JPH0579741B2 - - Google Patents

Info

Publication number
JPH0579741B2
JPH0579741B2 JP2201822A JP20182290A JPH0579741B2 JP H0579741 B2 JPH0579741 B2 JP H0579741B2 JP 2201822 A JP2201822 A JP 2201822A JP 20182290 A JP20182290 A JP 20182290A JP H0579741 B2 JPH0579741 B2 JP H0579741B2
Authority
JP
Japan
Prior art keywords
plating
properties
alloy
alloys
soldering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2201822A
Other languages
Japanese (ja)
Other versions
JPH04214832A (en
Inventor
Rikio Nemoto
Masaomi Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP20182290A priority Critical patent/JPH04214832A/en
Publication of JPH04214832A publication Critical patent/JPH04214832A/en
Publication of JPH0579741B2 publication Critical patent/JPH0579741B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、通信用変成器、計器用変流器、磁気
遮蔽板あるいは磁気ヘツドなどとしての用途に用
いられるFe−高Ni系合金であつて、特にメツキ
性やハンダ付性に優れる電子材料用Fe−高Ni系
合金に関するものである。 〔従来の技術〕 近年におけるエレクトロニクスの発展は、その
技術革新の速さとともに、あらゆる産業分野に電
気・電子機器の使用が拡大され、それにつれ高信
頼性の確保、長寿命化と競争激化の中にあり、こ
れら精密機器類には多くの種類の金属材料が重要
な構成材料の一つとして広く用いられている。 電気・電子機器の信頼性の確保は、それを構成
する金属材料の高信頼性にもとづくものであり、
特に最近の、ICリードフレーム製造分野などで
は材料の表面特性、とりわけメツキの信頼性向上
とメツキコストの低減は重要な課題であり、これ
ら電子材料のメツキ性の向上、信頼性を確保した
上でのメツキ厚み減少が盛んに研究されている。 電子材料として多く用いられるFe−Ni系合金
にメツキを施す場合、その表面は多少にかかわら
ず酸化皮膜で覆われているため、メツキ前に各種
の複雑な前処理として活性化処理が行われるのが
一般的である。このような前処理の他に、特開昭
56−33457号、特開昭56−50550号、前記特開昭56
−33457号によれば、Ni34〜40wt%(以下は単に
「%」で略記する。)のFe合金にCu2〜10%を、特
開昭56−50550号によればNi25〜50%りFe合金に
Cu1〜25%を、また、特開昭58−141546号によれ
ば、Ni15〜25%のFe合金にCu1〜30%を添加、
含有させることによつてメツキ性およびハンダ付
性の向上が図られている。 〔発明が解決しようとする課題〕 上述のようなこれまでの技術では、最近のメツ
キコスト低減の要求には対処できず、メツキの種
類によつてはほとんど活性化処理を行わずメツキ
を実施したり、あるいはごく簡単な前処理によつ
てメツキができるように、メツキ性向上に寄与す
る表面特性を有する合金に改善する必要がある。 前記のような要請に対し、Fe−Ni系合金にCu
を添加する前記従来技術の合金は、Cuの多量添
加によるコストアツプ、またはリードフレーム用
途などではCu添加による熱膨張の著しい増加に
よりSiチツプとの熱膨張の差異の増加を引き起こ
し、リードフレーム用としては適用できなくな
る。また材料の製造面からみると、Fe−Ni系合
金へのCu添加は熱間加工性の低下を引き起こし、
製造歩留りを低下させる等の問題点があつた。 〔課題を解決するための手段〕 本発明は、表面特性、とくにメツキ性やハンダ
付性に優れた合金を提供することを目的とするも
のである。すなわち、本発明は、下記(1)〜(4)に示
す成分組成を有する合金に関するものである。 (1) C0.05wt%,N0.03wt%, Si:0.01〜2.0wt%,Mn3.0wt%, Cr<1.0wt%,Ni:60〜80wt%, Al:0.005〜0.4wt%,B:0.002〜0.02wt% を含有し、残部Feよりなるメツキ性ならびに
ハンダ付け性に優れる電子材料用Fe−高Ni系
合金。 (2) C0.05wt%,N0.03wt%, Si:0.01〜2.0wt%,Mn3.0wt%, Cr<1.0wt%,Ni:60〜80wt%, Al:0.005〜0.4wt%,B:0.002〜0.02wt% を含有し、さらに Mo6.0wt%および/またはCo20wt%を
含有し、残部Feよりなるメツキ性ならびにハ
ンダ付け性に優れる電子材料用Fe−高Ni系合
金。 (3) C0.05wt%,N0.03wt%, Si:0.01〜2.0wt%,Mn3.0wt%, Cr<1.0wt%,Ni:60〜80wt%, Al:0.005〜0.4wt%,B:0.002〜0.02wt% を含有し、残部Feよりなり、さらにNb,Tiお
よびZrのうち1種または2種以上を単独また
は合計で0.005〜0.4wt%含有するメツキ性なら
びにハンダ付け性に優れる電子材料用Fe−高
Ni系合金。 (4) C0.05wt%,N0.03wt%, Si:0.01〜2.0wt%,Mn3.0wt%, Cr<1.0wt%,Ni:60〜80wt%, Al:0.005〜0.4wt%,B:0.002〜0.02wt% を含有し、Mo6.0wt%および/またはCo
20wt%を含有し、残部Feよりなり、さらに
Nb,TiおよびZrのうち1種または2種以上を
単独または合計で0.005〜0.4wt%含有するメツ
キ性ならびにハンダ付け性に優れる電子材料用
Fe−高Ni系合金。 〔作用〕 さて、本発明者らは、Fe−Ni系合金にBを添
加すると、表面特性のうちとくにハンダ付性が著
しく改善されることを知見した。 そこで、以下にB添加によるメツキ性ならびに
ハンダ付性向上のメカニズムについて説明する。 本発明者らの研究によると、通常の非酸化性雰
囲気下での焼鈍で製造されたBを含む材料とBを
含まない材料の表面層およびその近傍における元
素の分布について調査したところ、 Bを含まない材料では、深さ150ÅでもO2の相
対濃度が低下しないのに対し、Bを含む材料で
は、深さ90ÅでO2の相対濃度が急激に低下し、
表面の酸素富化層がかなり薄いことが判つた。さ
らに、このBを含む材料ではBが表面層に濃化し
ており、非酸化性雰囲気で表面層に均一なB窒化
物層を形成している。したがつて、他成分の表面
濃化が抑制され、酸化層が生成されにくくなり、
メツキ液中で、酸化膜の自動的な還元が起こり、
メツキの核の吸着が起こり易くなり、メツキ性が
向上することが予想される。 このような知見から、本発明では、Fe−Ni系
