JP4186566B2 - Manufacturing method of steel pipe for airbag having excellent low temperature toughness - Google Patents
Manufacturing method of steel pipe for airbag having excellent low temperature toughness Download PDFInfo
- Publication number
- JP4186566B2 JP4186566B2 JP2002274008A JP2002274008A JP4186566B2 JP 4186566 B2 JP4186566 B2 JP 4186566B2 JP 2002274008 A JP2002274008 A JP 2002274008A JP 2002274008 A JP2002274008 A JP 2002274008A JP 4186566 B2 JP4186566 B2 JP 4186566B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel pipe
- toughness
- steel
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Air Bags (AREA)
- Heat Treatment Of Articles (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高寸法精度で低温靱性(耐バースト性)に優れたエアバッグ用鋼管とその製造方法に関する。
【0002】
【従来の技術】
近年、自動車産業においては、安全性を考慮してエアバッグシステムの導入が急速に進められている。エアバッグシステムには爆発性薬品を使用するパイロテクニック方式と、アルゴンガスを充填した鋼管製の蓄圧器を使用するハイブリッド方式の2種類に大別される。いずれの方式においても寒冷地での使用を考慮して低温靱性に優れたエアバッグ用鋼管が求められている。
【0003】
従来技術において、例えば特開平8−325641号公報には、加工性に優れた高強度高靱性鋼管の製造方法が開示されており、その内容は、鋼材への焼入れ・焼戻し処理 (以下、QT処理ともいう) →冷間抽伸→低温焼鈍 (以下、SR処理ともいう) からなる方法である。
【0004】
特開平10−140283号公報(特許第3220975 号公報)には、高強度高靱性エアーバッグ用鋼管の製造方法が開示されており、その内容は、冷間抽伸→QTからなる方法である。
【0005】
さらに、特開2002−194501号公報には、高強度高靱性エアバッグ用鋼管とその製造方法が開示されており、その内容は、冷間抽伸→QTからなる方法である。
【0006】
【特許文献】
特許文献1 (特開平8−325641号公報)(請求項1、2、実施例1)
特許文献2 (特開平10−140283号公報(特許第3220975 号公報)) (請求項1ないし8)
特許文献3 (特開2002−194501号公報)(請求項1ないし4)
【0007】
【発明が解決しようとする課題】
しかしながら、本発明者らの実験結果によれば、上述の従来技術には次のようにさらに改良すべき点がある。
【0008】
特開平8−325641号公報の開示する方法では、低温靱性については言及がない。なお、実施例においては外径70mm、肉厚3.2mm の素管を外径60mm、肉厚2.5mm に冷間抽伸しているが、このときの減面率は、32.8%である。
【0009】
特開平10−194501号公報の開示する方法では、低温靱性(耐バースト性)は良好だが、寸法精度が十分とは云えない場合がある。
特開2002−194501号公報の開示する方法では、上述と同様に、低温靱性(耐バースト性)は良好だが、寸法精度が十分とは云えない場合がある。
【0010】
ここに、本発明の課題は、高寸法精度で低温靱性(耐バースト性)に優れたエアバッグ用鋼管の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、かかる課題を解決すべく種々検討を重ね、焼き入れ・焼戻し、冷間抽伸、そして低温焼鈍を組み合わせることで寸法精度を確保するとともに、集合組織を調整することで安定した低温靱性が確保できることを知り、本発明を完成した。
【0012】
すなわち、本発明における知見は次の通りである。
(i) 低温靱性(耐バースト性) ・高寸法精度を満たすためにQT→抽伸→SRプロセスを採用する。
【0013】
(ii) 低温靱性(耐バースト性)を得るためにはQTプロセスが必要である。
(iii)冷間仕上げ抽伸後の熱処理は、高寸法精度を得るためにAc1 変態点以下の低温焼鈍 (SR) が必須である。(抽伸→QTでは寸法精度が十分でない場合がある。)
(iv) 低温靱性(耐バースト性)を確保する指標として、集合組織に着目した。
【0017】
(1)質量%で、C:0.05〜0.20%、Si:0.1〜1.0%、Mn:0.20〜2.0%、P:0.025%以下、S:0.010%以下、Al:0.10%以下、
