JPH0576745B2 - - Google Patents

Info

Publication number
JPH0576745B2
JPH0576745B2 JP58211433A JP21143383A JPH0576745B2 JP H0576745 B2 JPH0576745 B2 JP H0576745B2 JP 58211433 A JP58211433 A JP 58211433A JP 21143383 A JP21143383 A JP 21143383A JP H0576745 B2 JPH0576745 B2 JP H0576745B2
Authority
JP
Japan
Prior art keywords
silver oxide
battery
atoms
conductive silver
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58211433A
Other languages
Japanese (ja)
Other versions
JPS60105170A (en
Inventor
Tooru Nagaura
Buichi Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP58211433A priority Critical patent/JPS60105170A/en
Publication of JPS60105170A publication Critical patent/JPS60105170A/en
Publication of JPH0576745B2 publication Critical patent/JPH0576745B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気抵抗が極めて低い電導性酸化銀に
関するものであり、さらに上記電導性酸化銀を陽
極材とする酸化銀電池に関するものである。 従来、時計等に装着する小型の電池としては、
平坦な電圧特性を有しかつ放電容量の大きな酸化
銀電池が多用されている。 ところで、この酸化銀電池の陽極活物質として
は酸化銀Ag2Oが用いられているが、このAg2O
は絶縁物に近いものであるので、上記電池の陽極
材として用いる場合には、例えばカーボンやグラ
フアイト等の電導補助物を混ぜて導電性を付与し
て用いるのが一般的である。この場合、例えばグ
ラフアイトの混入量と電池内部抵抗の関係は第1
図に示すようなものであつて、上記Ag2Oに対す
るグラフアイトの混入量を3重量%以上とする必
要があり、これ以下であると内部抵抗が大きくな
りすぎて上記電池を実用に供することができなく
なつてしまう。 このようにグラフアイト等の電導補助剤の割合
が増えると、これら電導補助剤の比重が小さいの
で陽極材中にかなりの体積を占めることになる。
したがつて、上述の内部抵抗の問題は解消される
が、必然的に上記陽極材中に酸化銀Ag2Oが占め
る量が少なくなつてしまい、電池の放電容量は小
さなものとなつてしまう。 一方、時計等の電子機器においては、小型化や
薄型化、多機能化等が進められ、これら機器に組
み込まれる駆動電源である酸化銀電池に対しても
小型化・薄型化が要求されており、しかも容量が
大きなことが要求されている。したがつて、上述
の電導補助物による放電容量の低下は上記酸化銀
電池の小型化に大きな障害となつている。 本発明者等は、上述の従来のものの欠点を解消
すべく鋭意検討の結果、銀塩から酸化銀を調製す
る際にニツケル塩を所定の割合で添加しさらに酸
化銀を作用させることにより電導性の良好な酸化
銀が得られることを見出し本発明を完成したもの
であつて、Ag原子に対するNi原子のモル比が
0.01から0.20となるような混合比で銀塩とニツケ
ル塩とをアルカリ水溶液に添加し、得られる共沈
物に酸化剤を作用させることにより調製されるこ
とを特徴とするものであり、さらにそれを電池の
陽極材として用いることを特徴とするものであ
る。 一般に酸化銀は、硝酸銀AgNO3をアルカリ溶
液中に添加することによつて簡単に得られるが、
本発明においては、上記硝酸銀をアルカリ溶液中
に添加する際に上記硝酸銀に対し所定の割合でニ
ツケル塩、例えば硝酸ニツケルNi(NO32を混合
しておき、このような混合物をアルカリ溶液に添
加した際に生ずる共沈物に対してペルオキソ硫酸
カリウムの如き酸化剤を作用させるだけで極めて
良電導性を有する酸化銀、すなわち電導性酸化銀
が調製される。 したがつて、上記電導性酸化銀は極めて簡便な
方法で調製され、また、そのまま電池の陽極材と
して用いることができ、電池の製造にあたつては
電導補助材等の混合工程等を省略することができ
るので、電池の生産性の向上に極めて有用であ
る。 ところで、上記調製方法により得られる電導性
酸化銀がいかなる物質から成つているか、その詳
細については不明であるが、例えばAg2Oを主体
としてAgNiO2と考えられる良電導性物質との混
合物であることが考えられる。 すなわち、硝酸銀と硝酸ニツケルとをアルカリ
溶液、例えば水酸化カリウム溶液中に添加する
と、 Ni(NO32+2KOH→Ni(OH)2+2KNO3 2AgNO3+2KOH→Ag2O+2KNO3+H2O で示される反応により、水酸化ニツケルNi
(OH)2と酸化銀AgOが生成し、これらの共沈物
が沈澱する。そして、この共沈物に酸化剤ペルオ
キソ硫酸カリウムを作用させ酸化してやると、上
記水酸化ニツケルはオキシ水酸化ニツケル
(NiOOH)となり、これがアルカリ溶液中での
Ag2Oの解離によつて生ずるAgO-と反応して、 NiOOH+AgO-→AgNiO2+OH- に示す如く陽極活物質として働き良電導性を有す
るAgNiO2を生成して上記Ag2O中に混入する。 しかしながら、得られる電導性酸化銀をX線回
折で解析したところ、酸化銀Ag2Oのピークしか
確認されなかつた。ただ、上記電導性酸化銀の組
成を分析したところ、Ag原子とNi原子の比率は
混合した割合とよく一致したので、上記Ni原子
が電導性を付与するうえで何らかの形で関与して
いるものと考えられる。 一方、上記電導性酸化銀を調製する際に、銀塩
とニツケル塩の混合比が問題となる。本発明者等
の実験によれば、Ag原子に対するNi原子のモル
比Ni/Agが0.01〜0.20の範囲である必要があり、
0.025〜0.15の範囲であることがより好ましいこ
とが分かつた。すなわち、上記Ni/Agが0.01以
下であると得られる電導性酸化銀の抵抗値が急激
に増加し電池の陽極材として供することは困難で
ある。一方、上記Ni/Agが0.20を越すと、得ら
れる電導性酸化銀のエネルギー密度が小さくなつ
て、例えば電池の陽極材として用いた場合に、従
来のグラフアイトを混入した酸化銀を用いた電池
とその放電容量において大差なくなつてしまう。 以上述べたように、これまでは酸化銀に電導性
を付与する方法としてカーボンやグラフアイト等
の電導補助物を混入する方法が用いられていた
が、本発明によれば酸化銀自体に電導性を付与す
ることができその分多くの陽極活物質を充填する
ことができるため、大容量の酸化銀電池を作成す
ることが可能となる等、工業的価値は極めて大き
い。 以下、本発明の具体的な実施例について説明す
るが、本発明はこれら実施例に限定されるもので
ないことは言うまでもない。 実施例 1 硝酸ニツケルNi(NO32の1モル/濃度の溶
