JPH0533036A - Continuously casting slab and method for reforming its surface - Google Patents

Continuously casting slab and method for reforming its surface

Info

Publication number
JPH0533036A
JPH0533036A JP21287291A JP21287291A JPH0533036A JP H0533036 A JPH0533036 A JP H0533036A JP 21287291 A JP21287291 A JP 21287291A JP 21287291 A JP21287291 A JP 21287291A JP H0533036 A JPH0533036 A JP H0533036A
Authority
JP
Japan
Prior art keywords
slab
discontinuous
surface layer
mark
continuously cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21287291A
Other languages
Japanese (ja)
Inventor
Setsuo Mishima
節夫 三嶋
Fujitaka Kono
藤孝 河野
Kazuo Karashima
一生 辛島
Hideki Nakamura
秀樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP21287291A priority Critical patent/JPH0533036A/en
Publication of JPH0533036A publication Critical patent/JPH0533036A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To facilitate grinding work and plastic workability executed later by refoming surface defect generated on the surface layer part of Fe based, Ni based or Co based alloy continuously casting slab and restraining lowering of the yield in a minimum limit. CONSTITUTION:In the continuously casting slab having recrystal structure, diffusion structure or melting and resolidified structure at least on the surface layer part in structure non-continuous corresponding part in the cast slab, what is called, witness mark or oscillation mark, as the concrete surface refoming method for the casting slab, it can be achieved that heating treatment exceeding the ordinary hot working temp. is executed or only the surface layer part is melted or semi-melted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Fe基、Ni基またはC
o基合金の連続鋳造鋳片の表層部に形成されるウィット
ネスマークまたはオッシレーションマークと称する組織
不連続部を改質した連続鋳造鋳片およびその表面改質方
法に関する。
FIELD OF THE INVENTION The present invention relates to Fe group, Ni group or C group.
The present invention relates to a continuously cast slab in which a discontinuous structure called a witness mark or an oscillation mark formed on a surface layer part of a continuously cast slab of a base alloy is modified, and a surface modification method thereof.

【0002】[0002]

【従来の技術】連続鋳造法で製造される鋳片の表層部に
は、ウィットネスマークあるいはオッシレーションマー
クと称される不連続凝固部を伴う表面欠陥が発生する。
これは連続鋳造時に、間欠引抜きによる旧凝固殻と引抜
過程で新たに生成した新凝固殻との接合部に生じるもの
で、鋳片表面には、鋳片の長手方向に対してほぼ直角方
向に線状の不連続マークとして観察され、鋳造条件によ
っては、この不連続マーク部が未圧着部としてV溝状に
開口する場合がある。さらに不連続マーク部の直下には
鋳造組織の不連続面が存在し、特に炭素含有量の高い合
金鋼の場合には、この不連続面近傍に著しい炭化物の偏
析が発生する。なかでも、パウダー等の潤滑剤が使用で
きない水平式連続鋳造法の場合には、不連続凝固部の深
さが数mmに及び、コールドシャットクラックと呼ばれる
不連続面の未溶着による亀裂が存在する傾向が顕著にな
る。
2. Description of the Related Art Surface defects, called witness marks or oscillation marks, are generated in the surface layer portion of a slab produced by a continuous casting method, which is accompanied by discontinuous solidification.
This occurs at the joint between the old solidified shell by intermittent drawing and the new solidified shell newly generated in the drawing process during continuous casting, and the surface of the slab is almost perpendicular to the longitudinal direction of the slab. It is observed as a linear discontinuous mark, and depending on the casting conditions, this discontinuous mark portion may open as a V-groove as an unpressed portion. Further, a discontinuous surface of the cast structure exists immediately below the discontinuous mark portion, and particularly in the case of alloy steel having a high carbon content, significant segregation of carbides occurs near this discontinuous surface. Above all, in the case of horizontal continuous casting method where lubricant such as powder cannot be used, the depth of discontinuous solidification part reaches several mm, and there are cracks due to unwelded discontinuous surface called cold shut crack. The tendency becomes remarkable.

【0003】図1は、水平連続鋳造法の場合の凝固成長
の模式図を示したもので、表面中央部に垂直に見える黒
い線がウィットネスマークと称される組織不連続面であ
り、この面を境に反対方向に凝固が成長する領域が存在
することを説明している。図2はSUS304、図3はSKD61、
図4はSKH51の代表的なウィットネスマーク部の実際のミ
クロ組織を示す。不連続面を境に互いに反対方向に凝固
が成長していることが良くわかる。また、高炭素含有の
SKH51ではこの不連続面に炭化物が偏析していることが
わかる。
FIG. 1 is a schematic diagram of solidification growth in the horizontal continuous casting method. A black line which is seen vertically in the center of the surface is a discontinuous structure surface called a witness mark. It explains that there is a region where solidification grows in the opposite direction across the surface. Figure 2 is SUS304, Figure 3 is SKD61,
Figure 4 shows the actual microstructure of the typical witness mark part of SKH51. It can be clearly seen that the solidification grows in the opposite directions at the discontinuous surface. In addition, high carbon content
In SKH51, it can be seen that carbide is segregated on this discontinuous surface.