さらに必要により、(I)Cr:0.05〜1.0%、Mo:0.50%以下、V:0.2%以下、(II)Ni:1.5%以下、Cu:0.5%以下、(III)Ti:0.10%以下、Nb:0.1%以下、および(IV)B:0.005%以下の少なくとも1の群から選んだ1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる鋼組成を有する鋼を製管後、焼入れ・焼戻し処理を行い、次いで合計減面率が35〜50%である冷間抽伸を行い、さらにAc1変態点以下の低温焼鈍を行うことによって、周方向Tに垂直な面における{110}面のX線積分強度比に対する軸方向Lに垂直な面における{110}面のX線積分強度比(L/T)を50以下としたことを特徴とする低温靱性に優れたエアバッグ用鋼管の製造方法。
【0018】
(2)前記冷間抽伸を1回だけ行う上記(1)記載のエアバック用鋼管の製造方法。
【0019】
【発明の実施の形態】
次に、本発明において鋼組成および製造条件を前述のように規定した理由について述べる。なお、本明細書において、鋼組成を示す「%」は、とくにことわりがない限り、「質量%」である。
【0020】
(A) 鋼の化学成分
本発明で使用する鋼の化学成分、つまり鋼組成に関する限定理由は以下のとおりである。
【0021】
C:Cは鋼の必要な強度を安価に得るために添加する元素であるが、0.05%未満では充分な強度が得られず、また0.20%を超えると加工法並びに溶接性が悪化すると共に、靱性が低下するため、0.05%以上、0.20%以下とした。好ましい範囲は0.05%以上0.14%以下で、より好ましい範囲は0.07%以上、0.13%以下である。
【0022】
Si:Siは脱酸作用があり、鋼の焼入れ性を高め強度を向上させる元素であり、0.1 %以上の含有量が必要である。一方、1.0 %を超えると靱性、冷間加工性を阻害するため、0.1 %以上、1.0 %以下とした。好ましくは0.2 %以上、0.5 %以下である。
【0023】
Mn:Mnは鋼の強度と靱性を向上させるのに有効な元素であるが、0.20%未満では十分な強度と靱性が得られず、また、2.0 %を超えると偏析が著しくなり、靱性が低下するため、0.20%以上2.0 %以下とした。より好ましくは0.5 %以上、1.5 %以下である。
【0024】
P:Pは粒界偏析に起因する靱性低下をもたらすため、0.025 %以下とした。好ましくは0.020 %以下、より好ましくは0.015 %である。
S:Sは鋼中のMnと化合してMnS による介在物を形成し、加工性の悪化ならびに靱性を低下させるため0.010 %以下とした。好ましくは0.005 %以下で、より好ましくは0.003 %以下である。
【0025】
Al:Alは脱酸作用を有し、靱性、加工性を向上させるのに有効な元素であるが、0.10%を超えると地疵の発生が著しくなるので、0.10%以下とした。好ましくは0.05%以下である。
【0026】
鋼中の上記化学成分を限定することによって、エアバッグ用鋼管として十分な強度、靱性、溶接性を得ることができるが、更にこれらを向上させたい場合、上記成分にさらに、Cr、Mo、V、Ni、Cu、Ti、Nb、Bを添加することが有効である。これらの添加成分含有量の限定理由は以下のとおりである。
【0027】
Cr:Crは鋼の強度と靱性を向上させるのに有効な元素であり、0.05%以上の添加が必要である。
一方、1.0 %を超えると溶接部の靱性を低下させるため、0.05%以上1.0 %以下とした。
【0028】
Mo:Moは固溶強化、析出強化により高強度化すると共に、焼入れ性を向上する効果があるが、0.50%を超えると溶接部が硬化し、靱性が低下するため、0.50%以下とした。
【0029】
V:Vは析出強化により強度を向上させる効果があるが、0.2 %を超えると靱性の低下が著しいため、0.2 %以下とした。
Ni:Niは焼入れ性を改善すると共に靱性を向上させるのに、有効な元素であるが、高価な元素であるため、1.5 %以下とした。
【0030】
Cu:Cuは鋼の靱性を向上させるのに有効な元素であるが、熟間加工性を低下させる元素であるので Cuを添加する場合はNiを同時に添加し、熱間加工性を確保する必要がある。但し、0.5 %を超えるとNiを添加しても良好な熟間加工性を確保できないため0.5 %以下とした。
【0031】
Ti:Tiは組織を微細化することにより靱性の向上に有効であるが0.1 %を超えると逆に靱性を悪化させるため0.1 %以下とした。
Nb:NbはTiと同様に組織を微細化することにより靱性の向上に有効であるが、0.1 %を超えると逆に靱性を悪化させるため、0.1 %以下とした。
【0032】
B:Bは焼入れ性を改善するのに有効な元素であるが、0.005 %を超えると靱性を低下させるため、0.005 %以下とした。好ましくは0.002 %以下である。
(B) 製管
上記のように化学成分を調整した鋼材を素材として、冷間抽伸用素管を製造しさえすれば良く、その素管は電縫鋼管・継目無鋼管のどちらでもよい。また、継目無鋼管の製造法としては特に限定するものではない。
【0033】
但し、後述するように、冷間抽伸工程で減面率50%以下、好ましくは35〜50%となるように素管寸法を決定する必要がある。
(C)熱処理 (QT)
低温靱性(耐バースト性)を確保するために焼入れ・焼戻し処理が施される。加熱温度はオーステナイト域であるAc3 変態以上の温度に加熱してから急冷し、次いで、Ac1 変態点以下の温度で焼戻しするのが望ましい。
【0034】
(D)冷間抽伸
