆化を
防止するのに有効である。しかし、その含有量が0.0
5%未満では添加効果に乏しい。一方、1.0%を超え
ると未固溶の炭化物として残留するため高温強度及び靭
性を改善する効果が飽和するばかりか、粗大な炭化物が
却って靭性を劣化させてしまう。したがって、Moの含
有量を0.05〜1.0%とした。なお、前記効果を確
実に得るためには、Moの含有量は0.10%以上とす
ることが好ましい。
Mo: 0.05 to 1.0% Mo has the effect of improving the hardenability and high-temperature strength of steel and improving the toughness. Further, Mo also has the effect of increasing the adhesion of the oxide scale layer on the tool surface to the base material. In particular, a steel having a basic composition of 3Cr-1Ni steel is effective in preventing embrittlement of a portion that has been subjected to a temperature rise during tempering or pipe making. However, the content is 0.0
If it is less than 5%, the effect of addition is poor. On the other hand, if it exceeds 1.0%, the effect of improving high-temperature strength and toughness is saturated because it remains as undissolved carbide, and coarse carbides rather deteriorate toughness. Therefore, the content of Mo is set to 0.05 to 1.0%. In order to surely obtain the above-mentioned effects, the content of Mo is preferably set to 0.10% or more.

【0040】Al:0〜0.040% Alは添加しなくても良い。添加すれば、鋼を脱酸して
靭性、特に表面硬化層の靭性を高める作用を有する。こ
の効果を確実に得るには、Alは0.005%以上の含
有量とすることが好ましい。しかし、その含有量が0.
040%を超えると高温強度の低下を招く。したがっ
て、Alの含有量を0〜0.040%とした。なお、こ
こでいうAlの含有量とは所謂「sol.Al」として
の含有量を指す。
Al: 0 to 0.040% Al may not be added. If added, it has the effect of deoxidizing the steel and increasing the toughness, especially the toughness of the surface hardened layer. To ensure this effect, the content of Al is preferably set to 0.005% or more. However, when its content is 0.1.
If it exceeds 040%, the strength at high temperatures is reduced. Therefore, the content of Al is set to 0 to 0.040%. Here, the content of Al refers to the content as so-called “sol. Al”.

【0041】W:0〜1.0% Wは添加しなくても良い。添加すれば、高温強度を高め
る効果を有する。この効果を確実に得るには、Wは0.
1%以上の含有量とすることが好ましい。しかし、その
含有量が1.0%を超えると未固溶の炭化物として残留
するため高温強度及び靭性を改善する効果が飽和するば
かりか、粗大な炭化物が却って靭性を劣化させてしま
う。したがって、Wの含有量を0〜1.0%とした。
W: 0 to 1.0% W may not be added. If added, it has the effect of increasing the high-temperature strength. To ensure this effect, W should be equal to 0.
The content is preferably 1% or more. However, if the content exceeds 1.0%, the effect of improving high-temperature strength and toughness is saturated because it remains as undissolved carbide, and coarse carbides rather deteriorate toughness. Therefore, the content of W is set to 0 to 1.0%.

【0042】Ti:0〜1.0% Tiは添加しなくても良い。添加すれば、鋼の組織を微
細化して室温強度及び高温強度を高める効果を有する。
この効果を確実に得るには、Tiは0.05%以上の含
有量とすることが好ましい。しかし、その含有量が1.
0%を超えると靭性が著しくて以下する。したがって、
Tiの含有量を0〜1.0%とした。
Ti: 0 to 1.0% Ti need not be added. If added, it has the effect of refining the structure of the steel and increasing the room temperature strength and the high temperature strength.
To ensure this effect, the content of Ti is preferably set to 0.05% or more. However, its content is 1.
If it exceeds 0%, the toughness is remarkable and lowers. Therefore,
The content of Ti was set to 0 to 1.0%.

【0043】B:0〜0.01% Bは添加しなくても良い。添加すれば、鋼の組織を微細
化して室温強度及び高温強度を高める効果を有する。こ
の効果を確実に得るには、Bは0.0020%以上の含
有量とすることが好ましい。しかし、その含有量が0.
01%を超えると靭性の低下をきたす。したがって、B
の含有量を0〜0.01%とした。
B: 0 to 0.01% B may not be added. If added, it has the effect of refining the structure of the steel and increasing the room temperature strength and the high temperature strength. To ensure this effect, the content of B is preferably set to 0.0020% or more. However, when its content is 0.1.
If it exceeds 01%, the toughness decreases. Therefore, B
Was set to 0 to 0.01%.

【0044】本発明においては不純物元素としてのP及
びSの含有量を下記のように制限する。
In the present invention, the contents of P and S as impurity elements are limited as follows.

【0045】P:0.035%以下 Pは表面硬化層及び母材部の靭性を劣化させ、特にその
含有量が0.035%を超えると靭性の劣化が著しい。
したがって、不純物元素としてのPの含有量を0.03
5%以下とした。なお、Pの含有量を0.01%以下に
すれば極めて良好な靭性が得られる。したがって、工具
に対して極めて良好な靭性が要求される場合には、Pの
含有量を0.01%以下に規制しても良い。
P: not more than 0.035% P deteriorates the toughness of the surface hardened layer and the base material, and particularly when the content exceeds 0.035%, the toughness is remarkably deteriorated.
Therefore, the content of P as an impurity element is set to 0.03.
5% or less. If the content of P is 0.01% or less, extremely good toughness can be obtained. Therefore, when extremely good toughness is required for the tool, the content of P may be restricted to 0.01% or less.