【0004】[0004]

【発明が解決しようとする課題】一般に連続鋳造鋳片の
不連続凝固部は特に脆弱で、その後の塑性加工を著しく
阻害している。すなわち、不連続凝固部が未溶着で開口
している場合は、塑性加工時に応力集中の原因になるだ
けでなく、不連続凝固部が開口していない場合でも鋳造
組織の不連続部が延性を著しく低下させるためである。
さらに高炭素系合金の場合には、炭化物が不連続部に偏
析するため、この領域の延性は極めて乏しいものとな
り、塑性加工時の割れ感受性が顕著になる傾向がある。
そのため、従来は連続鋳造後の鋳片の不連続凝固部を研
削あるいは切削により完全に除去することが行なわれて
いた。しかし、研削の場合は加工熱によって開口部がよ
り拡大するかまたは新しく開口してしまうことがあり、
切削加工の場合は不連続凝固部を開口することはない
が、鋳片の曲りや変形等のため、加工時間が著しく長く
なり、歩留も低下する問題があった。
DISCLOSURE OF THE INVENTION Generally, the discontinuously solidified portion of a continuously cast slab is particularly fragile and significantly hinders subsequent plastic working. That is, if the discontinuously solidified portion is open without welding, it not only causes stress concentration during plastic working, but even if the discontinuously solidified portion is not open, the discontinuous portion of the cast structure causes ductility. This is to significantly reduce it.
Further, in the case of a high carbon alloy, since the carbide segregates in the discontinuous portion, the ductility of this region becomes extremely poor, and the cracking susceptibility during plastic working tends to become remarkable.
Therefore, conventionally, the discontinuous solidified portion of the cast piece after continuous casting has been completely removed by grinding or cutting. However, in the case of grinding, the opening may become larger or a new opening may be created due to the processing heat.
In the case of cutting, the discontinuously solidified portion is not opened, but there is a problem that the bending time and deformation of the slab significantly increase the processing time and reduce the yield.

【0005】また、表面疵の除去方法としてホットスカ
ーフィングやコールドスカーフィング等の方法がある
が、この方法では、表面の約5mmを溶解して、これを吹
き飛ばすもので、断面形状の小さな鋳片に適用すること
は歩留を著しく低下させる。例えば断面が100×100mmの
鋳片を片肉5mmスカーフィングを実施した場合の歩留
は、81%であり、さらに表面の凹凸を除去するための研
削が必要となり、圧延までの歩留は80%以下となる問題
がある。本発明の目的はFe基、Ni基またはCo基合金
の連続鋳造鋳片の表層部に発生する組織不連続部、炭化
物偏析などの表面欠陥を改質し、しかも歩留低下を最少
限に留めて、その後に実施される研削加工や塑性加工が
容易な連続鋳造鋳片およびその表面改質方法を提供する
ことである。
Further, there are methods such as hot scarfing and cold scarfing as a method for removing surface flaws. In this method, about 5 mm of the surface is melted and blown away, and a slab with a small cross-sectional shape is obtained. Is significantly reduced in yield. For example, the yield when the slab with a cross section of 100 × 100 mm is 5 mm scarfed, the yield is 81%, further grinding to remove surface irregularities is required, and the yield until rolling is 80 There is a problem that it becomes less than%. The object of the present invention is to improve surface defects such as discontinuity of structure, segregation of carbides, etc. which occur in the surface layer portion of a continuously cast slab of Fe-based, Ni-based or Co-based alloy, and further, the yield reduction is minimized. And to provide a continuously cast slab that can be easily ground and plastically worked thereafter, and a method for surface modification thereof.

【0006】[0006]

【課題を解決するための手段】本発明者は、Fe基、Ni
基またはCo基などの連続鋳造について研究する過程で
ウィットネスマークまたはオッシレーションマークと称
される塑性加工性を著しく阻害する表面鋳造欠陥部を実
質的に除去しないで改質することにより、塑性加工が可
能で、しかも歩留向上に有効な鋳片とその表面改質方法
を見出したものである。表面の改質方法は、種々検討し
た結果、ウィットネスマークまたはオッシレーションマ
ークを何等かの形で変質させ、健全部との差異をできる
だけ小さくすることが有効であること、そのための改質
手段として鋳片を部分的に加熱して組織を変化させてし
まうことが有効であることがわかった。加熱の程度によ
り鋳片の組織不連続相当部の少なくとも一部を再結晶組
織、拡散組織または溶融再凝固組織のいずれにすると本
発明の目的が達成される。
Means for Solving the Problems The present inventor
In the process of studying continuous casting such as base or Co base, plastic working by reforming without substantially removing surface casting defects called witness mark or oscillation mark which significantly inhibits plastic workability The inventors have found a slab that is capable of improving the yield and is effective in improving the yield, and a method for surface modification thereof. As a method of modifying the surface, it is effective to change the witness mark or the oscillation mark in some way as a result of various examinations, and to make the difference with the sound part as small as possible. It was found to be effective to partially heat the slab to change the structure. The object of the present invention is achieved when at least a part of the structure discontinuous portion of the cast slab has a recrystallized structure, a diffusion structure or a melt resolidified structure depending on the degree of heating.