上述のように焼入れ・焼戻し処理を行った鋼管に、合計減面率50%以下、好ましくは減面率35〜50%の条件で冷間抽伸を行う。減面率が35%未満では、抽伸後の鋼管表面に潤滑剤の残存量が多くなる場合がある。一方、減面率が35%以上であれば、抽伸後の表面に光沢があり、かつ鋼管表面の潤滑剤の残存量も少ない。特に油潤滑時には減面率が高くなるほどその傾向は顕著で、鋼管の外面が均一で美しいものとなる。
【0035】
すでに述べたように、本発明者らは、本発明の課題を達成すべく鋭意努力の結果、合計減面率で示す加工度を50%以下にすることで、T面およびL面における{110 }両方位の集合組織の異方性を示す値L/T 110を50以下、好ましくは40以下にすることができ、T方向の靱性を確保できることを見出した。
【0036】
ここに、本件出願人は先に出願した特願2001−371409号においても、L/T 110を、4.0 以下とする提案をしているが、本発明の場合と比較して表面性状および寸法精度の点でその考え方が相違している。
【0037】
(E)最終熱処理
冷間仕上げ抽伸後の熱処理は、寸法精度・表面性状を考慮して、本発明においてはAc1 変態点以下の低温焼鈍 (SR) を行う。これは1種の応力除去焼鈍であり、これによって集合組織は大きくは影響を受けない。
【0038】
なお、本発明においては、集合組織は、冷間抽伸後ではなく、最終焼鈍後の集合組織をもって規定している。
(F) 低温静圧バースト試験
低温静圧バースト試験における靱性の良好な鋼管と悪い鋼管の例を図1に示す。後述する実施例の低温靱性の評価基準もこれによる。
【0039】
○: 低温靱性の良好な鋼管
△: 低温靱性が若干不足している鋼管
×: 低温靱性が不足して、亀裂伝播が生じている鋼管
低温靱性が良好な鋼管の場合、図中、○の欄に示すように亀裂の伝播が無く、亀裂の先端が鋼管軸方向に対して曲がっている。
【0040】
一方、低温靱性が不足する鋼管の場合、△の欄に示すように亀裂の先端が鋼管軸方向に伸びており、さらに不足すると、×の欄に示すように鋼管の端まで亀裂が伝播している。
【0041】
(G) 集合組織
本発明にかかる鋼管を評価するときの集合組織とその測定方法は次の通りである。
【0042】
本発明では、低温焼鈍後の鋼管のL面、T面のそれぞれについて、{110}、{200}、{211}面のX線積分強度比を測定した。
ここで、L面、T面とはそれぞれ鋼管の軸方向と周方向の応力軸に対して垂直な面を意味する。またX線積分強度比とは、X線分光分析で得られる特定面方位のピーク面積を、粉末試料のような結晶方位的に無秩序なサンプルから得られる同じ面方位のピーク面積で除した値である。
【0043】
本発明ではさらに集合組織の異方性を評価するため、特定面方位のL面のX線積分強度比を、T面のX線積分強度比で除した値 (L/T比) で比較した。その結果{110}面の値が、製造条件を変化させると最も大きく変化したので、組織評価として{110}面のL/T比 (L/T 110と表示する) で評価することができることを見出した。
【0044】
一般に鉄のへき開面は{110}と言われており、本発明においてL/T 110を50以下に制限するものである。
すなわち、従来の鋼管では{110}面のL面への顕著な異方性が観察されるが、本発明の場合には、その異方性が低いものである。
【0045】
【実施例】
表1に示す化学成分を有するビレットを用い、通常のマンネスマン−マンドレルミル仕上げによる穿孔圧延により、表2示す2種類の冷間引抜き用素管を製造し、それぞれ表2の各製造条件で、焼入れ・焼戻しを行ってから、冷間抽伸 (冷間引抜き加工) により外径25.4 mm 、肉厚1.85 mm の冷間継目無鋼管とし、最後に低温焼鈍を行って鋼管を製造した。
【0046】
2種類の鋼管についてその集合組織を測定し、L/ T110 を決定した。
また、−20℃から−80℃まで20℃ピッチで低温静圧バースト試験を各々3回実施し、そのときのバースト形状を観察した。
【0047】
結果は、表3にまとめて示す。表中の○、△、×は図1に示す亀裂の形態を示す。
【0048】
【表1】
【0049】
【表2】
【0050】
【表3】
【0051】
冷間引抜きを1回行った本発明例Aにより得られた鋼管について寸法精度および外表面粗さを評価したところ、外径寸法平均=60.354 mm 、標準偏差=0.0168、表面粗さRa=0.43μm であった。
【0052】
比較のために、冷間抽伸後、QT処理を行った従来例の鋼管のデータを示すと、外径寸法平均=60.356 mm 、標準偏差=0.0444、表面粗さRa=2.4 μm であった。
【0053】
本発明によれば、寸法精度および表面粗さが大幅に改善されていることが分かる。
【0054】
【発明の効果】
本発明によれば、高寸法精度で低温靱性 (耐バースト性) にも優れるエアバッグ鋼管を提供することが出来る。
【図面の簡単な説明】
【図1】バースト試験の結果の評価基準の説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air bag steel pipe having high dimensional accuracy and excellent low-temperature toughness (burst resistance), and a method for producing the same.
[0002]
[Prior art]