合金に所定量の有効Bを添加することが望まし
く、その有効Bの作用を効果的なものにするため
に、Bを消費しやすいNや、B固定に寄与する
Alなどの添加量について吟味とした。 以下に、本発明合金の成分組成を限定する理由
を述べる。 C:Cは、メツキ性ならびにハンダ付性を向上さ
せる元素であるBと結びつき、B炭化物を生
成しやすい。B炭化物は有効B量を減少さ
せ、またB炭化物の偏在により、材料表面の
均一性を欠くため、その生成を抑制する必要
がある。Fe−Ni系合金でB炭化物を生成さ
せないためにはCは0.05%以下に抑制する必
要がある。 Si:Siは、精錬時に脱酸剤として用いる必要か
ら、あまりに低く抑えることは適当でないの
で、0.01%以上とする。しかし、一方では電
子材料等に用いられるFe−Ni系合金はその
熱処理が非酸化性雰囲気で行われることが多
く、表面酸化はきわめて軽微におさえられる
が、Siが多くなるとSiを主体とする酸化層が
形成されるようになり、Bを添加していて
も、その表面性状が損なわれるようになる。
このような酸化層を形成させないためには、
Siは2.0%以下にすることが必要である。 Mn:Siと同様に、非酸化性雰囲気の露点によつ
てはMnが多くなると、FeO・MnOの酸化物
層を形成しやすくなり、Bによる表面活性効
果が損なわれる。したがつて、Mnは3.0%以
下に限定する必要がある。 Cr:Crが多くなると、Mnと同様に非酸化性雰囲
気の露点によつてCr2O3からなる酸化物層を
形成しやすくなり、Bによる表面活性効果が
損なわれるので、Crは1.0%以下にする必要
がある。 Ni:Niは60%未満だと高い透磁率を得ることが
できず、好ましくない。一方、このNiは80
%を超えて含有させると、磁気特性が劣化す
るので、上限は80%とする。 B:B添加によるメツキ性ならびにハンダ付性の
改善は、鋼中に固溶しているBが非酸化性雰
囲気下でNと反応し、表面層に均一なB窒化
物層を形成し、表面の酸化層形成を抑制する
ことによるものである。Bを添加することに
より、通常の非酸化性雰囲気熱処理でFe−
Ni系合金の表面酸化層をほとんど生成しな
いか、または非常に薄くすることができ、メ
ツキならびにハンダの種類によつては活性化
前処理を施すことなく、きわめて良好なメツ
キ性ならびにハンダ付性を与えることができ
る。しかし、Bが0.0020%未満ではその効果
は小さく、メツキ性ならびにハンダ付性向上
は期待できない。一方、Bが0.020%より多
いとB化合物、特にB炭化物が析出しやすく
なり、材料表面に均一性を欠き、かえつてメ
ツキならびにハンダ付後、加熱処理などを施
すと、部分的に微細なふくれを生じ、メツキ
ならびにハンダ付の信頼性を失う。したがつ
て、良好なメツキ性ならびにハンダ付性を得
るためにはBは0.002〜0.02%にする必要が
ある。 N:NはCと同様に、メツキ性ならびにハンダ付
性を向上させる元素であるBと結びつき、B
窒化物を生成しやすい。B窒化物は有効B量
を減少させるため、マトリツクス中において
はその生成を抑制する必要がある。Fe−Ni
系合金でB窒化物を生成させないためには、
Nは0.03%以下に抑制する必要がある。 しかしながら、このNは、精錬時にその含
有量を極端に下げると、精錬をいたずらに複
雑にして合金設計を困難にするので、Bの消
費につながらない程度での含有を許容する。 Al:Alは、Fe−Ni系合金、Fe−Ni−Co合金中
で、C,Nと結びついて炭化物、窒化物を生
成する。ところで、Bも鋼中のC,Nと結び
ついて炭化物、窒化物となるが、Bよりも
C,Nと親和力の強いNb,Ti,Zr等を添加
し、それらの炭化物、窒化物としてC,Nを
固定しておくことは、有効B量を増すことに
なり、極めて望ましい。このAlは、0.005%
未満では十分な効果を得るほどC,Nを固定
できない。しかし、0.4%を超えて添加する
と、これら元素はC,Nと結びつくととも
に、Oとの親和力も強いため、表面層にこれ
ら元素の酸化物を生成しやすくなり、B添加
によるメツキ性ならびにハンダ付性向上を阻
害する。 Mo:Moは、Fe−Ni,Fe−Ni−Co合金に添加
され、磁気特性、熱膨張、あるいは耐摩耗性
を改善する働きがあるが、6%を超える添加
は、改善の効果が小さく、また、高価になる
だけであるので、Moは6%以下に制限する
必要がある。 Co:Coは、Fe−Ni系合金に添加され、磁気特
性、熱膨張、その他の物理的特性の改善に役
立つが、CoはNiにくらべ高価であり、20%
を超える添加は、特性改善の割には高価にな
るだけであるので、Coは20%以下にする必
要がある。 Nb,Ti,Zr,:これらの元素は、Fe−Ni系合
金、Fe−Ni−Co合金中で、C,Nと結びつ
いて炭化物、窒化物を生成する。ところで、
Bも鋼中のC,Nと結びついて炭化物、窒化
物となるが、BよりもC,Nと親和力の強い
Nb,Ti,Zr,等を添加し、それらの炭化
物、窒化物としてC,Nを固定しておくこと
は、有効B量を増すことになり、きわめて望
ましいことと言える。 これらのNb,Ti,Zr,の添加も0.005%未
満では十分な効果を得るほどC,Nを固定で
きない。しかし、0.4%を超えて添加すると、
これら元素はC,Nと結びつくとともに、O
との親和力も強いため、表面層にこれら元素
の酸化物を生成しやすくなり、B添加による
メツキ性ならびにハンダ付性向上を阻害する
ようになる。したがつて、これらNb,Ti,
Zr,Alのうち1種または2種以上を単独ま
たは合計で0.005〜0.4%を含有させる必要が
ある。 次に、本発明の合金を製造する方法について説
明する。 本発明合金は、大気下で電気炉溶解した後、
AOD法(アルゴン−酸素吹き脱炭法)または
VOD法(真空−酸素吹き脱炭法)により精錬さ
れ、大気または真空溶解されて造塊される。次い
で熱間圧延、冷間圧延、焼鈍酸法、非酸化性雰囲
気焼鈍が適宜組合せ施された後最終製品とされ
る。 〔実施例〕 次に、本発明の実施例について、比較例をあげ
て説明する。 第1表は、Bを必須元素とする本発明合金と、
Bを含有しない従来型のFe−Ni系合金のAuメツ
キ性、Agメツキ性およびハンダ付性を比較して
示したものである。 メツキ性はアンモニアクラツキングガス中で焼
鈍した条材を20W×60l(mm)の試験片に切り、
Auメツキは脱脂処理後直接メツキ(厚さ0.5μ)、
AgメツキはCu下地メツキ(厚さ1μ)を施してか
らAgメツキ(厚さ2μ)を行つた。このメツキ済
み試験片を500℃のホツトプレート上に1分間置
き、とり出し、表裏のふくれの有無とその数を比
較した。しかし、Auメツキではふくれを発生し
ないため、加熱後の表面変色度合いを比較した。
またハンダ付性試験はJIS C5033に準じて行つ
た。