【0007】すなわち、本発明のうち第1発明は、Fe
基、Ni基またはCo基合金の連続鋳造鋳片のウィットネ
スマークまたはオッシレーションマークと称される鋳片
の組織不連続相当部の少なくとも表層部が再結晶組織、
拡散組織または溶融再凝固組織を有することを特徴とす
る連続鋳造鋳片である。また、第2発明はFe基、Ni基
またはCo基合金の連続鋳造鋳片の表面を加熱してウィ
ットネスマークまたはオッシレーションマークと称され
る鋳片の組織不連続部の少なくとも表層部を再結晶化、
または前記組織不連続部に析出した相を拡散させること
を特徴とする連続鋳造鋳片の表面改質方法であり、第3
発明は、Fe基、Ni基またはCo基合金の連続鋳造鋳片
の表面を加熱してウィットネスマークまたはオッシレー
ションマークと称される鋳片の組織不連続部の少なくと
も表層部を溶融または半溶融再凝固させることを特徴と
する連続鋳造鋳片の表面改質方法である。
That is, the first invention of the present invention is Fe
At least the surface layer portion of the structure corresponding to the discontinuous structure of the slab called the witness mark or oscillation mark of the continuously cast slab of the base, Ni-based or Co-based alloy,
A continuously cast slab having a diffusion structure or a melt resolidification structure. The second aspect of the present invention heats the surface of a continuously cast slab of Fe-based, Ni-based or Co-based alloy to re-create at least the surface layer portion of the discontinuous structure of the slab called a witness mark or oscillation mark. Crystallization,
Or a surface modification method for a continuously cast slab, which comprises diffusing a phase precipitated in the discontinuous structure portion,
The present invention heats the surface of a continuously cast slab of Fe-based, Ni-based or Co-based alloy to melt or semi-melt at least the surface layer portion of the discontinuous structure of the slab called witness mark or oscillation mark. It is a surface modification method of a continuously cast slab, which is characterized by re-solidifying.

【0008】なお、本発明でいう再結晶組織とは、鋳片
の表面を加熱することにより、旧組織不連続面上に新し
く結晶粒を生成させて脆弱な不連続面を部分的または全
面的に解消した新生結晶組織を指す。また、前述の加熱
は従来技術であるホットスカーフィングのような材料の
高温除去を目的とするものではなく、鋳片表面部の改質
を目的とし、その後実施される熱間加工を目的とする加
熱とは、別の目的でなされる加熱である。したがって、
本発明の表面の加熱は通常、熱間加工に先立って別工程
として追加されるが、本発明の目的の加熱時の保有熱を
利用して、それを次工程の熱として利用することはもち
ろん構わない。
The term "recrystallized structure" as used in the present invention means that by heating the surface of the cast slab, new crystal grains are generated on the discontinuous surface of the old structure to form a fragile discontinuous surface partially or entirely. It refers to the newly formed crystal structure that has been resolved. Further, the above-mentioned heating is not intended to remove high-temperature materials such as hot scarfing which is a conventional technique, but is intended to modify the surface of the slab and is intended to be hot-worked thereafter. Heating is heating performed for another purpose. Therefore,
The heating of the surface of the present invention is usually added as a separate step prior to hot working, but it is of course possible to utilize the retained heat at the time of heating for the purpose of the present invention and utilize it as the heat of the next step. I do not care.

【0009】[0009]