In recent years, in the automobile industry, introduction of an air bag system has been promoted rapidly in consideration of safety. There are two types of airbag systems: a pyrotechnic system that uses explosive chemicals and a hybrid system that uses a steel pipe pressure accumulator filled with argon gas. In any of these methods, a steel pipe for an air bag excellent in low temperature toughness is required in consideration of use in a cold region.
[0003]
In the prior art, for example, JP-A-8-325641 discloses a method for producing a high-strength, high-toughness steel pipe excellent in workability, which includes a quenching and tempering treatment (hereinafter referred to as a QT treatment). (Also called) → cold drawing → low temperature annealing (hereinafter also referred to as SR treatment).
[0004]
Japanese Patent Laid-Open No. 10-140283 (Japanese Patent No. 3220975) discloses a method of manufacturing a steel pipe for a high-strength, high-toughness air bag, and the content thereof is a method comprising cold drawing → QT.
[0005]
Furthermore, Japanese Patent Application Laid-Open No. 2002-194501 discloses a steel pipe for a high-strength and high-toughness airbag and a manufacturing method thereof, and the content is a method consisting of cold drawing → QT.
[0006]
[Patent Literature]
Patent Document 1 (Japanese Patent Laid-Open No. 8-325641) (Claims 1, 2 and Example 1)
Patent Document 2 (Japanese Patent Laid-Open No. 10-140283 (Japanese Patent No. 3220975)) (Claims 1 to 8)
Patent Document 3 (Japanese Patent Laid-Open No. 2002-194501) (Claims 1 to 4)
[0007]
[Problems to be solved by the invention]
However, according to the results of experiments conducted by the present inventors, the above-described prior art has the following points to be further improved.
[0008]
In the method disclosed in JP-A-8-325641, there is no mention of low temperature toughness. In the embodiment, the raw tube having an outer diameter of 70 mm and a wall thickness of 3.2 mm is cold-drawn to an outer diameter of 60 mm and a wall thickness of 2.5 mm, but the area reduction rate at this time is 32.8%.
[0009]
In the method disclosed in JP-A-10-194501, the low temperature toughness (burst resistance) is good, but the dimensional accuracy may not be sufficient.
In the method disclosed in Japanese Patent Laid-Open No. 2002-194501, as described above, the low temperature toughness (burst resistance) is good, but the dimensional accuracy may not be sufficient.