液60mlと硝酸銀AgNO3の1モル/濃度の溶液
1000mlとを混合し、これを10モル/濃度の水酸
化カリウムKOH水溶液中へ注いだ。これをよく
撹拌しながら、酸化剤であるペルオキソ硫酸カリ
ウムK2S2O8を16g加えた。このペルオキソ硫酸
カリウム添加後、温度を80℃に保ちながらさらに
約6時間撹拌を続けた。 生成した沈澱物をろ過し、純水を用いて十分に
洗浄した後、80℃で真空乾燥し粉砕して粉末状の
電導性酸化銀を得た。 得られた電導性酸化銀をX線回折により解析し
たが、その回折X線スペクトルは酸化銀Ag2Oの
回折X線スペクトルと同じであつた。 また、得られた電導性酸化銀の粉末を硝酸に溶
解し、チオシアン酸アンモニウム滴定により銀の
含有量を、EDTA滴定により、ニツケルの含有
量をそれぞれ求めた。この結果、粉末中の銀の含
有量は88.60重量%、ニツケルの含有量は2.81重
量%であることが判明した。したがつて、上記粉
末中の原子比Ni/Agは0.058となり、最初に添加
した硝酸ニツケルと硝酸銀の量から計算される理
論値0.06に極めて近いものであつた。 このようにして得られた電導性酸化銀の粉末を
成形圧力を変えながら直径11.0mm、厚さ0.9mmの
ペレツトに成形し、その電気抵抗を測定した。結
果を従来のものと比較して第2図に示す。なお、
第2図中、aはこの実施例1で得られた電導性酸
化銀、bはAg2Oにグラフアイトを3.5重量%混入
したもの、cはAg2Oにグラフアイトを5重量混
入したもの、dはAg2Oにグラフアイトを8重量
%混入したもの、をそれぞれ示す。 この第2図より、本実施例で得られた電導性酸
化銀は、従来の酸化銀Ag2Oに5重量%のグラフ
アイトを混入したものより低い抵抗値を示すこと
が分かる。 さらに、得られた電導性酸化銀のエネルギー密
度をその成形圧力を変えながら測定した。結果を
従来のものと比較して第3図に示す。なお、この
第3図においてa〜dは先の第2図におけるa〜
dと同様のものを示し、eはAg2O単独で用いた
場合を示す。 この第3図より、本実施例により得られる電導
性酸化銀は、Ag2Oにグラフアイトを3.5重量%混
入したものよりもエネルギー密度が高く、通常の
成形圧範囲(4〜65ton/cm2)ではAg2O単独で
用いた場合に近いエネルギー密度を有することが
分かる。したがつて、得られる電導性酸化銀を酸
化銀電池に用いれば放電容量を大きくすることが
できることは明白である。 実施例 2 硝酸ニツケルNi(NO32の1モル/濃度の溶
液94mlと硝酸銀AgNO3の1モル/濃度の溶液
1000mlとを混合し、先の実施例1と同様な方法で
電導性酸化銀を得た。 得られた電導性酸化銀のエネルギー密度を第3
図中fで示す。この第3図において、実施例1で
得られたものに比べて本実施例で得られたものは
20mH/cm2程度のエネルギー密度の低下が見られ
るが実用上は問題はない。 このように、ニツケル原子の比率を上昇すると
電導性酸化銀のエネルギー密度が減少してしま
い、実用に供するためにはAg原子に対するNi原
子のモル比Ag/Niを0.20以下、好ましくは0.15
以下とする必要があると考えられる。 実施例 3 先の実施例1で得られた電導性酸化銀を6ton/
cm2の成形圧力で直径11.0mm、厚さ0.9mmのペレツ
ト1に成形した。これを、第4図に示すように、
電池陽極缶2に入れ、陽極材となした。 次に、上記ペレツト1上にセロハンシート及び
コツトン不織布からなるセパレータ3を置き、28
%NaOH溶液を電解液として加えた。 さらに、ナイロンガスケツト4を介して、亜鉛
アマルガムを主体とする陰極ジエル5を充填した
陰極缶6を重ね、開口部を密封して直径11.6mm、
厚さ3.0mmの電池を作成した。 得られた電池の特性を、酸化銀Ag2Oに5重量
%のグラフアイトを混入したものを陽極材として
用いた同サイズの従来の酸化銀電池と比較して第
1表に示す。
The present invention relates to conductive silver oxide having extremely low electrical resistance, and further relates to a silver oxide battery using the conductive silver oxide described above as an anode material. Traditionally, small batteries installed in watches, etc.
Silver oxide batteries, which have flat voltage characteristics and a large discharge capacity, are often used. By the way, silver oxide Ag 2 O is used as the anode active material of this silver oxide battery, but this Ag 2 O
Since it is close to an insulator, when it is used as an anode material for the above-mentioned battery, it is generally mixed with a conductive aid such as carbon or graphite to impart conductivity. In this case, for example, the relationship between the amount of graphite mixed in and the internal resistance of the battery is
As shown in the figure, it is necessary that the amount of graphite mixed in with respect to the above Ag 2 O is 3% by weight or more; if it is less than this, the internal resistance becomes too large and the above battery cannot be put into practical use. I become unable to do so. When the proportion of conductivity aids such as graphite increases in this manner, the conductivity aids occupy a considerable volume in the anode material since their specific gravity is small.
Therefore, although the above-mentioned problem of internal resistance is solved, the amount of silver oxide Ag 2 O in the anode material inevitably decreases, and the discharge capacity of the battery becomes small. On the other hand, electronic devices such as watches are becoming smaller, thinner, and more multifunctional, and the silver oxide batteries that are the drive power sources built into these devices are also required to be smaller and thinner. , and is required to have a large capacity. Therefore, the reduction in discharge capacity caused by the above-mentioned conductive aids is a major obstacle to miniaturization of the above-mentioned silver oxide batteries. The inventors of the present invention, as a result of intensive studies in order to solve the above-mentioned drawbacks of the conventional products, discovered that when preparing silver oxide from silver salt, they added nickel salt in a predetermined ratio and then allowed silver oxide to act on it to improve conductivity. The present invention was completed by discovering that silver oxide with a good quality can be obtained, and the molar ratio of Ni atoms to Ag atoms is
It is characterized by being prepared by adding a silver salt and a nickel salt to an alkaline aqueous solution at a mixing ratio of 0.01 to 0.20, and allowing an oxidizing agent to act on the resulting coprecipitate. It is characterized in that it is used as an anode material for batteries. In general, silver oxide is easily obtained by adding silver nitrate AgNO 3 to an alkaline solution.
In the present invention, when adding the silver nitrate to an alkaline solution, a nickel salt such as nickel nitrate (Ni(NO 3 ) 2 ) is mixed with the silver nitrate in a predetermined ratio, and such a mixture is added to the alkaline solution. Silver oxide having extremely good electrical conductivity, that is, electrically conductive silver oxide, can be prepared by simply allowing an oxidizing agent such as potassium peroxosulfate to act on the coprecipitate formed upon addition. Therefore, the conductive silver oxide described above can be prepared by an extremely simple method and can be used as it is as an anode material for batteries, and the process of mixing conductive auxiliary materials etc. is omitted when manufacturing batteries. Therefore, it is extremely useful for improving battery productivity. By the way, the details of what kind of substance the conductive silver oxide obtained by the above preparation method is made of are unknown, but for example, it is a mixture of mainly Ag 2 O and a good conductivity substance thought to be AgNiO 2 . It is possible that That is, when silver nitrate and nickel nitrate are added to an alkaline solution, for example, a potassium hydroxide solution, the following formula is obtained: Ni(NO 3 ) 2 +2KOH→Ni(OH) 2 +2KNO 3 2AgNO 3 +2KOH→Ag 2 O+2KNO 3 +H 2 O By reaction, nickel hydroxide
(OH) 2 and silver oxide AgO are formed, and a coprecipitate of these is precipitated. Then, when this coprecipitate is oxidized by the action of an oxidizing agent, potassium peroxosulfate, the above-mentioned nickel hydroxide becomes nickel oxyhydroxide (NiOOH).
It reacts with AgO - generated by the dissociation of Ag 2 O to produce AgNiO 2 which acts as an anode active material and has good conductivity as shown in NiOOH + AgO - →AgNiO 2 +OH - and is mixed into the above Ag 2 O. . However, when the obtained conductive silver oxide was analyzed by X-ray diffraction, only the peak of silver oxide Ag 2 O was confirmed. However, when we analyzed the composition of the conductive silver oxide mentioned above, the ratio of Ag atoms and Ni atoms matched well with the mixed ratio, so it seems that the above Ni atoms are involved in some way in imparting conductivity. it is conceivable that. On the other hand, when preparing the above conductive silver oxide, the mixing ratio of silver salt and nickel salt poses a problem. According to experiments by the present inventors, the molar ratio of Ni atoms to Ag atoms, Ni/Ag, needs to be in the range of 0.01 to 0.20,
It was found that the range of 0.025 to 0.15 is more preferable. That is, when the Ni/Ag ratio is 0.01 or less, the resistance value of the resulting conductive silver oxide increases rapidly, making it difficult to use it as an anode material for batteries. On the other hand, when the above Ni/Ag ratio exceeds 0.20, the energy density of the resulting conductive silver oxide decreases, and when used as an anode material for a battery, for example, a battery using conventional graphite-mixed silver oxide There is no significant difference in discharge capacity. As mentioned above, conventionally, the method of imparting conductivity to silver oxide has been to mix conductive aids such as carbon or graphite, but according to the present invention, silver oxide itself has conductivity. Since it is possible to provide a large amount of anode active material and fill it with a correspondingly large amount of anode active material, it is of extremely great industrial value, such as making it possible to create a silver oxide battery with a large capacity. Hereinafter, specific examples of the present invention will be described, but it goes without saying that the present invention is not limited to these examples. Example 1 60 ml of a 1 mol/concentration solution of nickel nitrate Ni(NO 3 ) 2 and a 1 mol/concentration solution of silver nitrate AgNO 3
This was poured into a 10 mol/concentration potassium hydroxide KOH aqueous solution. While thoroughly stirring the mixture, 16 g of potassium peroxosulfate K 2 S 2 O 8 as an oxidizing agent was added. After this addition of potassium peroxosulfate, stirring was continued for about 6 hours while maintaining the temperature at 80°C. The generated precipitate was filtered, thoroughly washed with pure water, dried under vacuum at 80°C, and pulverized to obtain conductive silver oxide powder. The obtained conductive silver oxide was analyzed by X-ray diffraction, and its diffraction X-ray spectrum was the same as that of silver oxide Ag 2 O. Further, the obtained conductive silver oxide powder was dissolved in nitric acid, and the silver content and nickel content were determined by ammonium thiocyanate titration and EDTA titration, respectively. As a result, it was found that the content of silver in the powder was 88.60% by weight, and the content of nickel was 2.81% by weight. Therefore, the atomic ratio Ni/Ag in the powder was 0.058, which was extremely close to the theoretical value of 0.06 calculated from the amounts of nickel nitrate and silver nitrate initially added. The conductive silver oxide powder thus obtained was molded into pellets with a diameter of 11.0 mm and a thickness of 0.9 mm while changing the molding pressure, and the electrical resistance of the pellets was measured. The results are shown in Figure 2 in comparison with the conventional results. In addition,
In Figure 2, a is the conductive silver oxide obtained in Example 1, b is Ag 2 O mixed with 3.5% by weight of graphite, and c is Ag 2 O mixed with 5% by weight of graphite. , d indicate Ag 2 O mixed with 8% by weight of graphite. From FIG. 2, it can be seen that the conductive silver oxide obtained in this example exhibits a lower resistance value than the conventional silver oxide Ag 2 O mixed with 5% by weight of graphite. Furthermore, the energy density of the obtained conductive silver oxide was measured while changing the molding pressure. The results are shown in FIG. 3 in comparison with the conventional results. In addition, in this figure 3, a to d are a to a in the previous figure 2.
The same as d is shown, and e shows the case where Ag 2 O alone is used. From FIG. 3, it can be seen that the conductive silver oxide obtained in this example has a higher energy density than that of Ag 2 O mixed with 3.5% by weight of graphite, and has a high energy density within the normal molding pressure range (4 to 65 ton/cm 2 ) shows that it has an energy density close to that when Ag 2 O is used alone. Therefore, it is clear that if the obtained conductive silver oxide is used in a silver oxide battery, the discharge capacity can be increased. Example 2 94 ml of a 1 mol/concentration solution of nickel nitrate Ni(NO 3 ) 2 and a 1 mol/concentration solution of silver nitrate AgNO 3
1,000 ml of the sample was mixed, and conductive silver oxide was obtained in the same manner as in Example 1 above. The energy density of the obtained conductive silver oxide is
It is indicated by f in the figure. In this Figure 3, what was obtained in this example compared to what was obtained in Example 1 was
Although a decrease in energy density of about 20 mH/cm 2 is observed, there is no problem in practical use. In this way, increasing the ratio of nickel atoms reduces the energy density of conductive silver oxide, and for practical use the molar ratio of Ni atoms to Ag atoms Ag/Ni must be 0.20 or less, preferably 0.15.
It is considered necessary to do the following. Example 3 6 tons of conductive silver oxide obtained in Example 1
A pellet 1 having a diameter of 11.0 mm and a thickness of 0.9 mm was molded under a molding pressure of cm 2 . As shown in Figure 4,
It was placed in a battery anode can 2 and used as an anode material. Next, a separator 3 made of a cellophane sheet and a cotton nonwoven fabric is placed on the pellet 1, and
% NaOH solution was added as electrolyte. Furthermore, a cathode can 6 filled with a cathode gel 5 mainly made of zinc amalgam was stacked via a nylon gasket 4, and the opening was sealed to form a cathode can with a diameter of 11.6 mm.
A battery with a thickness of 3.0 mm was created. Table 1 shows the characteristics of the obtained battery in comparison with a conventional silver oxide battery of the same size using silver oxide Ag 2 O mixed with 5% by weight of graphite as the anode material.

【表】 このように、先の実施例1で調製した電導性酸
化銀を電池の陽極材として使用することにより、
内部抵抗が小さくなり、さらに10%以上も容量が
増加する。これは、上記電導性酸化銀が電導性に
優れているため、グラフアイト等の電導補助物質
が不要となり、陽極活物質である電導性酸化銀の
充填密度を高めることができるのでそれだけエネ
ルギー密度が増すことによるものと考えられる。 実施例 4 硝酸ニツケルNi(NO32の1モル/濃度の溶
液12mlと硝酸銀AgNO3の1モル/濃度の溶液
1000mlとを混合し、先の実施例1と同様の方法で
電導性酸化銀を調製した。 得られた電導性酸化銀を用いて先の実施例3と
同様の方法で電池を作成した。 本実施例において作成された電池は、内部抵抗
が15.1Ωと若干高かつたが、容量が先の実施例3
で得られたものより大きかつた。 実施例 5 硝酸ニツケルNi(NO32の1モル/濃度の溶
液30mlと硝酸銀AgNO3の1モル/濃度の溶液
1000mlとを混合し、先の実施例1と同様の方法で
電導性酸化銀を調製した。 得られた電導性酸化銀を用いて先の実施例3と
同様の方法で電池を作成した。 本実施例で作成した電池は、先の実施例3で得
られたものと同等の性能を示した。 実施例 6 先の実施例2で得られた電導性酸化銀を用い
て、先の実施例3と同様の方法で電池を作成し
た。 本実施例で作成した電池は、先の実施例3で得
られたものに比べると、容量が若干小さかつた。 上述の実施例3ないし実施例6により作成され
る電池の内部抵抗を測定し、Ag原子に対するNi
原子のモル比Ni/Agの内部抵抗の関係を第5図
に示した。なお、第5図において、Aは実施例
3、Bは実施例4、Cは実施例5、Dは実施例6
の内部抵抗の値を示すものである。 この第5図より、実用的な電池の内部抵抗から
考えて、上記Ag原子に対するNi原子のモル比
Ni/Agは少なくとも0.01以上であることが必要
であり、0.025以上であることが好ましい。
[Table] As shown above, by using the conductive silver oxide prepared in Example 1 as a battery anode material,
The internal resistance is reduced and the capacity is increased by more than 10%. This is because the above-mentioned conductive silver oxide has excellent conductivity, so there is no need for conductivity auxiliary substances such as graphite, and the packing density of the conductive silver oxide, which is the anode active material, can be increased, resulting in a correspondingly lower energy density. This is thought to be due to an increase in Example 4 12 ml of a 1 mol/concentration solution of nickel nitrate Ni(NO 3 ) 2 and a 1 mol/concentration solution of silver nitrate AgNO 3
Conductive silver oxide was prepared in the same manner as in Example 1. A battery was prepared in the same manner as in Example 3 using the obtained conductive silver oxide. The battery created in this example had a slightly high internal resistance of 15.1Ω, but the capacity was higher than that of Example 3.
It was larger than the one obtained. Example 5 30 ml of a 1 mol/concentration solution of nickel nitrate Ni(NO 3 ) 2 and a 1 mol/concentration solution of silver nitrate AgNO 3
Conductive silver oxide was prepared in the same manner as in Example 1. A battery was prepared in the same manner as in Example 3 using the obtained conductive silver oxide. The battery produced in this example exhibited performance equivalent to that obtained in Example 3 above. Example 6 Using the conductive silver oxide obtained in Example 2 above, a battery was produced in the same manner as in Example 3 above. The battery produced in this example had a slightly smaller capacity than that obtained in Example 3 above. The internal resistance of the batteries prepared according to Examples 3 to 6 above was measured, and the Ni
The relationship between the internal resistance and the atomic molar ratio Ni/Ag is shown in FIG. In addition, in FIG. 5, A is Example 3, B is Example 4, C is Example 5, and D is Example 6.
It shows the value of internal resistance of . From this Figure 5, considering the internal resistance of a practical battery, the molar ratio of Ni atoms to Ag atoms is
Ni/Ag needs to be at least 0.01 or more, preferably 0.025 or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸化銀に対するグラフアイトの混入量
とそれを直径11.6mm、厚さ3.0mmの電池に用いた
ときの電池内部抵抗との関係を示すグラフであ
る。第2図は本発明を適用した実施例により得ら
れる電導性酸化銀の抵抗値を従来のものと比較し
て示すグラフであり、第3図はそのエネルギー密
度を従来のものと比較して示すグラフである。第
4図は本発明を適用した酸化銀電池の構造を示す
断面図である。第5図は電導性酸化銀に含まれる
Ag原子とNi原子のモル比Ni/Agと作成される
電池の内部抵抗の関係を示すグラフである。 1……ペレツト(陽極材)。
FIG. 1 is a graph showing the relationship between the amount of graphite mixed in with respect to silver oxide and the internal resistance of a battery when it is used in a battery with a diameter of 11.6 mm and a thickness of 3.0 mm. FIG. 2 is a graph showing the resistance value of conductive silver oxide obtained in an example to which the present invention is applied in comparison with a conventional one, and FIG. 3 is a graph showing its energy density in comparison with a conventional one. It is a graph. FIG. 4 is a sectional view showing the structure of a silver oxide battery to which the present invention is applied. Figure 5 shows what is included in conductive silver oxide.
It is a graph showing the relationship between the molar ratio Ni/Ag of Ag atoms and Ni atoms and the internal resistance of the battery produced. 1... Pellet (anode material).

Claims (1)

【特許請求の範囲】 1 Ag原子に対するNi原子のモル比が0.01から
0.20となるような混合比で銀塩とニツケル塩とを
アルカリ水溶液に添加し、得られる共沈物に酸化
剤を作用させることにより調製される電導性酸化
銀。 2 Ag原子に対するNi原子のモル比が0.01から
0.20となるような混合比で銀塩とニツケル塩とを
アルカリ水溶液に添加し、得られる共沈物に酸化
剤を作用させることにより調製される電導性酸化
銀を陽極材としてなる酸化銀電池。
[Claims] 1. The molar ratio of Ni atoms to Ag atoms is from 0.01 to
Conductive silver oxide prepared by adding a silver salt and a nickel salt to an alkaline aqueous solution at a mixing ratio of 0.20 and allowing an oxidizing agent to act on the resulting coprecipitate. 2 The molar ratio of Ni atoms to Ag atoms is from 0.01
A silver oxide battery using conductive silver oxide as an anode material, which is prepared by adding a silver salt and a nickel salt to an alkaline aqueous solution at a mixing ratio of 0.20, and allowing an oxidizing agent to act on the resulting coprecipitate.
JP58211433A 1983-11-10 1983-11-10 Electroconductive silver oxide and silver oxide battery Granted JPS60105170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58211433A JPS60105170A (en) 1983-11-10 1983-11-10 Electroconductive silver oxide and silver oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58211433A JPS60105170A (en) 1983-11-10 1983-11-10 Electroconductive silver oxide and silver oxide battery

Publications (2)

Publication Number Publication Date
JPS60105170A JPS60105170A (en) 1985-06-10
JPH0576745B2 true JPH0576745B2 (en) 1993-10-25

Family

ID=16605865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58211433A Granted JPS60105170A (en) 1983-11-10 1983-11-10 Electroconductive silver oxide and silver oxide battery

Country Status (1)

Country Link
JP (1) JPS60105170A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023647A1 (en) * 2000-09-11 2002-03-21 Dowa Mining Co., Ltd. Positive electrode active material for alkaline cell
JP4904456B2 (en) * 2004-12-27 2012-03-28 Dowaエレクトロニクス株式会社 Battery cathode material
JP4904457B2 (en) * 2005-03-31 2012-03-28 Dowaエレクトロニクス株式会社 Alkaline battery positive electrode material, method for producing the same, and alkaline battery positive electrode material
JP2007213829A (en) * 2006-02-07 2007-08-23 Sony Corp Alkaline cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654761A (en) * 1979-10-09 1981-05-14 Toshiba Battery Co Ltd Manufacture of alkaline battery
JPS56143665A (en) * 1980-04-10 1981-11-09 Sony Ebaredei Kk Silver oxide battery
JPS587766A (en) * 1981-07-08 1983-01-17 Toshiba Battery Co Ltd Divalent silver oxide battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654761A (en) * 1979-10-09 1981-05-14 Toshiba Battery Co Ltd Manufacture of alkaline battery
JPS56143665A (en) * 1980-04-10 1981-11-09 Sony Ebaredei Kk Silver oxide battery
JPS587766A (en) * 1981-07-08 1983-01-17 Toshiba Battery Co Ltd Divalent silver oxide battery

Also Published As

Publication number Publication date
JPS60105170A (en) 1985-06-10

Similar Documents

Publication Publication Date Title
EP0353837A1 (en) A nickel electrode for an alkaline battery
US6358648B2 (en) Nickel electrode active material for alkaline storage batteries and nickel electrode using the same
EP0881698B1 (en) Alkaline storage battery
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
US6066416A (en) Nickel hydroxide positive electrode active material having a surface layer containing a solid solution nickel hydroxide with manganese incorporated therein
JP4412936B2 (en) Cobalt oxyhydroxide, method for producing the same, and alkaline storage battery using the same
US3297433A (en) Process for preparing a cadmium electrode material for use in electric storage devices
JPH11317224A (en) Positive electrode active material for alkaline storage battery and manufacture thereof
JPH0576745B2 (en)
JP2001325954A (en) Beta type nickel oxyhydroxide and its manufacturing method, positive electrode active material and nickel- zinc cell
JP3324781B2 (en) Alkaline secondary battery
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JPH06260166A (en) Nickel electrode for alkaline storage battery
JP4374430B2 (en) Cathode active material for alkaline electrolyte battery and alkaline electrolyte battery using the same
JP3530309B2 (en) Method for producing hydrogen storage alloy electrode
JPS6211461B2 (en)
JPH02234356A (en) Sealed-type alkali battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPH1012233A (en) Manufacture of hydrogen storage alloy for alkaline storage battery
JP3587213B2 (en) Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same
JP3229801B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
JPH10172559A (en) Nickel active material for alkaline storage battery and manufacture thereof
JP2553624B2 (en) Paste type cadmium negative electrode
JPH06103974A (en) Paste type positive electrode active material for alkali secondary battery and its manufacture
KR800001519B1 (en) Polar plate of alkaline storage cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term