[Industrial Application Field] The present invention relates to an Fe-high Ni alloy used for communication transformers, instrument current transformers, magnetic shielding plates, magnetic heads, etc. This invention relates to Fe-high Ni alloys for electronic materials that have excellent adhesion properties. [Conventional technology] The development of electronics in recent years, along with the speed of technological innovation, has expanded the use of electrical and electronic equipment in all industrial fields, and as a result, there has been a need to ensure high reliability, extend lifespan, and intensify competition. Many types of metal materials are widely used as important constituent materials in these precision instruments. Ensuring the reliability of electrical and electronic equipment is based on the high reliability of the metal materials that compose it.
Particularly in the recent field of IC lead frame manufacturing, improving the surface properties of materials, especially the reliability of plating, and reducing plating costs are important issues. Mitsuki thickness reduction is being actively researched. When plating Fe-Ni alloys, which are often used as electronic materials, the surface is covered with an oxide film to some extent, so various complex pre-treatments such as activation treatments are performed before plating. is common. In addition to such pretreatment,
No. 56-33457, JP-A No. 56-50550, JP-A No. 56-56
According to No. 33457, 2 to 10% Cu is added to an Fe alloy with 34 to 40 wt% Ni (hereinafter simply abbreviated as "%"), and according to JP-A-56-50550, an Fe alloy with 25 to 50 wt% Ni to
According to JP-A No. 58-141546, 1-30% Cu is added to an Fe alloy containing 15-25% Ni.
By including it, plating properties and soldering properties are improved. [Problem to be solved by the invention] The conventional techniques as described above cannot meet the recent demands for plating cost reduction, and depending on the type of plating, plating may be performed without almost any activation treatment. Alternatively, it is necessary to improve the alloy to have surface properties that contribute to improved plating properties so that it can be plated with a very simple pretreatment. In response to the above requirements, Cu is added to Fe-Ni alloys.
The above-mentioned prior art alloys that add Cu cause an increase in cost due to the addition of a large amount of Cu, or a significant increase in thermal expansion due to the addition of Cu in lead frame applications, resulting in an increase in the difference in thermal expansion from Si chips. becomes inapplicable. Also, from the perspective of material manufacturing, the addition of Cu to Fe-Ni alloys causes a decrease in hot workability.
There were problems such as lower manufacturing yield. [Means for Solving the Problems] An object of the present invention is to provide an alloy that has excellent surface properties, particularly plating properties and soldering properties. That is, the present invention relates to an alloy having the component compositions shown in (1) to (4) below. (1) C0.05wt%, N0.03wt%, Si: 0.01~2.0wt%, Mn3.0wt%, Cr<1.0wt%, Ni: 60~80wt%, Al: 0.005~0.4wt%, B: 0.002 A Fe-high Ni alloy for electronic materials containing ~0.02wt% and the balance being Fe, which has excellent plating and soldering properties. (2) C0.05wt%, N0.03wt%, Si: 0.01~2.0wt%, Mn3.0wt%, Cr<1.0wt%, Ni: 60~80wt%, Al: 0.005~0.4wt%, B: 0.002 -0.02wt%, further contains Mo6.0wt% and/or Co20wt%, and the balance is Fe, which is an Fe-high Ni alloy for electronic materials having excellent plating and soldering properties. (3) C0.05wt%, N0.03wt%, Si: 0.01~2.0wt%, Mn3.0wt%, Cr<1.0wt%, Ni: 60~80wt%, Al: 0.005~0.4wt%, B: 0.002 ~0.02wt%, the balance being Fe, and further containing 0.005 to 0.4wt% of one or more of Nb, Ti, and Zr, singly or in total, for electronic materials with excellent plating and soldering properties. Fe-high