[0010]
Here, an object of the present invention is to provide an excellent manufacturing method of a steel pipe for an air bag with high dimensional accuracy at low temperature toughness (resistance to bursty).
[0011]
[Means for Solving the Problems]
The inventors of the present invention have made various studies in order to solve such problems, and ensured dimensional accuracy by combining quenching / tempering, cold drawing, and low temperature annealing, and stable low temperature by adjusting the texture. Knowing that toughness can be secured, the present invention has been completed.
[0012]
That is, the knowledge in the present invention is as follows.
(i) Low temperature toughness (burst resistance)-To satisfy high dimensional accuracy, QT → drawing → SR process is adopted.
[0013]
(ii) A QT process is required to obtain low temperature toughness (burst resistance).
(iii) The heat treatment after the cold finish drawing requires low-temperature annealing (SR) below the Ac 1 transformation point in order to obtain high dimensional accuracy. (Drawing → QT may not have sufficient dimensional accuracy.)
(iv) We focused on texture as an index to ensure low temperature toughness (burst resistance).
[0017]
(1) By mass%, C: 0.05 to 0.20%, Si: 0.1 to 1.0%, Mn: 0.20 to 2.0%, P: 0.025% or less, S: 0.010% or less, Al: 0.10% or less,
If necessary, (I) Cr: 0.05 to 1.0%, Mo: 0.50% or less, V: 0.2% or less, (II) Ni: 1.5% or less, Cu: 0.5 % Or less, (III) Ti: 0.10% or less, Nb: 0.1% or less, and (IV) B: 0.005% or less, containing one or more selected from at least one group Then, after making a steel having a steel composition consisting of Fe and the inevitable impurities, the balance is quenched and tempered, then cold drawn with a total area reduction of 35 to 50% , and the Ac 1 transformation point. By performing the following low temperature annealing, the X-ray integrated intensity ratio (L / T) of the {110} plane in the plane perpendicular to the axial direction L to the X-ray integrated intensity ratio of the {110} plane in the plane perpendicular to the circumferential direction T ) Of 50 or less, a steel pipe for an air bag excellent in low-temperature toughness Production method.
[0018]
(2) The method for manufacturing a steel pipe for an air bag according to (1 ), wherein the cold drawing is performed only once.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reason why the steel composition and the production conditions are defined as described above in the present invention will be described. In the present specification, “%” indicating the steel composition is “% by mass” unless otherwise specified.
[0020]
(A) Chemical composition of steel The chemical reasons for the steel used in the present invention, that is, the reasons for limitation regarding the steel composition are as follows.
[0021]
C: C is an element added to obtain the required strength of steel at a low cost. However, if it is less than 0.05%, sufficient strength cannot be obtained, and if it exceeds 0.20%, the processing method and weldability deteriorate, Since toughness decreases, the content is set to 0.05% or more and 0.20% or less. A preferable range is 0.05% or more and 0.14% or less, and a more preferable range is 0.07% or more and 0.13% or less.
[0022]
Si: Si has a deoxidizing action, is an element that improves the hardenability of the steel and improves the strength, and a content of 0.1% or more is necessary. On the other hand, if it exceeds 1.0%, the toughness and cold workability are hindered, so the content is made 0.1% to 1.0%. Preferably they are 0.2% or more and 0.5% or less.
[0023]
Mn: Mn is an element effective for improving the strength and toughness of steel, but if it is less than 0.20%, sufficient strength and toughness cannot be obtained, and if it exceeds 2.0%, segregation becomes significant and the toughness decreases. Therefore, the content is set to 0.20% or more and 2.0% or less. More preferably, it is 0.5% or more and 1.5% or less.
[0024]
P: Since P causes toughness reduction due to grain boundary segregation, the content is set to 0.025% or less. Preferably it is 0.020% or less, More preferably, it is 0.015%.
S: S is combined with Mn in steel to form inclusions due to MnS, so that the workability is deteriorated and the toughness is lowered. Preferably it is 0.005% or less, More preferably, it is 0.003% or less.
[0025]
Al: Al has a deoxidizing action and is an effective element for improving toughness and workability. However, if it exceeds 0.10%, the formation of ground will be remarkable, so the content was made 0.10% or less. Preferably it is 0.05% or less.
[0026]
By limiting the chemical components in the steel, sufficient strength, toughness, and weldability can be obtained as a steel pipe for airbags. However, when further improvement is desired, Cr, Mo, V can be added to the above components. It is effective to add Ni, Cu, Ti, Nb, and B. The reasons for limiting the contents of these additive components are as follows.