【作用】前述のように、連続鋳造によって発生する鋳片
表層部の組織不連続面は、旧凝固殻と新凝固殻との平面
的な接合面であるため、その後の研削加工、塑性加工の
ような熱応力や変形応力に対して容易に開口または割れ
の伝播経路となる。本発明は上記の平面的な接合面上に
新しく結晶粒を生成させること、つまり再結晶組織とす
ることによって組織不連続面を解消して延性を高めたも
のである。さらに、連続鋳造を行なう対象材料が炭素を
比較的多く含有する場合、この不連続面の近傍に炭化物
の偏析が著しくなり、鋳造ままの鋳片は相乗的に脆化す
るため、高温に加熱して主として鋳片表層部の炭化物偏
析を基地に固溶させて拡散組織にすることで延性が向上
する。上記の再結晶組織または炭化物を固溶させた拡散
組織にするには、一般に塑性加工のために加熱するだけ
の工程では不十分で、別工程として通常の熱間加工温度
以上、かつ凝固終了温度以下の温度に加熱することで達
成できる。
As described above, since the discontinuous structure surface of the cast slab surface layer portion generated by continuous casting is a flat joint surface between the old solidified shell and the new solidified shell, the subsequent grinding and plastic working It easily becomes a propagation path for openings or cracks against such thermal stress and deformation stress. The present invention eliminates the discontinuity structure and enhances ductility by newly forming crystal grains on the above-mentioned planar joint surface, that is, by forming a recrystallized structure. Furthermore, when the material to be continuously cast contains a relatively large amount of carbon, segregation of carbides becomes remarkable in the vicinity of this discontinuous surface, and the as-cast slab synergistically becomes brittle. The ductility is improved mainly by solidifying the segregation of carbide in the surface layer of the cast slab into the matrix to form a diffusion structure. In order to form the above-mentioned recrystallized structure or a diffusion structure in which a carbide is solid-solved, generally only the step of heating for plastic working is not sufficient, as a separate step the normal hot working temperature or higher, and the solidification end temperature. It can be achieved by heating to the following temperature.

【0010】これに対して、Fe基、Ni基またはCo基
合金の連続鋳造条件が不適当な場合には、鋳片表面のウ
ィットネスマーク部やオッシレーションマーク部が未圧
着となってV溝状に開口する。また、共晶炭化物を晶出
する高炭素系の高合金の場合には、組織不連続部に共晶
炭化物の偏析が著しい。上記V溝状に開口した鋳片また
は開口していない場合でも組織不連続部に共晶炭化物が
偏析している鋳片は、前述の凝固終了温度以下の加熱で
は不十分で、鋳片の表層部を溶融または半溶融凝固組織
とすることで、開口部または共晶炭化物の偏析は解消さ
れ、その後に実施される研削加工や塑性加工が良好にな
る。上記再凝固組織を形成させるための加熱は、不連続
部だけに集中して行なう方がエネルギー面で有利である
が、全鋳片表層部について実施する方が工業的には加熱
手段の制御が容易になる。また、再結晶組織を形成させ
るための加熱は、通常のバーナ加熱炉、電気炉で実施で
きる。
On the other hand, when the Fe-based, Ni-based or Co-based alloy continuous casting conditions are unsuitable, the witness mark portion and the oscillation mark portion on the surface of the slab become uncompressed and the V groove is formed. Open in a circle. Further, in the case of a high carbon-based high alloy that crystallizes eutectic carbide, segregation of eutectic carbide is remarkable in the discontinuous structure. The above-mentioned V-groove-shaped slab or a slab in which eutectic carbide is segregated in the discontinuous structure even when the slab is not opened is not sufficient for heating below the above-mentioned solidification end temperature, and thus the surface layer of the slab By making the part have a molten or semi-molten solidification structure, the segregation of the opening or the eutectic carbide is eliminated, and the grinding process and the plastic working performed thereafter become good. The heating for forming the resolidified structure is more advantageous in terms of energy when concentrated on only the discontinuous portion, but it is industrially preferable to perform it on the entire surface of the slab for controlling the heating means. It will be easier. Further, the heating for forming the recrystallized structure can be carried out in a normal burner heating furnace or an electric furnace.

【0011】[0011]

【実施例】【Example】

(実施例1)JIS規格SUS304,SKD61,S
KH51,SKD11,SK3,SUH35およびステ
ライトNo.6(ステライトは商標である)を溶解し、水平
連続鋳造装置を用いて断面が120mm角の鋳片を製造し
た。図5は本発明が特徴とする鋳片の表面改質の一例を
示す鋳片の表面加熱手段を設けた水平式連続鋳造装置で
ある。より具体的には、該水平式連続鋳造装置には、表
層部の溶融再凝固組織を得るため凝固完了後に、加熱を
実施するための高周波加熱装置を有している。実験で使
用したコイルは2巻で、コイルと鋳片のギャップは約10
mmとした。使用周波数は10KHzであり、出力は300〜350K
Wであった。出力は鋳片の引抜き速度および融点によっ
て調整し、溶融深さが2mmになるようにした。本実験で
は、各試料の鋳造において、従来方法による鋳片を得る
ために上記高周波加熱装置を負荷せずに所定の長さまで
鋳片を引き抜いた後、高周波加熱電源を投入して本発明
による鋳片を製造した。なお、各試料の引抜き速度は、
SUS304が、1.8m/min、SKD61が1.6m/min、S
KH51およびSKD11が1.2m/min、SK3が1.6m/m
in、SUH35が1.6m/min、ステライトNo.6が1.2m/mi
nであった。鋳造後、各鋳片について観察したところ、
高周波加熱を行なわなかったSKD51,SKD11お
よびステライトNo.6の鋳片表層部にはV溝状の開口が
部分的に、また組織不連続部には共晶炭化物が認められ
た。しかし、加熱して表層部を溶融再凝固組織にした鋳
片表層部には開口部は認められなかった。
(Example 1) JIS standards SUS304, SKD61, S
KH51, SKD11, SK3, SUH35 and Stellite No. 6 (Stellite is a trademark) were melted and a slab having a cross section of 120 mm was produced using a horizontal continuous casting device. FIG. 5 shows a horizontal continuous casting apparatus provided with a slab surface heating means showing an example of surface modification of a slab characterized by the present invention. More specifically, the horizontal continuous casting device has a high-frequency heating device for performing heating after completion of solidification to obtain a molten resolidified structure of the surface layer portion. The coil used in the experiment was 2 turns, and the gap between the coil and the slab was about 10
mm. Use frequency is 10KHz, output is 300 ~ 350K
It was W. The output was adjusted by the drawing speed of the slab and the melting point so that the melting depth was 2 mm. In this experiment, in the casting of each sample, after the slab was pulled out to a predetermined length without loading the high-frequency heating device to obtain the slab by the conventional method, the high-frequency heating power source was turned on to cast the sample according to the present invention. A piece was produced. The drawing speed of each sample is
SUS304 is 1.8m / min, SKD61 is 1.6m / min, S
1.2m / min for KH51 and SKD11, 1.6m / m for SK3
in, SUH35 is 1.6m / min, Stellite No.6 is 1.2m / mi
It was n. After casting, when observing each slab,
V-groove-like openings were partially observed in the surface layer of the cast pieces of SKD51, SKD11 and Stellite No. 6 which were not subjected to high-frequency heating, and eutectic carbide was observed in the discontinuous structure. However, no opening was observed in the surface layer of the slab where the surface layer was melted and resolidified by heating.

【0012】次いで、各鋳片はSUS304は1100℃で
溶体化処理、SK3は750℃×3hrの焼鈍、SKD61,
SKD11,SKH51は830℃×3hrの焼鈍、またSU
H35は1200℃、ステライトNo.6は1230℃の固溶化処
理をそれぞれ施した。本発明の表面改質を実施した鋳片
および従来法の鋳片の鋳片の表層部より試料を割り出
し、引張試験片およびシャルピー衝撃試験片を作成して
引張強度と衝撃値を求めた。比較方法として、従来法に
よる各合金鋳片、すなわち高周波加熱で鋳片の表層部を
加熱しなかった鋳片の値を1とし、表面を再凝固組織に
した鋳片表層部から割り出した試験片の各値を整理して
表1に示す。
Next, each slab was solution treated at 1100 ° C. for SUS304, annealed at 750 ° C. × 3 hr for SK3, SKD61,
SKD11 and SKH51 are annealed at 830 ℃ × 3hr, and SU
H35 was subjected to solution treatment at 1200 ° C and Stellite No. 6 was subjected to solution treatment at 1230 ° C. Samples were indexed from the surface layers of the slabs subjected to the surface modification of the present invention and the slabs of the conventional method, and tensile test pieces and Charpy impact test pieces were prepared to determine the tensile strength and impact value. As a comparison method, a test piece indexed from the surface layer of a cast alloy having a re-solidified surface was set to 1 as the value of each alloy cast by the conventional method, that is, the cast without heating the surface of the cast by high frequency heating. Table 1 summarizes each value of.

【0013】[0013]

【表1】 [Table 1]

【0014】表1からいずれの材料も本発明の表面改質
を実施することにより、強度と靭性がともに著しく向上
していることがわかる。一方、各鋳片を片肉 0.5mm程度
研削し、浸透探傷試験を実施し、疵がなくなるまで研削
し、浸透探傷試験を繰り返し実施し、疵が完全になくな
った時点の歩留の比較を行なった。比較方法は、高周波
加熱を行なわなかった従来法による鋳片歩留を1とし、
本発明方法である鋳片表層部を加熱して再凝固組織とし
た鋳片の歩留を各試料毎に整理したもので、その結果を
表1に併記する。表1から割れ感受性の高いSKH5
1,SKD11,ステライトNo.6,においても冷間研
削は、本発明法により、クラックの発生を防止でき、高
い歩留が得られることがわかった。SUS304は割れ
感受性が低い合金であるが、従来材では、不連続部の脆
性は避けられず、また不連続部の溶着不足による割れ発
生のため研削歩留は本発明材より低くなっている。以上
説明した如く、本発明法により鋳片表層部の機械的特性
は大幅に改善され研削歩留も向上することがわかる。図
6は、SKH51を本発明である鋳片表層部を加熱して
溶融再凝固組織にする表面改質処理を実施した後の旧ウ
ィットネスマーク部のミクロ組織写真を示す。図6から
ウィットネスマーク直下の組織不連続部は完全に消失し
ていることがわかる。
It can be seen from Table 1 that both materials are significantly improved in strength and toughness by the surface modification of the present invention. On the other hand, each slab was ground to a thickness of about 0.5 mm, a penetrant flaw detection test was conducted, grinding was carried out until there were no flaws, and the penetrant flaw test was repeated, and the yields at the time when the flaws were completely eliminated were compared. It was As a comparison method, the slab yield obtained by the conventional method that did not perform high frequency heating was 1,
The yield of the cast slab which is the method of the present invention and which is obtained by heating the surface layer of the cast slab to form a resolidified structure is arranged for each sample, and the results are also shown in Table 1. From Table 1, SKH5 with high cracking sensitivity
It has been found that the cold grinding of 1, SKD11 and Stellite No. 6 can prevent the occurrence of cracks and obtain a high yield by the method of the present invention. SUS304 is an alloy having low cracking susceptibility, but in the conventional material, brittleness of the discontinuous portion is unavoidable, and the yield of grinding is lower than that of the material of the present invention due to cracking due to insufficient welding of the discontinuous portion. As described above, it is understood that the method of the present invention significantly improves the mechanical properties of the surface layer of the cast slab and improves the grinding yield. FIG. 6 shows a microstructure photograph of the old witness mark portion after SKH51 was subjected to the surface modification treatment of the present invention by heating the surface layer portion of the cast slab to form a melt resolidified structure. From FIG. 6, it can be seen that the tissue discontinuity immediately below the witness mark has completely disappeared.

【0015】(実施例2)SU304,SUH35,S
US410L,NCF800,NCF750を溶解し、
通常の加熱手段がない、水平連続鋳造装置を用いて断面
が120mm角の鋳片を製造した。引抜き速度は、すべて1.6
m/minとした。鋳造後、一部の鋳片を残して本発明であ
る鋳片表層部の組織不連続部を再結晶組織、拡散組織に
する表面改質方法として各々1315℃×15分の表面改質処
理を実施したのち、上記表面改質処理を実施しなかった
鋳片とともに、SUS410Lは800℃×3hrの焼鈍、SKH35は12
00℃の固溶化処理、SUS304およびNCF800は1100℃の固溶
化処理、NCF750は1150℃の溶体化処理を施した。溶体化
処理時間は全て2hrとした。
(Embodiment 2) SU304, SUH35, S
US410L, NCF800, NCF750 is dissolved,
A slab having a cross section of 120 mm square was produced using a horizontal continuous casting device without a usual heating means. All withdrawal speeds are 1.6
m / min. After casting, a surface modification treatment of 1315 ° C. × 15 minutes each as a surface modification method for recrystallizing the structure discontinuous part of the surface part of the slab of the present invention leaving a part of the slab and a diffusion structure After being carried out, along with the slab that was not subjected to the above surface modification treatment, SUS410L was annealed at 800 ° C for 3 hours, and SKH35 was 12
Solution treatment at 00 ° C, solution treatment at 1100 ° C for SUS304 and NCF800, and solution treatment at 1150 ° C for NCF750. The solution treatment time was all set to 2 hours.

【0016】これらの鋳片について組織観察したとこ
ろ、表面改質処理を実施しなかったウィットネスマーク
直下の表層部には、いずれも組織不連続面が明瞭に観察
され、特にSUH35の組織不連続部近傍には、炭化物
の偏析が認められた。これに対して、表面改質処理を実
施した組織は、いずれも組織不連続面の一部または大部
分が消失して再結晶組織が確認された。また、SUH3
5の組織不連続相当部の炭化物偏析がほぼ解消された拡
散組織であった。本発明の表面改質処理を実施した鋳片
および従来法の鋳片の表層部より試料を割り出し、引張
試験片を作成し、引張強度の比較を行なった。従来法の
鋳片の強度を1として、表2に試験結果を整理した。
When the structures of these cast pieces were observed, a discontinuous structure surface was clearly observed in the surface layer portion immediately below the witness mark which was not subjected to the surface modification treatment. In particular, the discontinuity structure of SUH35 was observed. Segregation of carbide was observed near the part. On the other hand, in each of the structures subjected to the surface modification treatment, a part or most of the discontinuous structure disappeared and a recrystallized structure was confirmed. Also, SUH3
It was a diffusion structure in which the carbide segregation of the portion corresponding to the structure discontinuity of No. 5 was almost eliminated. Samples were indexed from the surface layer portions of the slabs subjected to the surface modification treatment of the present invention and the slabs of the conventional method, tensile test pieces were prepared, and tensile strengths were compared. The test results are summarized in Table 2 with the strength of the conventional slab as 1.

【0017】[0017]

【表2】 [Table 2]

【0018】いずれの材料も本発明の表面改質処理を実
施することにより、強度が向上していることがわかる。
強度向上の比率は、実施例1の溶融再凝固組織の本発明
材までに達していない。これは、組織不連続面が完全に
消失し得る再結晶組織にすることが困難なこと、また炭
化物の偏析が完全に解消することが困難なためと考えら
れる。ついで、実施例1と同様の研削試験を実施し、そ
の結果を表2に併記する。
It can be seen that the strength of any material is improved by performing the surface modification treatment of the present invention.
The strength improvement ratio does not reach that of the material of the present invention having the melt resolidified structure of Example 1. It is considered that this is because it is difficult to form a recrystallized structure in which the discontinuous structure can be completely disappeared, and it is difficult to completely eliminate the segregation of carbides. Then, the same grinding test as in Example 1 was performed, and the results are also shown in Table 2.

【0019】研削歩留は、本発明の鋳片表層部を改質処
理することで研削歩留が向上することがわかる。図7
は、SUS304の水平連続鋳造鋳片を本発明方法であ
る表面改質処理(1315℃×15分)を実施した再結晶組織を
示す旧ウィットネスマーク部のミクロ組織である。図7
から組織不連続面が部分的に解消し、新しいウィットネ
スマークを股がった再結晶粒が生成しているのが観察さ
れる。
Regarding the grinding yield, it can be seen that the grinding yield is improved by modifying the surface layer of the cast slab of the present invention. Figure 7
Is a microstructure of a former witness mark part showing a recrystallized structure obtained by subjecting a horizontally continuous cast slab of SUS304 to a surface modification treatment (1315 ° C. × 15 minutes) which is the method of the present invention. Figure 7
From this, it is observed that the discontinuity of the structure is partially eliminated, and recrystallized grains having new witness marks are formed.

【0020】[0020]

【発明の効果】以上述べたように、Fe基、Ni基または
Co基合金の連続鋳造に際して、鋳片表層部に発生する
ウィットネスマークまたはオッシレーションマークと称
される組織不連続部を再結晶組織、拡散組織または溶融
再凝固組織とすることで次工程である表面研削歩留が向
上し、さらにその後の塑性加工性を著しく高めることが
可能となった。
As described above, in the continuous casting of Fe-based, Ni-based or Co-based alloys, the discontinuous structure called witness mark or oscillation mark generated in the surface layer of the slab is recrystallized. By using a structure, a diffusion structure, or a melt resolidified structure, the surface grinding yield in the next step was improved, and it became possible to significantly enhance the subsequent plastic workability.

【図面の簡単な説明】[Brief description of drawings]

【図1】水平連続鋳造法による組織不連続面の生成と、
凝固組織の成長を示す模式図である。
FIG. 1 is a view showing generation of a discontinuous structure surface by a horizontal continuous casting method,
It is a schematic diagram which shows the growth of a solidification structure.

【図2】連続鋳造法によるSUS304の組織不連続部
を示す金属組織写真である。
FIG. 2 is a metallographic photograph showing a discontinuous structure of SUS304 produced by a continuous casting method.

【図3】連続鋳造法によるSKD61の組織不連続部を
示す金属組織写真である。
FIG. 3 is a metallographic photograph showing a discontinuous structure of SKD61 by the continuous casting method.

【図4】連続鋳造法によるSKH51の組織不連続部を
示す金属組織写真である。
FIG. 4 is a metallographic photograph showing a discontinuous structure portion of SKH51 by a continuous casting method.

【図5】本発明の水平式連続鋳造装置の一例を示す概念
図である。
FIG. 5 is a conceptual diagram showing an example of a horizontal continuous casting apparatus of the present invention.

【図6】本発明法によるSKH51の組織不連続相当部
の溶融再凝固組織を示す金属組織写真である。
FIG. 6 is a metallographic photograph showing a molten resolidified structure of a portion corresponding to a discontinuous structure of SKH51 according to the method of the present invention.

【図7】本発明法によるSUS304の組織不連続相当
部の再結晶組織を示す金属組織写真である。
FIG. 7 is a metallographic photograph showing a recrystallized structure of a portion corresponding to a discontinuous structure of SUS304 according to the method of the present invention.

【符号の説明】[Explanation of symbols]

1 高周波電源 2 コイル 3 タンディッシュ 4 溶鋼 5 モールド 6 スプレー 61 冷却帯 7 鋳片 8 ピンチロール 9 切断装置 1 high frequency power supply 2 coils 3 tundish 4 Molten steel 5 mold 6 spray 61 cooling zone 7 slab 8 pinch rolls 9 cutting device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 秀樹 島根県安来市安来町2107番地の2 日立金 属株式会社安来工場内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideki Nakamura             2 Hitachi, Kin, 2107 Yasugi-cho, Yasugi-shi, Shimane Prefecture             Yasugi factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Fe基、Ni基またはCo基合金の連続鋳
造鋳片のウィットネスマークまたはオッシレーションマ
ークと称される鋳片の組織不連続相当部の少なくとも表
層部が再結晶組織、拡散組織または溶融再凝固組織を有
することを特徴とする連続鋳造鋳片。
1. A recrystallized structure or a diffusion structure at least in a surface layer portion of a cast piece called a witness mark or an oscillation mark of a continuously cast cast piece of an Fe-based, Ni-based or Co-based alloy. Alternatively, a continuously cast slab having a molten resolidified structure.
【請求項2】 Fe基、Ni基またはCo基合金の連続鋳
造鋳片の表面を加熱してウィットネスマークまたはオッ
シレーションマークと称される鋳片の組織不連続部の少
なくとも表層部を再結晶化、または前記組織不連続部に
析出した相を拡散させることを特徴とする連続鋳造鋳片
の表面改質方法。
2. A surface of a continuously cast slab of Fe-based, Ni-based or Co-based alloy is heated to recrystallize at least the surface layer portion of the discontinuous portion of the slab called witness mark or oscillation mark. Or a surface modification method of a continuously cast slab, which comprises diffusing a phase precipitated in the discontinuous structure portion.
【請求項3】 Fe基、Ni基またはCo基合金の連続鋳
造鋳片の表面を加熱してウィットネスマークまたはオッ
シレーションマークと称される鋳片の組織不連続部の少
なくとも表層部を溶融または半溶融再凝固させることを
特徴とする連続鋳造鋳片の表面改質方法。
3. A surface of a continuously cast slab of Fe-based, Ni-based or Co-based alloy is heated to melt at least a surface layer portion of a discontinuous structure portion of the slab called a witness mark or oscillation mark or A method for modifying the surface of a continuously cast slab, which comprises semi-melting and re-solidifying.
JP21287291A 1991-07-30 1991-07-30 Continuously casting slab and method for reforming its surface Pending JPH0533036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21287291A JPH0533036A (en) 1991-07-30 1991-07-30 Continuously casting slab and method for reforming its surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21287291A JPH0533036A (en) 1991-07-30 1991-07-30 Continuously casting slab and method for reforming its surface

Publications (1)

Publication Number Publication Date
JPH0533036A true JPH0533036A (en) 1993-02-09

Family

ID=16629672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21287291A Pending JPH0533036A (en) 1991-07-30 1991-07-30 Continuously casting slab and method for reforming its surface

Country Status (1)

Country Link
JP (1) JPH0533036A (en)

Similar Documents

Publication Publication Date Title
KR20230059827A (en) Wire rod for 5,000 MPa class diamond wire and its production method
JP3397092B2 (en) Al-containing austenitic stainless steel with excellent hot workability
JP2014233753A (en) Industrial pure titanium ingot excellent in surface properties after hot rolling even if blooming process or fine arrangement process is omitted and method for manufacturing the same
JP3606404B2 (en) Consumable electrode type remelting method of super heat-resistant alloy
JP3711959B2 (en) Heat resistant low alloy steel pipe and method for producing the same
JP4619635B2 (en) Welding method for high carbon steel
JPH0533036A (en) Continuously casting slab and method for reforming its surface
JP4205933B2 (en) Thick steel plate with excellent laser cutting property and method for producing the same
JP2002239722A (en) Lap fillet welding method for steel sheet excellent in fatigue strength of weld zone
JPH07251265A (en) Method for scarfing cast steel slab
CN112763508A (en) Method for judging cause of edge cracking crack of medium plate
JPH046215A (en) Production of high strength austenitic stainless steel minimal in softening by welding
RU2421312C2 (en) Method of producing clad metal sheet
JPH05357A (en) Continuously cast slab and method for reforming this surface and continuous casting apparatus
Sorokin et al. Weldability of cast creep-resisting nickel alloys of the ZhS6 type
JP3709794B2 (en) Manufacturing method of high strength and high toughness steel sheet
JP3232040B2 (en) Method of manufacturing high carbon steel ERW steel pipe for high workability machine structure
JP3242040B2 (en) Manufacturing method of high carbon steel ERW steel pipe for machine structure
JPH057989A (en) Continuously cast billet and its surface reforming method and continuous casting device
CN115488184A (en) Hot perforation method for niobium-containing austenitic stainless steel hollow billet
JPH08104920A (en) Production of high-strength austenitic stainless steel sheet
JP2003089819A (en) Method for producing steel having excellent weld heat affected zone toughness
JP2006142331A (en) Roll production method
KR900004844B1 (en) Process for reducing the edge cracks of steel billet in hot rolled processing
Kusamichi et al. Study of Consumable Electrode Arc-Melted Timken 16-25-6