Ni-based alloy. (4) C0.05wt%, N0.03wt%, Si: 0.01-2.0wt%, Mn3.0wt%, Cr<1.0wt%, Ni: 60-80wt%, Al: 0.005-0.4wt%, B: 0.002 ~0.02wt%, Mo6.0wt% and/or Co
Contains 20wt%, the balance is Fe, and
For electronic materials with excellent plating and soldering properties, containing 0.005 to 0.4 wt% of one or more of Nb, Ti, and Zr, singly or in total.
Fe-high Ni alloy. [Function] Now, the present inventors have found that when B is added to the Fe-Ni alloy, the solderability, in particular, of the surface properties is significantly improved. Therefore, the mechanism of improving plating and soldering properties by adding B will be explained below. According to the research conducted by the present inventors, when the distribution of elements in the surface layer and its vicinity of B-containing materials and B-free materials produced by annealing in a normal non-oxidizing atmosphere was investigated, it was found that B. In the material without B, the relative concentration of O 2 does not decrease even at a depth of 150 Å, whereas in the material containing B, the relative concentration of O 2 decreases rapidly at a depth of 90 Å.
It was found that the oxygen-enriched layer on the surface was quite thin. Furthermore, in this B-containing material, B is concentrated in the surface layer, and a uniform B nitride layer is formed in the surface layer in a non-oxidizing atmosphere. Therefore, the concentration of other components on the surface is suppressed, and the formation of an oxidized layer becomes difficult.
In the plating solution, automatic reduction of the oxide film occurs,
It is expected that adsorption of plating nuclei will occur more easily and that plating performance will improve. Based on these findings, in the present invention, it is desirable to add a predetermined amount of effective B to the Fe-Ni alloy, and in order to make the action of effective B effective, N and , contributes to B fixation
The amount of additives such as Al was carefully examined. The reasons for limiting the composition of the alloy of the present invention will be described below. C: C combines with B, which is an element that improves plating and soldering properties, and tends to generate B carbide. B carbide reduces the effective amount of B, and uneven distribution of B carbide causes a lack of uniformity on the surface of the material, so it is necessary to suppress its formation. In order to prevent the formation of B carbides in Fe-Ni alloys, it is necessary to suppress C to 0.05% or less. Si: Since Si needs to be used as a deoxidizing agent during refining, it is not appropriate to keep it too low, so it is set to 0.01% or more. However, on the other hand, heat treatment of Fe-Ni alloys used in electronic materials is often carried out in a non-oxidizing atmosphere, and surface oxidation can be suppressed to a very small degree. A layer is formed, and even though B is added, the surface properties are impaired.
In order to prevent the formation of such an oxide layer,
It is necessary to keep Si at 2.0% or less. Mn: Similar to Si, when Mn increases depending on the dew point of the non-oxidizing atmosphere, it becomes easier to form an oxide layer of FeO.MnO, and the surface activation effect of B is impaired. Therefore, Mn needs to be limited to 3.0% or less. Cr: As with Mn, when the amount of Cr increases, it becomes easier to form an oxide layer consisting of Cr 2 O 3 due to the dew point of the non-oxidizing atmosphere, impairing the surface activation effect of B, so Cr should be 1.0% or less. It is necessary to Ni: If Ni is less than 60%, high magnetic permeability cannot be obtained, which is not preferable. On the other hand, this Ni is 80
If the content exceeds 80%, the magnetic properties will deteriorate, so the upper limit is set at 80%. B: Improvement in plating and solderability due to the addition of B is due to the B dissolved in the steel reacting with N in a non-oxidizing atmosphere, forming a uniform B nitride layer on the surface layer, and improving the surface This is by suppressing the formation of an oxidized layer. By adding B, Fe-
The surface oxidation layer of Ni-based alloys can be made almost non-existent or extremely thin, and depending on the type of plating and solder, extremely good plating and solderability can be achieved without pre-activation treatment. can give. However, if B is less than 0.0020%, the effect is small and no improvement in plating or soldering properties can be expected. On the other hand, if the B content is more than 0.020%, B compounds, especially B carbides, tend to precipitate, resulting in a lack of uniformity on the material surface, and on the contrary, when heat treatment is applied after plating or soldering, fine blisters may appear in some areas. This results in loss of reliability in plating and soldering. Therefore, in order to obtain good plating and soldering properties, B needs to be 0.002 to 0.02%. N: Like C, N combines with B, which is an element that improves plating and soldering properties, and
Easy to generate nitrides. Since B nitride reduces the effective amount of B, it is necessary to suppress its formation in the matrix. Fe−Ni
In order to prevent the formation of B nitrides in alloys,
N needs to be suppressed to 0.03% or less. However, if the content of N is extremely reduced during refining, the refining becomes unnecessarily complicated and alloy design becomes difficult, so N is allowed to be included in an amount that does not lead to B consumption. Al: Al combines with C and N to form carbides and nitrides in Fe-Ni alloys and Fe-Ni-Co alloys. By the way, B also combines with C and N in steel to form carbides and nitrides, but by adding Nb, Ti, Zr, etc., which have a stronger affinity with C and N than B, C, Fixing N increases the effective amount of B, which is extremely desirable. This Al is 0.005%
If it is less than that, C and N cannot be fixed enough to obtain a sufficient effect. However, when added in excess of 0.4%, these elements combine with C and N and also have a strong affinity with O, making it easier to form oxides of these elements on the surface layer, improving plating and soldering properties due to the addition of B. It inhibits sexual improvement. Mo: Mo is added to Fe-Ni and Fe-Ni-Co alloys and has the effect of improving magnetic properties, thermal expansion, or wear resistance, but if it is added in excess of 6%, the improvement effect is small; Furthermore, since it only increases the cost, Mo needs to be limited to 6% or less. Co: Co is added to Fe-Ni alloys to help improve magnetic properties, thermal expansion, and other physical properties, but Co is more expensive than Ni and has a 20%
Addition of Co in excess of 20% is only expensive compared to the improvement in properties, so Co should be kept at 20% or less. Nb, Ti, Zr: These elements combine with C and N to form carbides and nitrides in Fe-Ni alloys and Fe-Ni-Co alloys. by the way,
B also combines with C and N in steel to form carbides and nitrides, but it has a stronger affinity with C and N than B.
Adding Nb, Ti, Zr, etc. and fixing C and N as their carbides and nitrides increases the effective amount of B, which is extremely desirable. When Nb, Ti, and Zr are added in an amount of less than 0.005%, C and N cannot be fixed enough to obtain a sufficient effect. However, when added in excess of 0.4%,
These elements combine with C, N, and O
Since it also has a strong affinity with B, oxides of these elements are likely to be formed in the surface layer, which inhibits the improvement in plating and soldering properties caused by B addition. Therefore, these Nb, Ti,
It is necessary to contain 0.005 to 0.4% of one or more of Zr and Al, singly or in total. Next, a method for manufacturing the alloy of the present invention will be explained. After the alloy of the present invention is melted in an electric furnace in the atmosphere,
AOD method (argon-oxygen blowing decarburization method) or
It is refined using the VOD method (vacuum-oxygen-blown decarburization method) and then melted in the air or in a vacuum to form ingots. The final product is then subjected to appropriate combinations of hot rolling, cold rolling, annealing acid method, and non-oxidizing atmosphere annealing. [Example] Next, Examples of the present invention will be described by giving comparative examples. Table 1 shows the alloys of the present invention containing B as an essential element,
This figure shows a comparison of Au plating properties, Ag plating properties, and soldering properties of conventional Fe-Ni alloys that do not contain B. The plating property was determined by cutting a strip annealed in ammonia cracking gas into 20W x 60L (mm) test pieces.
Au plating is directly plated after degreasing treatment (thickness 0.5μ),
For Ag plating, Cu base plating (1 μm thickness) was applied, followed by Ag plating (2 μm thickness). This plated test piece was placed on a hot plate at 500°C for 1 minute, taken out, and the number and presence of blisters on the front and back sides were compared. However, since Au plating does not cause blistering, we compared the degree of surface discoloration after heating.
Furthermore, the solderability test was conducted according to JIS C5033.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