[0027]
Cr: Cr is an element effective for improving the strength and toughness of steel, and it is necessary to add 0.05% or more.
On the other hand, if it exceeds 1.0%, the toughness of the weld is reduced, so 0.05% or more and 1.0% or less.
[0028]
Mo: Mo increases the strength by solid solution strengthening and precipitation strengthening and has the effect of improving the hardenability. However, if it exceeds 0.50%, the weld is hardened and the toughness is lowered, so the content was made 0.50% or less.
[0029]
V: V has the effect of improving the strength by precipitation strengthening, but if it exceeds 0.2%, the toughness is remarkably lowered, so the content was made 0.2% or less.
Ni: Ni is an effective element for improving the hardenability and improving the toughness, but it is an expensive element, so it was made 1.5% or less.
[0030]
Cu: Cu is an effective element for improving the toughness of steel, but it is an element that decreases the workability of the mature steel. Therefore, when adding Cu, Ni must be added at the same time to ensure hot workability. There is. However, if it exceeds 0.5%, even if Ni is added, good maturing workability cannot be secured, so the content was made 0.5% or less.
[0031]
Ti: Ti is effective in improving the toughness by refining the structure, but if it exceeds 0.1%, the toughness is adversely deteriorated.
Nb: Nb is effective in improving toughness by refining the structure in the same way as Ti. However, if it exceeds 0.1%, the toughness is worsened.
[0032]
B: B is an element effective for improving the hardenability, but if it exceeds 0.005%, the toughness is lowered, so it was made 0.005% or less. Preferably it is 0.002% or less.
(B) Pipe making It is only necessary to manufacture a cold drawing element pipe using the steel material with the chemical composition adjusted as described above, and the element pipe may be either an electric-welded steel pipe or a seamless steel pipe. Moreover, it does not specifically limit as a manufacturing method of a seamless steel pipe.
[0033]
However, as described later, it is necessary to determine the dimensions of the raw tube so that the area reduction rate is 50% or less, preferably 35 to 50% in the cold drawing process.
(C) Heat treatment (QT)
Quenching and tempering treatments are performed to ensure low temperature toughness (burst resistance). It is desirable that the heating temperature is a temperature above the Ac 3 transformation in the austenite region, followed by quenching, and then tempering at a temperature below the Ac 1 transformation point.
[0034]
(D) Cold drawing Cold drawing is performed on the steel pipe that has been quenched and tempered as described above under the condition of a total area reduction of 50% or less, preferably 35 to 50%. If the area reduction is less than 35%, the amount of lubricant remaining on the steel pipe surface after drawing may increase. On the other hand, if the area reduction ratio is 35% or more, the surface after drawing is glossy and the residual amount of lubricant on the surface of the steel pipe is small. In particular, the higher the surface area reduction during oil lubrication, the more prominent the tendency is, and the outer surface of the steel pipe becomes uniform and beautiful.
[0035]
As described above, the present inventors have made intensive efforts to achieve the object of the present invention, and as a result, the degree of processing indicated by the total area reduction ratio is reduced to 50% or less, whereby {110 in the T plane and L plane. } It was found that the value L / T 110 indicating the anisotropy of the texture at both positions can be 50 or less, preferably 40 or less, and the toughness in the T direction can be secured.
[0036]
In this case, the applicant of the present application also proposed in Japanese Patent Application No. 2001-371409 filed earlier that L / T 110 should be 4.0 or less. However, the surface property and dimensional accuracy compared with the case of the present invention are proposed. The way of thinking is different.
[0037]
(E) Final heat treatment The heat treatment after the cold finish drawing is performed by low-temperature annealing (SR) below the Ac 1 transformation point in the present invention in consideration of dimensional accuracy and surface properties. This is a kind of stress relief annealing, and the texture is not greatly affected by this.
[0038]
In the present invention, the texture is defined by the texture after the final annealing, not after the cold drawing.
(F) Low temperature static pressure burst test Figure 1 shows examples of steel pipes with good and poor toughness in the low temperature static pressure burst test. The evaluation criteria of the low temperature toughness of the Example mentioned later are also based on this.
[0039]
○: Steel pipe with good low-temperature toughness △: Steel pipe with slightly low-temperature toughness ×: Steel pipe with low-temperature toughness and crack propagation Low-temperature toughness As shown in Fig. 3, there is no propagation of cracks, and the tip of the crack is bent with respect to the steel pipe axial direction.