【0046】S:0.035%以下 Sも表面硬化層及び母材部の靭性を劣化させ、特にその
含有量が0.035%を超えると靭性の劣化が著しい。
したがって、不純物元素としてのSの含有量を0.03
5%以下とした。なお、Sの含有量を0.01%以下に
すれば極めて良好な靭性が得られる。したがって、工具
に対して極めて良好な靭性が要求される場合には、Sの
含有量を0.01%以下に規制しても良い。
S: 0.035% or less S also deteriorates the toughness of the surface hardened layer and the base material, and particularly when the content exceeds 0.035%, the toughness is significantly reduced.
Therefore, the content of S as an impurity element is set to 0.03
5% or less. When the S content is 0.01% or less, extremely good toughness can be obtained. Therefore, when extremely good toughness is required for the tool, the content of S may be restricted to 0.01% or less.

【0047】なお、不純物元素としてのNは、溶製時の
凝固欠陥の原因となるので、その含有量は0.02%以
下に規制することが好ましい。
Since N as an impurity element causes solidification defects during smelting, its content is preferably regulated to 0.02% or less.

【0048】(B)工具表面のスケール 工具表面(熱間製管用工具の鋼製基体表面)を酸化させ
てスケール付けを行うが、この場合のスケール層は一般
に2層に分かれる。すなわち、外層側はFeO主体の比
較的ポーラスなスケールである。一方、内層はスピネル
型の結晶構造を有する複合酸化物からなる、緻密な耐剥
離性に優れたスケール層である。なお、前記内層スケー
ルと母材との界面は粒界酸化型を呈する。
(B) Scale of the Tool Surface The tool surface (the surface of the steel substrate of the hot pipe making tool) is oxidized for scaling. In this case, the scale layer is generally divided into two layers. That is, the outer layer has a relatively porous scale mainly composed of FeO. On the other hand, the inner layer is a dense scale layer made of a composite oxide having a spinel-type crystal structure and having excellent exfoliation resistance. The interface between the inner layer scale and the base material exhibits a grain boundary oxidation type.

【0049】上記のスケール層のうち、外層スケ−ルは
容易に剥離して工具寿命には関与せず、工具寿命に影響
を及ぼすのは前記した内層スケ−ルである。そして、こ
のスピネル型の複合酸化物からなる緻密な内層スケール
の厚さが50〜300μmの場合に工具寿命が向上す
る。
Of the above-mentioned scale layers, the outer layer scale is easily peeled off and does not contribute to the tool life, and the above-mentioned inner layer scale affects the tool life. And, when the thickness of the dense inner layer scale made of the spinel-type composite oxide is 50 to 300 μm, the tool life is improved.

【0050】内層スケールの厚さが50μm未満の場合
には、既に述べたスケールの高温での潤滑性を高める効
果及び工具表面の断熱性を高めて工具表面が高温にさら
されるのを防止する効果が得られないので、工具寿命の
向上が達成できない。一方、内層スケールはその厚さが
300μmを超えて厚くなりすぎるとポーラスで剥離し
やすくなるのでやはり工具寿命の向上が達成できない。
したがって本発明においてはスケール層の内層を厚さ5
0〜300μmのスピネル・複合酸化物型のスケールと
規定した。
When the thickness of the inner layer scale is less than 50 μm, the effect of increasing the lubricity of the scale at a high temperature and the effect of increasing the heat insulating property of the tool surface to prevent the tool surface from being exposed to a high temperature as described above. , The tool life cannot be improved. On the other hand, if the thickness of the inner layer scale exceeds 300 μm and is too thick, the inner layer scale is porous and easily peeled, so that the tool life cannot be improved.
Therefore, in the present invention, the inner layer of the scale layer has a thickness of 5 mm.
It was defined as a spinel / composite oxide type scale of 0 to 300 μm.

【0051】なお、工具表面に上記のスケール付けを行
うための熱処理としては、例えば、体積%で水蒸気:1
5〜25%、CO2 :10〜15%、O2 :5%以下の
雰囲気中において、900〜1200℃の温度で1〜1
0時間保持し、スケールに割れが入ったりスケールが剥
離したりすることがないように、100℃/h以下の冷
却速度で徐冷する処理を行えば良い。
As the heat treatment for performing the above-mentioned scaling on the tool surface, for example, steam:
5 to 25%, CO 2 : 10 to 15%, O 2 : 5% or less in an atmosphere of 900 to 1200 ° C. in an atmosphere of 1 to 1%.
It is preferable to perform a process of holding for 0 hour and gradually cooling at a cooling rate of 100 ° C./h or less so that the scale does not crack or peel off.

【0052】(C)工具形状への成形 熱間製管用工具(ピアサー用穿孔プラグ、エロンゲータ
ー圧延用プラグ、プラグミル圧延用など)の製造に際し
て工具形状への成形は、下記又はの方法で行う。
(C) Forming into Tool Shape In the production of hot pipe making tools (piercer piercing plugs, elongator rolling plugs, plug mill rolling, etc.), shaping into a tool shape is performed by the following method.

【0053】前記(A)の化学組成を有する鋼を溶製
してから鋳造して鋳造のままで、又は鋳造後に機械加工
して所要の形状に仕上げる((2)の発明の方法)。
The steel having the chemical composition of the above (A) is melted and cast, and is cast as it is, or is machined after casting to finish to a required shape (the method of the invention of (2)).