このようなAuメツキ、Agメツキ等のメツキ性
ならびにハンダ付性の向上は、本発明合金による
材料を使用した電子機器の信頼性を著しく向上さ
せるものである。またこのようなメツキ性の向上
は、メツキ層と被メツキ物の固着性を向上させる
ことにより、メツキ層を薄くすることができ、メ
ツキコストの低減をもたらす。 以上説明したように、本発明合金は、通信用変
成器、計器用変流器、その他の電磁気用Fe−Ni
系合金の基本性質を保持しつつ、優れたメツキ性
を有するものであり、表面活性状況が得られやす
いので、同時にハンダ付性にも優れるという表面
特性を有している。
Such improvements in the plating properties of Au plating, Ag plating, etc. and soldering properties significantly improve the reliability of electronic devices using materials made of the alloy of the present invention. Further, such improvement in plating performance improves the adhesion between the plating layer and the object to be plated, thereby making it possible to make the plating layer thinner, resulting in a reduction in plating costs. As explained above, the alloy of the present invention can be used for communication transformers, instrument current transformers, and other electromagnetic Fe-Ni
It has excellent plating properties while retaining the basic properties of the alloy, and since it is easy to obtain a surface active state, it also has surface properties that provide excellent solderability.

Claims (1)

【特許請求の範囲】 1 C0.05wt%,N0.03wt%, Si:0.01〜2.0wt%,Mn3.0wt%, Cr<1.0wt%,Ni:60〜80wt%, Al:0.005〜0.4wt%,B:0.002〜0.02wt% を含有し、残部Feよりなるメツキ性ならびにハ
ンダ付け性に優れる電子材料用Fe−高Ni系合金。 2 C0.05wt%,N0.03wt%, Si:0.01〜2.0wt%,Mn3.0wt%, Cr<1.0wt%,Ni:60〜80wt%, Al:0.005〜0.4wt%,B:0.002〜0.02wt% を含有し、さらに Mo6.0wt%および/またはCo20wt%を含
有し、残部Feよりなるメツキ性ならびにハンダ
付け性に優れる電子材料用Fe−高Ni系合金。 3 C0.05wt%,N0.03wt%, Si:0.01〜2.0wt%,Mn3.0wt%, Cr<1.0wt%,Ni:60〜80wt%, Al:0.005〜0.4wt%,B:0.002〜0.02wt% を含有し、残部Feよりなり、さらにNb,Tiおよ
びZrのうち1種または2種以上を単独または合
計で0.005〜0.4wt%含有するメツキ性ならびにハ
ンダ付け性に優れる電子材料用Fe−高Ni系合金。 4 C0.05wt%,N0.03wt%, Si:0.01〜2.0wt%,Mn3.0wt%, Cr<1.0wt%,Ni:60〜80wt%, Al:0.005〜0.4wt%,B:0.002〜0.02wt% を含有し、Mo6.0wt%および/またはCo
20wt%を含有し、残部Feよりなり、さらにNb,
TiおよびZrのうち1種または2種以上を単独ま
たは合計で0.005〜0.4wt%含有するメツキ性なら
びにハンダ付け性に優れる電子材料用Fe−高Ni
系合金。
[Claims] 1 C0.05wt%, N0.03wt%, Si: 0.01-2.0wt%, Mn3.0wt%, Cr<1.0wt%, Ni: 60-80wt%, Al: 0.005-0.4wt% , B: 0.002 to 0.02 wt%, and the balance is Fe, which is an Fe-high Ni alloy for electronic materials that has excellent plating and soldering properties. 2 C0.05wt%, N0.03wt%, Si: 0.01-2.0wt%, Mn3.0wt%, Cr<1.0wt%, Ni: 60-80wt%, Al: 0.005-0.4wt%, B: 0.002-0.02 An Fe-high Ni alloy for electronic materials, which contains 6.0 wt% Mo and/or 20 wt% Co, with the remainder being Fe, and has excellent plating and soldering properties. 3 C0.05wt%, N0.03wt%, Si: 0.01~2.0wt%, Mn3.0wt%, Cr<1.0wt%, Ni: 60~80wt%, Al: 0.005~0.4wt%, B: 0.002~0.02 Fe for electronic materials with excellent plating and soldering properties, containing 0.005 to 0.4 wt% of one or more of Nb, Ti, and Zr alone or in total, with the remainder being Fe. High Ni alloy. 4 C0.05wt%, N0.03wt%, Si: 0.01~2.0wt%, Mn3.0wt%, Cr<1.0wt%, Ni: 60~80wt%, Al: 0.005~0.4wt%, B: 0.002~0.02 wt%, Mo6.0wt% and/or Co
Contains 20wt%, the balance is Fe, and further Nb,
Fe-high Ni for electronic materials with excellent plating and soldering properties containing one or more of Ti and Zr at 0.005 to 0.4 wt% in total
system alloy.
JP20182290A 1990-07-30 1990-07-30 Fe high-ni alloy excellent in surface property Granted JPH04214832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20182290A JPH04214832A (en) 1990-07-30 1990-07-30 Fe high-ni alloy excellent in surface property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20182290A JPH04214832A (en) 1990-07-30 1990-07-30 Fe high-ni alloy excellent in surface property

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11890085A Division JPS61276950A (en) 1985-06-03 1985-06-03 Fe-ni alloy having good plating property and solderability

Publications (2)

Publication Number Publication Date
JPH04214832A JPH04214832A (en) 1992-08-05
JPH0579741B2 true JPH0579741B2 (en) 1993-11-04

Family

ID=16447476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20182290A Granted JPH04214832A (en) 1990-07-30 1990-07-30 Fe high-ni alloy excellent in surface property

Country Status (1)

Country Link
JP (1) JPH04214832A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2737043B1 (en) * 1995-07-18 1997-08-14 Imphy Sa IRON-NICKEL ALLOY FOR TENTED SHADOW MASK

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532404A (en) * 1976-06-28 1978-01-11 Takeda Chem Ind Ltd Elimination of thiol protectors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532404A (en) * 1976-06-28 1978-01-11 Takeda Chem Ind Ltd Elimination of thiol protectors

Also Published As

Publication number Publication date
JPH04214832A (en) 1992-08-05

Similar Documents

Publication Publication Date Title
US6132529A (en) Leadframe made of a high-strength, high-electroconductivity copper alloy
US5234513A (en) Fe-Ni alloy sheet excellent in hot workability, adhesivity to plating layer and solderability, and method for manufacturing same
JPS6366377B2 (en)
GB2178448A (en) Copper-chromium-titanium-silicon alloy and application thereof
JPH08209306A (en) Iron-nickel alloy with low coefficient of thermal expansion
US6692992B1 (en) Hardened Fe-Ni alloy for the manufacture of integrated circuit leaderframes and manufacturing process
JPH1143731A (en) High strength copper alloy excellent in stamping property and suitable for silver plating
JPH0579741B2 (en)
JPH0331782B2 (en)
JPS60152646A (en) Material for lead frame for semiconductor
JPS6338547A (en) High strength conductive copper alloy
JPS6250428A (en) Copper alloy for electronic appliance
JP3069482B2 (en) Fe-Ni alloy cold rolled sheet with excellent plating and punching properties
JPS6244691B2 (en)
JP2501157B2 (en) High strength and low thermal expansion Fe-Ni alloy with excellent hot workability
JP3232529B2 (en) Fe-Ni alloy for lead frame and method of manufacturing the same
JP3101199B2 (en) High-strength low-thermal-expansion Fe-Ni-based alloy material excellent in punchability and method for producing the same
JPS63312934A (en) Lead frame material for semiconductor
JPS6338545A (en) High strength conductive copper alloy
JP2797835B2 (en) High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same
JP3251691B2 (en) Fe-Ni alloy material for lead frame and manufacturing method
JP2000038628A (en) Copper alloy for semiconductor lead frame
JP3224186B2 (en) Method for producing high-strength low-thermal-expansion Fe-Ni-based alloy material excellent in punchability
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JP2534917B2 (en) High strength and high conductivity copper base alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term