[0040]
On the other hand, in the case of a steel pipe that lacks low-temperature toughness, the tip of the crack extends in the axial direction of the steel pipe as shown in the △ column, and if further insufficient, the crack propagates to the end of the steel pipe as shown in the × column. Yes.
[0041]
(G) Texture The texture and its measuring method when evaluating a steel pipe according to the present invention are as follows.
[0042]
In the present invention, the X-ray integral intensity ratio of {110}, {200}, and {211} planes was measured for each of the L plane and T plane of the steel pipe after low-temperature annealing.
Here, the L plane and the T plane mean planes perpendicular to the axial direction of the steel pipe and the stress axis in the circumferential direction, respectively. The X-ray integral intensity ratio is a value obtained by dividing the peak area of a specific plane orientation obtained by X-ray spectroscopic analysis by the peak area of the same plane orientation obtained from a crystal orientation disordered sample such as a powder sample. is there.
[0043]
In the present invention, in order to further evaluate the texture anisotropy, the X-ray integrated intensity ratio of the L plane in a specific plane orientation was compared by a value (L / T ratio) divided by the X-ray integrated intensity ratio of the T plane. . As a result, the value of the {110} plane changed the most when the manufacturing conditions were changed, so that it can be evaluated by the L / T ratio (represented as L / T 110) of the {110} plane as a structural evaluation. I found it.
[0044]
In general, the cleavage plane of iron is said to be {110}, and in the present invention, L / T 110 is limited to 50 or less.
That is, in the conventional steel pipe, remarkable anisotropy of the {110} plane to the L plane is observed, but in the case of the present invention, the anisotropy is low.
[0045]
【Example】
Using the billet having the chemical components shown in Table 1, two types of cold drawing blanks shown in Table 2 are manufactured by piercing and rolling by ordinary Mannesmann-Mandrel mill finishing, and each is quenched under the respective manufacturing conditions shown in Table 2.・ After tempering, the steel pipe was manufactured by cold drawing (cold drawing) to produce a cold seamless steel pipe with an outer diameter of 25.4 mm and a wall thickness of 1.85 mm, followed by low-temperature annealing.
[0046]
The textures of two types of steel pipes were measured, and L / T110 was determined.
Moreover, the low temperature static pressure burst test was implemented 3 times at a 20 degreeC pitch from -20 degreeC to -80 degreeC, and the burst shape at that time was observed.
[0047]
The results are summarized in Table 3. In the table, ◯, Δ, × indicate the form of cracks shown in FIG.
[0048]
[Table 1]
[0049]
[Table 2]
[0050]
[Table 3]
[0051]
When the dimensional accuracy and the outer surface roughness of the steel pipe obtained by Invention Example A which was cold-drawn once were evaluated, the outer diameter dimension average = 60.354 mm, the standard deviation = 0.168, and the surface roughness Ra = 0.43 μm. Met.
[0052]
For comparison, the data of a conventional steel pipe subjected to QT treatment after cold drawing are shown as follows: outer diameter average = 60.356 mm, standard deviation = 0.0444, surface roughness Ra = 2.4 μm.
[0053]
According to the present invention, it can be seen that dimensional accuracy and surface roughness are greatly improved.
[0054]
【The invention's effect】
According to the present invention, an airbag steel pipe having high dimensional accuracy and excellent low temperature toughness (burst resistance) can be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an evaluation criterion for a result of a burst test.