【0054】前記(A)の化学組成を有する鋼の鋼塊
又は鋼片を熱間鍛造や熱間圧延により熱間加工して粗成
形し、その後機械加工を施して所要の形状に仕上げる
((3)の発明の方法)。
A steel ingot or a steel slab having the chemical composition of (A) is hot worked by hot forging or hot rolling to be roughly formed, and then machined to finish it into a required shape (( 3) Invention method).

【0055】(2)の発明に係る上記の成形方法にお
いて、鋳造及び機械加工の方法は特に規定されるもので
はなく通常の方法で行えば良い。更に、(3)の発明に
係る上記の成形方法において、鋼塊又は鋼片の製造方
法及び機械加工の方法は特に規定されるものではなく通
常の方法で行えば良い。
In the above-mentioned forming method according to the invention (2), the casting and machining methods are not particularly limited, and may be performed by ordinary methods. Furthermore, in the above-mentioned forming method according to the invention of (3), the method of manufacturing the steel ingot or the billet and the method of machining are not particularly limited, and may be performed by ordinary methods.

【0056】なお、上記の成形方法において下記の条
件で熱間加工すれば、上記の方法で成形した場合に比
べて靭性及び/又は耐亀裂進展性が改善されるので工具
寿命が向上する。
When hot working is performed under the following conditions in the above-described forming method, the toughness and / or crack propagation resistance is improved as compared with the case of forming by the above-described method, so that the tool life is improved.

【0057】すなわち、上記における熱間加工におい
て加工時の成形比が大きいと結晶粒を微細化でき、特に
成形比が1.2以上の場合に結晶粒微細化効果が大きく
靭性及び/又は耐亀裂進展性が改善される。このため、
上記における熱間加工においては、鋼塊又は鋼片を1
000〜1250℃の温度に加熱した後、成形比で1.
2以上となるように熱間加工することが好ましい。
That is, in the above-mentioned hot working, if the forming ratio at the time of working is large, the crystal grains can be refined. In particular, when the forming ratio is 1.2 or more, the crystal grain refining effect is large and the toughness and / or the crack resistance is high. Progressability is improved. For this reason,
In the above hot working, the steel ingot or the billet is
After heating to a temperature of 000 to 1250 ° C, a molding ratio of 1.
It is preferable to perform hot working so as to be 2 or more.

【0058】加熱温度が1000℃未満では鋼の変形抵
抗が大きいので割れ感受性が高くなり、このため特に成
形比が1.2以上の加工を行う粗成形材に割れが生じて
所望の工具が得られない場合もあるからである。一方、
加熱温度が1250℃を超えると高温延性が劣化して、
特に成形比が1.2以上の加工を行うと、加熱温度が1
000℃未満の場合におけると同様に粗成形材への熱間
加工ができなくなる場合も生ずるためである。
If the heating temperature is less than 1000 ° C., the deformation resistance of the steel is large, so that the crack susceptibility becomes high. For this reason, cracks are generated particularly in a rough formed material having a forming ratio of 1.2 or more, and a desired tool can be obtained. This is because it may not be possible. on the other hand,
When the heating temperature exceeds 1250 ° C, the high-temperature ductility deteriorates,
In particular, when processing with a molding ratio of 1.2 or more is performed, the heating temperature becomes 1
This is because, as in the case where the temperature is lower than 000 ° C., hot working into a rough molding material may not be possible.

【0059】なお、「成形比」とはA0 を加工前の断面
積、Aを加工後の断面積とした場合の(A0/A)のこ
とを指す。
The "forming ratio" indicates (A0 / A) when A0 is the cross-sectional area before processing and A is the cross-sectional area after processing.

【0060】(D)ショットブラスト 上記(C)に述べた方法で所定の工具形状に成形した
後、ショットブラスト処理を施してからスケール付けの
ための熱処理を行えば、酸化スケール層の母材との密着
性を大きく高めることができるため、酸化スケール層
(スケール内層)による大きな工具の保護作用が確保で
きる。したがって、工具寿命を一層高めたい場合には、
スケール付けのための熱処理の前にショットブラスト処
理を行っても良い((4)の発明)。
(D) Shot blasting After forming into a predetermined tool shape by the method described in (C) above, a shot blasting treatment is performed, and then a heat treatment for scaling is performed. Can greatly enhance the tool's protective action by the oxide scale layer (scale inner layer). Therefore, if you want to further increase the tool life,
A shot blast treatment may be performed before the heat treatment for scaling (invention (4)).

【0061】なお、(4)の発明に係る上記ショットブ
ラストの方法は特に規定されるものではなく通常の方法
で行えば良い。
The shot blasting method according to the invention (4) is not particularly limited, and may be performed by an ordinary method.

【0062】(1)の発明に係る熱間製管用工具は、上
記(C)の方法で成形され、必要に応じて(D)のショ
ットブラストを施された後、(B)のスケール付けをさ
れて製造される。
The hot pipe making tool according to the invention of (1) is formed by the method of (C), subjected to the shot blasting of (D) if necessary, and then scaled by (B). Being manufactured.

【0063】以下、熱間製管用工具としてピアサー用穿
孔プラグを取り上げて、本発明の効果を実施例によって
更に具体的に説明する。
Hereinafter, the effect of the present invention will be described more specifically with reference to an example, taking a piercing plug for a piercer as a tool for hot pipe making.

【0064】[0064]

【実施例】表1に示す化学組成の鋼を通常の方法で50
0kg大気炉溶製(鋼A、鋼C、鋼D、鋼F、鋼G、鋼
I及び鋼K〜L)又は3トン電気炉溶製(鋼B、鋼E、
鋼H、鋼J及び鋼P)した。
EXAMPLE Steel having the chemical composition shown in Table 1 was prepared by a conventional method.
0 kg atmosphere furnace melting (Steel A, Steel C, Steel D, Steel F, Steel G, Steel I and Steel KL) or 3 ton electric furnace melting (Steel B, Steel E,
Steel H, Steel J and Steel P).

【0065】表1における鋼C〜Iは本発明例の鋼で、
鋼A、鋼B、鋼J〜N及び鋼Pは成分のいずれかが本発
明で規定する含有量から外れた比較例の鋼である。な
お、比較例の鋼のうち鋼A及び鋼Bは従来の3Cr−1
Ni鋼である。
Steels C to I in Table 1 are steels of the present invention,
Steel A, steel B, steels J to N and steel P are steels of comparative examples in which any of the components deviated from the content specified in the present invention. In addition, among the steels of the comparative examples, the steels A and B are the conventional 3Cr-1.
Ni steel.

【0066】[0066]

【表1】 [Table 1]

【0067】500kg大気炉溶製した鋼のうち鋼A、
鋼D、鋼F、鋼G及び鋼K〜Nは通常の方法で金型に鋳
造することによって、又、鋼C及び鋼Iは通常の方法で
金型に鋳造後に機械加工して、いずれも最大外径187
mmのピアサープラグ形状とした。
Of the steel melted from a 500 kg atmosphere furnace, steel A,
Steel D, steel F, steel G and steel K to N are cast into a mold by a usual method, and steel C and steel I are machined after casting into a mold by a normal method. Maximum outer diameter 187
mm piercer plug shape.

【0068】この後、鋼F、鋼G、鋼K及び鋼Lについ
てはショットブラストを行うことなく、又鋼A、鋼C、
鋼D、鋼I、鋼M及び鋼Nには通常の方法でショットブ
ラストを行った後、いずれも体積%で、水蒸気:20
%、CO2 :12.5%、O2:1%の雰囲気中におい
て、950℃で5時間保持し、50℃/hの冷却速度で
徐冷するスケール付けの熱処理を行った。
Thereafter, the steel F, the steel G, the steel K, and the steel L were not subjected to shot blasting, and the steels A, C,
After performing shot blasting on steel D, steel I, steel M and steel N by a usual method, all of them were in a volume% and steam: 20%.
%, CO 2: 12.5%, O 2: In 1% of the atmosphere, and held for 5 hours at 950 ° C., a heat treatment was carried out scale with slow cooling at a cooling rate of 50 ° C. / h.

【0069】一方、電気炉溶製した鋼B、鋼E、鋼H、
鋼J及び鋼Pについては、通常の方法で熱間鍛造して得
た直径220mmのビレットを1200℃に加熱した
後、成形比1.2の熱間鍛造を行い、更に機械加工して
いずれも最大外径187mmのピアサープラグ形状とし
た。この後、鋼B及び鋼Hについてはショットブラスト
を行うことなく、又鋼E、鋼J及び鋼Pには通常の方法
でショットブラストを行った後、いずれも体積%で、水
蒸気:25%、CO2 :12%、O2 :1%の雰囲気中
において、950℃で5時間保持し、50℃/hの冷却
速度で徐冷するスケール付けの熱処理を行った。
On the other hand, electric furnace melted steel B, steel E, steel H,
Regarding steel J and steel P, a billet having a diameter of 220 mm obtained by hot forging by a usual method was heated to 1200 ° C., then hot forged at a forming ratio of 1.2, and further machined. The piercer plug had a maximum outer diameter of 187 mm. Thereafter, steel B and steel H were not subjected to shot blasting, and steel E, steel J and steel P were shot blasted in the usual manner. In an atmosphere of 12% CO 2 and 1% O 2 , a heat treatment for scaling was performed in which the sample was kept at 950 ° C. for 5 hours and gradually cooled at a cooling rate of 50 ° C./h.

【0070】各鋼に関して、前記のようにして得たピア
サープラグの一部を用いて、表面スケール層と機械的性
質の調査を行った。
For each steel, the surface scale layer and mechanical properties were investigated using a part of the piercer plug obtained as described above.

【0071】表面スケール層はピアサープラグ先端部の
断面を顕微鏡観察することにより内層の厚さを測定する
とともにスケール構造を特定した。機械的性質は、ピア
サープラグから平行部の直径が6mmの引張試験片、J
IS4号の2mmVノッチシャルピー衝撃試験片及び直
径8mmで長さ10mmの高温変形抵抗測定用試験片を
採取し、室温(20℃)における引張強度(TS)、絞
り(RA)及びシャルピー吸収エネルギー(V20 )、
並びに900℃における圧縮時の変形抵抗を測定した。
For the surface scale layer, the thickness of the inner layer was measured by observing the cross section of the tip of the piercer plug with a microscope, and the scale structure was specified. The mechanical properties were as follows: a tensile test specimen with a parallel part diameter of 6 mm from the piercer plug, J
A 2 mm V notch Charpy impact test piece of IS4 and a test piece for measuring high temperature deformation resistance of 8 mm in diameter and 10 mm in length were sampled, and the tensile strength (TS), draw (RA) and Charpy absorbed energy ( V ) at room temperature (20 ° C.) were obtained. E 20),
In addition, the deformation resistance during compression at 900 ° C. was measured.

【0072】更に、前記のようにして得たピアサープラ
グを実機での穿孔試験に供してその寿命を評価した。す
なわち、1250℃に加熱された外径225mmで長さ
が2800mmのJISS45Cの丸ビレットを通常の
方法で厚さ(肉厚)16mm、シェル長さ10mに穿孔
圧延した。ピアサープラグの寿命は、1本のプラグの穿
孔可能なビレットの本数、つまり穿孔回数で評価し、プ
ラグ表面における割れやシワによる凹凸が大きくなり、
次回穿孔すると穿孔中にプラグが破損するか、途中で穿
孔が進まず製管できなくなると判断した場合にプラグ寿
命に達したとした。なお、寿命に達したと評価したピア
サープラグは目視によってそれが寿命に達した原因(寿
命原因)を調査した。
Further, the piercer plug obtained as described above was subjected to a piercing test on an actual machine to evaluate its life. That is, a JIS 45C round billet having an outer diameter of 225 mm and a length of 2800 mm heated to 1250 ° C. was pierced and rolled to a thickness (wall thickness) of 16 mm and a shell length of 10 m by a usual method. The life of a piercer plug is evaluated by the number of billets that can be pierced by one plug, that is, the number of piercings, and the unevenness due to cracks and wrinkles on the plug surface increases,
When it was determined that the plug was damaged the next time the hole was drilled during drilling, or when the drilling did not proceed halfway and the pipe could not be produced, the plug life was reached. The piercer plug evaluated as having reached the end of its life was visually inspected for the cause of the end of its life (life cause).

【0073】表2に、前記した表面スケール層と機械的
性質の調査結果を示す。なお、スケール層の内層はいず
れもスピネル型の複合酸化物であった。ピアサープラグ
の寿命に関する調査結果を表3に示す。寿命原因は、熱
亀裂に起因した割れが発生して寿命に到った場合に「熱
亀裂」、先端部のシワによる凹凸が大きくなって寿命に
到った場合に「シワ」、熱亀裂が進展して貫通割れを生
じて寿命に到った場合に「貫通割れ」と表記した。
Table 2 shows the results of the investigation of the surface scale layer and the mechanical properties described above. The inner layers of the scale layers were all spinel-type composite oxides. Table 3 shows the results of a survey on the life of the piercer plug. The cause of the service life is `` heat crack '' when the crack occurs due to the heat crack and the service life is reached, and `` wrinkle '' when the unevenness due to the wrinkles at the tip becomes large and the service life is reached. When the cracks developed and penetrated and reached the end of their life, they were indicated as "penetrating cracks".

【0074】[0074]

【表2】 [Table 2]

【0075】[0075]

【表3】 [Table 3]

【0076】表2及び表3から下記の事項が明らかであ
る。
The following items are clear from Tables 2 and 3.

【0077】従来の3Cr−1Ni鋼(鋼A及び鋼B)
は、長年に亘って炭素鋼や低合金鋼の継目無管用の工具
材質として使用されてきたものである。しかし、従来の
3Cr−1Ni鋼を用いたピアサープラグで厚さ(肉
厚)16mmで長さ10mの薄肉・長尺に穿孔した場合
には、工具(ピアサープラグ)に負荷される面圧が高く
なり、表面温度も上昇するので寿命は低下し、500回
程度の使用で熱亀裂に起因した割れが発生するか(鋼
A)、先端部のシワによる凹凸が大きくなって(鋼
B)、寿命に到った。
Conventional 3Cr-1Ni steel (steel A and steel B)
Has been used as a tool material for seamless pipes of carbon steel and low alloy steel for many years. However, when a conventional piercer plug made of 3Cr-1Ni steel is used to make a thin and long hole having a thickness (thickness) of 16 mm and a length of 10 m, the surface pressure applied to the tool (piercer plug) is high. The surface temperature also rises, so the life is shortened. After about 500 uses, cracks due to thermal cracks occur (Steel A), or unevenness due to wrinkles at the tip becomes large (Steel B), and the life is shortened. Reached.

【0078】これに対して、本発明例の鋼を用いたピア
サープラグの場合には、室温でのRA(延性)と V20
(靭性)が高く、更に900℃における高温変形抵抗も
大きい。したがって、熱亀裂による割れの進展が抑制さ
れ、更にシワの生成が抑制されるので上記本発明例の鋼
を用いたプラグの寿命は従来の3Cr−1Ni鋼を用い
たプラグの寿命に比べて3割以上向上し、689回以上
の穿孔回数(プラグ寿命)が得られた。
On the other hand, in the case of a piercer plug using the steel of the present invention, RA (ductility) at room temperature and V E 20
(Toughness) is high, and the hot deformation resistance at 900 ° C. is also large. Therefore, the growth of cracks due to thermal cracks is suppressed, and the formation of wrinkles is suppressed, so that the life of the plug using the steel of the present invention is 3 times longer than the life of the conventional plug using 3Cr-1Ni steel. The number of perforations (plug life) of at least 689 was obtained.

【0079】なお、熱間加工後に機械加工してプラグ形
状とした場合には、鋳造のまま又は鋳造後更に機械加工
してプラグ形状とした場合に比べて長いプラグ寿命が得
られている。
In the case where a plug is formed by machining after hot working, a longer plug life is obtained as compared with a case in which the plug is formed as it is by casting or by further machining after casting.

【0080】一方、比較例の鋼のうち鋼K〜N及び鋼P
を用いたピアサープラグの場合には、室温でのRA(延
性)と V20(靭性)が低く熱亀裂に起因した割れが発
生したり(鋼K、鋼L及び鋼N)、熱亀裂が進展して貫
通割れに到って(鋼M及び鋼P)寿命に達していた。更
に、比較例の鋼のうち鋼Jを用いたピアサープラグの場
合には、900℃における高温変形抵抗が小さいために
プラグ表面に塑性流動が生じ、これに起因したシワの凹
凸が大きくなって寿命に達していた。
On the other hand, among the steels of the comparative examples, steels K to N and steel P
When the piercer plug using the, RA (ductility) and V E 20 at room temperature or cracking (toughness) was due to the low thermal cracking is (steel K, Steel L and steel N), thermal cracking It progressed and reached through cracks (steel M and steel P), and the life was reached. Further, in the case of a piercer plug using steel J among the steels of the comparative example, plastic flow occurs on the plug surface due to low high-temperature deformation resistance at 900 ° C., and the unevenness of wrinkles caused by the flow increases, and the life is shortened. Had been reached.

【0081】次に、寿命に達したピアサープラグの先端
部から平行部の直径が6mmの引張試験片及びJIS4
号の2mmVノッチシャルピー衝撃試験片を採取し、室
温(20℃)におけるTS、RA及び V20を測定し
た。
Next, a tensile test piece having a diameter of 6 mm from the tip end of the piercer plug which has reached the end of its life and JIS 4
No. of harvested 2mmV notch Charpy impact test pieces were measured TS, RA and V E 20 at room temperature (20 ° C.).

【0082】上記のプラグ先端部は穿孔中に温度上昇に
よってオ−ステナイト化し、その後の冷却課程で焼きが
入って著しく硬化した領域である。
The tip of the plug is an austenitized region due to a rise in temperature during drilling, and is a region hardened by burning in the subsequent cooling process.

【0083】表4に上記の試験結果を示す。なお、表4
における目標性能とは、鋼の化学組成の規定におけるC
含有量のところで述べたように、TSが1000〜16
00MPaであることをいう。
Table 4 shows the test results. Table 4
Is the target performance in
As described in the content section, TS is 1000 to 16
It means that it is 00 MPa.

【0084】[0084]

【表4】 [Table 4]

【0085】表4と表2を比較すると、硬化領域のRA
(延性)は強度が著しく高くなるにも拘わらず概して良
好なことがわかる。すなわち、表4の硬化領域の室温で
の強度−延性バランスは、表2に示した実機での穿孔試
験に供する前のプラグ、つまりスケール付けしたままの
プラグの室温での強度−延性バランスと比較すると良好
である。
Comparison between Table 4 and Table 2 shows that the RA
It can be seen that (ductility) is generally good in spite of the remarkably high strength. That is, the strength-ductility balance at room temperature of the hardened region in Table 4 was compared with the strength-ductility balance at room temperature of the plug before being subjected to the piercing test with the actual machine shown in Table 2, that is, the plug as-scaled. Then it is good.

【0086】一方、硬化領域の V20(靭性)は、強度
と合金元素に依存して大きく変化することがわかる。す
なわち、C、P及びSの含有量を低く抑えるとともにM
oを含有させた本発明例の鋼C〜Iの場合、硬化領域に
おいてはTSが高いため靭性(V20 )は表2の実機で
の穿孔試験に供する前のプラグの靭性に比べて低い。し
かし、その値は32Jを超える大きなものである。
On the other hand, it can be seen that the V E 20 (toughness) of the hardened region changes greatly depending on the strength and the alloying elements. That is, while keeping the contents of C, P and S low, M
For steel C~I invention sample which contains the o, toughness since TS is high in the cured regions (V E 20) is lower than the toughness of the plug before being subjected to drilling test in actual table 2 . However, the value is large, exceeding 32J.

【0087】ところが、成分のいずれかが本発明で規定
する含有量から外れた比較例の鋼の場合には、硬化領域
ではTSが高いにも拘らず、その V20は表2の実機で
の穿孔試験に供する前のプラグの靭性と同等か、却って
高いものさえある。それでも硬化領域の靭性は高々20
Jで、上記の本発明例の鋼に比較して小さい。比較例の
鋼においては、この靭性の劣化が先端部の熱亀裂進展を
促進しプラグ寿命低下の原因となるのである。
[0087] However, in the case of steel of the comparative example one of the components is outside the content defined in the present invention, despite TS is high in curing zone, the V E 20 is the actual machine in Table 2 Some of the plugs have a toughness equivalent to or even higher than the toughness of the plug before being subjected to the piercing test. Nevertheless, the toughness of the hardened area is at most 20
J is smaller than the steel of the present invention. In the steel of the comparative example, this deterioration in toughness promotes the growth of thermal cracks at the tip and causes a reduction in plug life.

【0088】[0088]

【発明の効果】本発明の熱間製管用工具は耐シワ発生特
性、耐熱亀裂発生特性及び耐亀裂進展性に優れており、
工具寿命が長いので、マンネスマン製管方式により炭素
鋼や低合金鋼の継目無管、なかでも薄肉・長尺の継目無
管を製造する際の廉価な内面圧延工具として利用するこ
とができる。この熱間製管用工具は本発明の製造方法に
よって比較的容易に製造することができる。
The tool for hot pipe making of the present invention is excellent in wrinkle generation resistance, heat crack generation resistance and crack propagation resistance.
Since the tool life is long, it can be used as an inexpensive internal rolling tool when manufacturing seamless pipes of carbon steel or low alloy steel, especially thin and long seamless pipes by the Mannesmann pipe method. This hot pipe making tool can be manufactured relatively easily by the manufacturing method of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.10%以上0.20%
未満、Si:0.01〜1.0%、Mn:0.3〜1.
0%、Ni:0.5〜4.0%、Cr:1.0〜4.0
%、Mo:0.05〜1.0%、Al:0〜0.040
%、W:0〜1.0%、Ti:0〜1.0%、B:0〜
0.01%、不純物としてのP:0.035%以下、
S:0.035%以下、残部はFe及び不可避不純物の
組成の鋼製基体の表面にスケール層を有し、そのスケー
ル層の内層が厚さ50〜300μmのスピネル型の複合
酸化物であることを特徴とする熱間製管用工具。
C: 0.10% or more and 0.20% by weight%
, Si: 0.01-1.0%, Mn: 0.3-1.
0%, Ni: 0.5 to 4.0%, Cr: 1.0 to 4.0
%, Mo: 0.05 to 1.0%, Al: 0 to 0.040
%, W: 0 to 1.0%, Ti: 0 to 1.0%, B: 0 to 0%
0.01%, P as an impurity: 0.035% or less,
S: 0.035% or less, with the balance having a scale layer on the surface of a steel substrate having a composition of Fe and unavoidable impurities, and the inner layer of the scale layer being a spinel-type composite oxide having a thickness of 50 to 300 μm. A hot pipe making tool characterized by the following.
【請求項2】重量%で、C:0.10%以上0.20%
未満、Si:0.01〜1.0%、Mn:0.3〜1.
0%、Ni:0.5〜4.0%、Cr:1.0〜4.0
%、Mo:0.05〜1.0%、Al:0〜0.040
%、W:0〜1.0%、Ti:0〜1.0%、B:0〜
0.01%、不純物としてのP:0.035%以下、
S:0.035%以下、残部はFe及び不可避不純物の
組成からなる鋼を、鋳造により又は鋳造後に機械加工し
て工具形状とし、その後スケール付けのための熱処理を
行うことを特徴とする熱間製管用工具の製造方法。
2. C: 0.10% or more and 0.20% by weight%
, Si: 0.01-1.0%, Mn: 0.3-1.
0%, Ni: 0.5 to 4.0%, Cr: 1.0 to 4.0
%, Mo: 0.05 to 1.0%, Al: 0 to 0.040
%, W: 0 to 1.0%, Ti: 0 to 1.0%, B: 0 to 0%
0.01%, P as an impurity: 0.035% or less,
S: 0.035% or less, with the balance being Fe or a composition of unavoidable impurities, cast or machined after casting to form a tool shape, and then heat-treated for scaling. Manufacturing method of pipe making tool.
【請求項3】重量%で、C:0.10%以上0.20%
未満、Si:0.01〜1.0%、Mn:0.3〜1.
0%、Ni:0.5〜4.0%、Cr:1.0〜4.0
%、Mo:0.05〜1.0%、Al:0〜0.040
%、W:0〜1.0%、Ti:0〜1.0%、B:0〜
0.01%、不純物としてのP:0.035%以下、
S:0.035%以下、残部はFe及び不可避不純物の
組成からなる鋼を、熱間加工後に機械加工して工具形状
とし、その後スケール付けのための熱処理を行うことを
特徴とする熱間製管用工具の製造方法。
3. C: 0.10% to 0.20% by weight
, Si: 0.01-1.0%, Mn: 0.3-1.
0%, Ni: 0.5 to 4.0%, Cr: 1.0 to 4.0
%, Mo: 0.05 to 1.0%, Al: 0 to 0.040
%, W: 0 to 1.0%, Ti: 0 to 1.0%, B: 0 to 0%
0.01%, P as an impurity: 0.035% or less,
S: 0.035% or less, the balance being steel made of a composition of Fe and unavoidable impurities, hot-worked, machined into a tool shape, and then subjected to heat treatment for scaling, which is characterized by hot working. Manufacturing method for pipe tools.
【請求項4】工具形状とした後スケール付けのための熱
処理の前にショットピーニングを行うことを特徴とする
請求項2又は3に記載の熱間製管用工具の製造方法。
4. The method for producing a hot pipe making tool according to claim 2, wherein shot peening is performed before heat treatment for scaling after forming the tool shape.
JP10146197A 1997-04-18 1997-04-18 Tool for hot making tube and its manufacture Pending JPH10291008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10146197A JPH10291008A (en) 1997-04-18 1997-04-18 Tool for hot making tube and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10146197A JPH10291008A (en) 1997-04-18 1997-04-18 Tool for hot making tube and its manufacture

Publications (1)

Publication Number Publication Date
JPH10291008A true JPH10291008A (en) 1998-11-04

Family

ID=14301354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10146197A Pending JPH10291008A (en) 1997-04-18 1997-04-18 Tool for hot making tube and its manufacture

Country Status (1)

Country Link
JP (1) JPH10291008A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096708A1 (en) * 2007-02-05 2008-08-14 Sumitomo Metal Industries, Ltd. Process for producing plug for use in piercing/rolling raw metallic material, process for producing metallic tube, and plug for use in piercing/rolling raw metallic material
JP2017503911A (en) * 2013-10-22 2017-02-02 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Fatigue resistant turbine through bolt
EP3144407A4 (en) * 2014-05-16 2017-11-15 Nippon Steel & Sumitomo Metal Corporation Seamless steel pipe for line pipe, and method for producing same
US9982706B2 (en) 2015-07-31 2018-05-29 Hyundai Motor Company Method of manufacturing light rotor shaft for eco-friendly vehicles
JPWO2019087510A1 (en) * 2017-11-02 2020-07-30 日本製鉄株式会社 Piercer plug and manufacturing method thereof
US11331703B2 (en) 2015-09-25 2022-05-17 Nippon Steel Corporation Piercer plug and method of manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096708A1 (en) * 2007-02-05 2008-08-14 Sumitomo Metal Industries, Ltd. Process for producing plug for use in piercing/rolling raw metallic material, process for producing metallic tube, and plug for use in piercing/rolling raw metallic material
EP2111933A1 (en) * 2007-02-05 2009-10-28 Sumitomo Metal Industries Limited Process for producing plug for use in piercing/rolling raw metallic material, process for producing metallic tube, and plug for use in piercing/rolling raw metallic material
US8065900B2 (en) 2007-02-05 2011-11-29 Sumitomo Metal Industries, Ltd. Method of manufacturing plug used to pierce and roll metal material, method of manufacturing metal pipe and plug used to pierce and roll metal material
JP5131702B2 (en) * 2007-02-05 2013-01-30 新日鐵住金株式会社 Manufacturing method of plug used for piercing and rolling of metal material, manufacturing method of metal tube, and plug used for piercing and rolling of metal material
EP2111933A4 (en) * 2007-02-05 2013-04-10 Nippon Steel & Sumitomo Metal Corp Process for producing plug for use in piercing/rolling raw metallic material, process for producing metallic tube, and plug for use in piercing/rolling raw metallic material
EP2111933B1 (en) 2007-02-05 2015-04-08 Nippon Steel & Sumitomo Metal Corporation Process for producing plug for use in piercing/rolling raw metallic material, process for producing metallic tube, and plug for use in piercing/rolling raw metallic material
JP2017503911A (en) * 2013-10-22 2017-02-02 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Fatigue resistant turbine through bolt
EP3144407A4 (en) * 2014-05-16 2017-11-15 Nippon Steel & Sumitomo Metal Corporation Seamless steel pipe for line pipe, and method for producing same
US10480043B2 (en) 2014-05-16 2019-11-19 Nippon Steel Corporation Seamless steel pipe for line pipe and method for producing the same
US9982706B2 (en) 2015-07-31 2018-05-29 Hyundai Motor Company Method of manufacturing light rotor shaft for eco-friendly vehicles
US11331703B2 (en) 2015-09-25 2022-05-17 Nippon Steel Corporation Piercer plug and method of manufacturing the same
JPWO2019087510A1 (en) * 2017-11-02 2020-07-30 日本製鉄株式会社 Piercer plug and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6677310B2 (en) Steel materials and steel pipes for oil wells
EP2434028B1 (en) Hollow seamless pipe for high-strength springs
CN102282273B (en) Process for production of duplex stainless steel pipe
EP2915896B1 (en) Low-alloy steel for oil well pipes which has excellent sulfide stress cracking resistance, and method for manufacturing low-alloy steel for oil well pipes
RU2643735C1 (en) Low-alloyed steel pipe for oil well
WO2013133076A1 (en) Method for producing high-strength steel material having excellent sulfide stress cracking resistance
JP6583533B2 (en) Steel and oil well steel pipes
JP6747524B2 (en) Steel material and method for manufacturing steel material
WO2004067790A1 (en) Steel pipe for bearing elements, and methods for producing and cutting the same
WO2019087510A1 (en) Piercing plug and manufacturing method therefor
JP4264755B2 (en) Hot working tool steel, hot working tool and plug for seamless pipe manufacturing
CN109312434B (en) Rolled steel bar for hot forging
EP2835439B1 (en) Hollow seamless pipe for high-strength spring
JPH10291008A (en) Tool for hot making tube and its manufacture
JP5523288B2 (en) Seamless steel pipe for high-strength hollow springs
JP3292122B2 (en) Seamless steel pipe manufacturing tools
JP5816136B2 (en) Manufacturing method of seamless steel pipe for hollow spring
JPH06172858A (en) Production of seamless steel tube excellent in scc resistance and having high strength and high toughness
JP4462454B1 (en) Manufacturing method of duplex stainless steel pipe
JP3765277B2 (en) Method for producing martensitic stainless steel piece and steel pipe
JP2000119806A (en) Steel wire rod excellent in cold workability, and its manufacture
JP2551692B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure.
JP2003064449A (en) Heat-resisting low-alloy steel tube and manufacturing method therefor
JP3589066B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe
JP4186566B2 (en) Manufacturing method of steel pipe for airbag having excellent low temperature toughness