Claims (2)
さらに必要により、(I)Cr:0.05〜1.0%、Mo:0.50%以下、V:0.2%以下、(II)Ni:1.5%以下、Cu:0.5%以下、(III)Ti:0.10%以下、Nb:0.1%以下、および(IV)B:0.005%以下の少なくとも1の群から選んだ1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる鋼組成を有する鋼を製管後、焼入れ・焼戻し処理を行い、次いで合計減面率が35〜50%である冷間抽伸を行い、さらにAc1変態点以下の低温焼鈍を行うことによって、周方向Tに垂直な面における{110}面のX線積分強度比に対する軸方向Lに垂直な面における{110}面のX線積分強度比(L/T)を50以下としたことを特徴とする低温靱性に優れたエアバッグ用鋼管の製造方法。In mass%, C: 0.05 to 0.20%, Si: 0.1 to 1.0%, Mn: 0.20 to 2.0%, P: 0.025% or less, S: 0.010 % Or less, Al: 0.10% or less,
If necessary, (I) Cr: 0.05 to 1.0%, Mo: 0.50% or less, V: 0.2% or less, (II) Ni: 1.5% or less, Cu: 0.5 % Or less, (III) Ti: 0.10% or less, Nb: 0.1% or less, and (IV) B: 0.005% or less, containing one or more selected from at least one group , after forming pipe steel having a steel composition and the balance being Fe and unavoidable impurities, subjected to quenching and tempering treatment and then subjected to cold drawing total area reduction rate is 35 to 50%, more Ac 1 transformation point by performing the low-temperature annealing of the following, X-rays integrated intensity ratio of the {110} plane in a plane perpendicular to the axial direction L against the X-ray integrated intensity ratio of the {110} plane on a surface perpendicular to the circumferential direction T (L / T) of 50 or less, a steel pipe for airbags having excellent low temperature toughness Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002274008A JP4186566B2 (en) | 2002-09-19 | 2002-09-19 | Manufacturing method of steel pipe for airbag having excellent low temperature toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002274008A JP4186566B2 (en) | 2002-09-19 | 2002-09-19 | Manufacturing method of steel pipe for airbag having excellent low temperature toughness |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004107756A JP2004107756A (en) | 2004-04-08 |
JP4186566B2 true JP4186566B2 (en) | 2008-11-26 |
Family
ID=32270613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002274008A Expired - Fee Related JP4186566B2 (en) | 2002-09-19 | 2002-09-19 | Manufacturing method of steel pipe for airbag having excellent low temperature toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4186566B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2007005029A (en) * | 2004-10-29 | 2007-06-19 | Sumitomo Metal Ind | Steel pipe for air bag inflator and method for production thereof. |
US7566416B2 (en) | 2004-10-29 | 2009-07-28 | Sumitomo Metal Industries, Ltd. | Steel pipe for an airbag inflator and a process for its manufacture |
DE102005046459B4 (en) * | 2005-09-21 | 2013-11-28 | MHP Mannesmann Präzisrohr GmbH | Process for the production of cold-finished precision steel tubes |
JP5040197B2 (en) * | 2006-07-10 | 2012-10-03 | Jfeスチール株式会社 | Hot-rolled thin steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same |
-
2002
- 2002-09-19 JP JP2002274008A patent/JP4186566B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004107756A (en) | 2004-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6677310B2 (en) | Steel materials and steel pipes for oil wells | |
JP5387799B1 (en) | Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking | |
EP2177634B1 (en) | Process for production of duplex stainless steel tubes | |
CA2667534C (en) | Seamless steel tube for an airbag accumulator and a process for its manufacture | |
EP1813687B1 (en) | Method for producing martensitic stainless steel pipe | |
EP1816227B1 (en) | Steel pipe for air bag inflator and method for production thereof | |
JP5005543B2 (en) | High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same | |
EP3425079B1 (en) | Steel material and oil-well steel pipe | |
EP3023507B1 (en) | Equipment line for manufacturing seamless steel pipes, and method for manufacturing high-strength stainless seamless steel pipe for oil wells | |
JP6819198B2 (en) | Rolled bar for cold forged tempered products | |
EP1892309B1 (en) | Oil well pipe for expandable-tube use excellent in toughness after pipe expansion and process for producing the same | |
CN108699656B (en) | Steel material and steel pipe for oil well | |
KR20170070129A (en) | Rolled steel bar or rolled wire material for cold-forged component | |
JP6679935B2 (en) | Steel for cold work parts | |
JP2019065343A (en) | Steel pipe for oil well and manufacturing method therefor | |
JP4186566B2 (en) | Manufacturing method of steel pipe for airbag having excellent low temperature toughness | |
JP2004353028A (en) | High carbon steel tube having excellent cold forging workability and rolling workability, and its production method | |
WO2018008703A1 (en) | Rolled wire rod | |
JP3589066B2 (en) | Manufacturing method of high strength and high toughness seamless steel pipe | |
JPH10291008A (en) | Tool for hot making tube and its manufacture | |
KR20170121267A (en) | Hot rolled bar stock, manufacturing method of parts and hot rolled bar stock | |
JP3937964B2 (en) | High strength and high toughness martensitic stainless steel seamless pipe manufacturing method | |
JP7445173B2 (en) | steel material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041018 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080819 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080901 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4186566 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |