JPS60105170A - Electroconductive silver oxide and silver oxide battery - Google Patents

Electroconductive silver oxide and silver oxide battery

Info

Publication number
JPS60105170A
JPS60105170A JP58211433A JP21143383A JPS60105170A JP S60105170 A JPS60105170 A JP S60105170A JP 58211433 A JP58211433 A JP 58211433A JP 21143383 A JP21143383 A JP 21143383A JP S60105170 A JPS60105170 A JP S60105170A
Authority
JP
Japan
Prior art keywords
silver oxide
battery
silver
atoms
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58211433A
Other languages
Japanese (ja)
Other versions
JPH0576745B2 (en
Inventor
Toru Nagaura
亨 永浦
Buichi Hashimoto
橋本 武一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIDOU KAGAKU KOGYO KK
Sony Ebaredei KK
Original Assignee
SEIDOU KAGAKU KOGYO KK
Sony Ebaredei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIDOU KAGAKU KOGYO KK, Sony Ebaredei KK filed Critical SEIDOU KAGAKU KOGYO KK
Priority to JP58211433A priority Critical patent/JPS60105170A/en
Publication of JPS60105170A publication Critical patent/JPS60105170A/en
Publication of JPH0576745B2 publication Critical patent/JPH0576745B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To decrease electric resistance and impedance of a battery by using silver oxide prepared by adding a mixture of silver salt and nickel salt having a specific molar ratio of silver and nickel in alkaline solution and oxidizing the coprecipitation obtained. CONSTITUTION:A nickel salt such as Ni(NO3)2 and silver salt such as AgNO3 are mixed so that molar ratio of Ni atom to Ag atom is 0.01-0.20. The mixture is poured into alkaline solution such as KOH, and K2S2O8 is added as the solution is stirred. The coprecipitation is filtered, washed, dried, and crushed to obtain electroconductive silver oxide powder. This silver oxide is used as cathode material of a battery. A silver oxide battery suitable for power source of a watch, is obtained.

Description

【発明の詳細な説明】 関するものであり、さらに」二記電ノJフ性酸化銀を陽
極材とする酸化銀電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a silver oxide battery using a dielectric silver oxide as an anode material.

従来、時言1等に装着する小型の電池としては、平坦な
電圧特性を有しかつ放電容tiの大きな酸化銀電池が多
用されている。
Conventionally, silver oxide batteries, which have flat voltage characteristics and a large discharge capacity ti, have been frequently used as small batteries installed in vehicles such as Jigen 1.

ところで、この酸化銀電池の陽極活物質としては酸化銀
Ag20が用いられているが、このAg2 0は絶縁物
に近いものであるので、上記電池の陽極利として用いる
場合には、例えばカーボンやグラファイト等の電導補助
物を混ぜて導電性を付与して用いるのが一般的である。
By the way, silver oxide Ag20 is used as the anode active material of this silver oxide battery, but since this Ag20 is close to an insulator, when used as the anode active material of the above battery, carbon or graphite, for example, is used. It is common to use a mixture of electrically conductive auxiliary substances such as these to impart electrical conductivity.

この場合、例えばクラファイトの混入量と電池内部抵抗
の関係は第1図に示すようなものであって、上記A,p
20に対するクラファイトの混入量を3重量係以上とす
る必要があり、これ以下であると内部抵抗が大きくなり
すぎて上記電池を実用に供することかできなくなってし
まう。
In this case, for example, the relationship between the amount of graphite mixed in and the internal resistance of the battery is as shown in FIG.
It is necessary that the amount of graphite mixed in with respect to 20% is 3 parts by weight or more; if it is less than this, the internal resistance becomes too large and the above battery cannot be put to practical use.

このようにグラファイト等の電導補助剤の割合が増える
と、これら電導補助剤の比重が小さいので陽極材中にか
なりの体積を占めることになる。
When the proportion of conductivity aids such as graphite increases in this way, the specific gravity of these conductivity aids is small, so they occupy a considerable volume in the anode material.

したがって、上述の内部抵抗の問題は解消されるが、必
然的に上記陽極材中に酸化銀AJ20が占める量が少な
くなってしまい、電池の放電容量は小さなものとなって
しまう。
Therefore, although the above-mentioned internal resistance problem is solved, the amount of silver oxide AJ20 in the anode material inevitably decreases, and the discharge capacity of the battery becomes small.

−力、時計等の電子機器においては、小型化や薄型化、
多機能化等が進められ、これら機器に組み込まれる駆動
電源である酸化銀′1シ池に対しても/」・型化、薄型
化が要求されており、しかも容量が太きノJjことか要
求されている。したかって、上述の電導補助物による放
電容量の低下は上記酸化銀電池の小型化に大きな障害と
なっている。
-In electronic equipment such as watches and watches, miniaturization and thinning,
As the silver oxide batteries, which are the drive power sources built into these devices, are becoming more multi-functional, they are required to be smaller and thinner, and also have larger capacities. requested. Therefore, the reduction in discharge capacity caused by the conductive aids described above is a major obstacle to miniaturization of the silver oxide batteries.

本発明者等は、上述の従来のものの欠点を解消すべく鋭
意検討の結果、銀塩から酸化銀を調製する際にニッケル
塩を所定の割合で添加しさらに酸化剤を作用さぜること
により電導性の良好な酸化銀が得られることを見出し本
発明を児成したものであって、へ9原子に対するNi原
子のモル比が0、Olから帆20となるような混合比て
銀塩とニッケル塩とをアルカリ水溶液に添加し、得られ
る共沈物に酸化剤を作用させることにより調製されるこ
とを特徴とするものであり、さらにそれを電池の+SS
旧制して用いることを特徴とするものである。
The inventors of the present invention, as a result of intensive studies in order to eliminate the drawbacks of the above-mentioned conventional products, found that when preparing silver oxide from silver salt, by adding nickel salt in a predetermined ratio and further adding an oxidizing agent to the silver oxide. It was discovered that silver oxide with good conductivity could be obtained, and the present invention was created by combining silver salt with a mixing ratio such that the molar ratio of Ni atoms to He9 atoms was 0 and Ol to H20. It is characterized in that it is prepared by adding nickel salt to an alkaline aqueous solution and allowing an oxidizing agent to act on the coprecipitate obtained, and further adding it to the +SS of the battery.
It is characterized by being used as an old system.

一般に酸化銀は、硝酸銀A y N O3をアルカリ溶
液中に添加することによって簡単に得られるが、本発明
においては、上記硝酸銀をアルカリ溶液中に添加する際
に上記硝酸銀に対し所定の割合でニッケル塩、例えば硝
酸ニッケルNi(NO3)2を混合しておき、このよう
な混合物をアルカリ溶液に添加した際に生ずる共沈物に
対してペルオキシ硫酸カリウムの如き酸化剤を作用させ
るたけで極めて良電導性を有する酸化銀、すなわち電導
性酸化銀が調製される。
Generally, silver oxide can be easily obtained by adding silver nitrate A y N O3 to an alkaline solution, but in the present invention, when adding the silver nitrate to the alkaline solution, nickel is added in a predetermined ratio to the silver nitrate. Very good conductivity can be achieved by simply mixing a salt, such as nickel nitrate (Ni(NO3)2), and allowing an oxidizing agent such as potassium peroxysulfate to act on the coprecipitate that forms when such a mixture is added to an alkaline solution. A conductive silver oxide is prepared.

したがって、上記電導性酸化銀は極めて簡便な方法で調
製され、また、そのまま電池の陽極層として用いること
ができ、電池の製造にあたっては電導補助材等の混合工
程等を省略するこきができるので、電池の生産性の向上
に極めて有用である。
Therefore, the above-mentioned conductive silver oxide can be prepared by an extremely simple method, and can be used as it is as an anode layer of a battery, and the process of mixing conductive auxiliary materials etc. can be omitted when manufacturing batteries. It is extremely useful for improving battery productivity.

ところで、上記調製方法により得られる電導性酸化銀が
いかなる物質から成っているか、その詳細については不
明であるが、例えばA720を主体としてApNi O
2と考えられる良電導性物質との混合物であることが考
えられる。
By the way, the details of what kind of substance the conductive silver oxide obtained by the above preparation method is made of are unknown, but for example, A720 is the main substance, ApNiO
It is thought that it is a mixture of 2 and a substance with good conductivity.

すなわち、硝酸銀と硝酸ニッケルとをアルカリ溶液、例
えば水酸化カリウム溶液中に添加すると、N i (N
o:l )2+2KO11−N i (011)2−1
−2KN(h2AyNO382KOI−1−Ag2O+
2KNO3−1−1−120て示される反応により、水
酸化ニッケルN1(Ol4)2さ酸化銀A90が生成し
、こイ1らの共沈物が沈澱する。
That is, when silver nitrate and nickel nitrate are added to an alkaline solution, for example, a potassium hydroxide solution, N i (N
o:l)2+2KO11-N i (011)2-1
-2KN(h2AyNO382KOI-1-Ag2O+
By the reaction shown as 2KNO3-1-1-120, nickel hydroxide N1(Ol4)2 and silver oxide A90 are produced, and a coprecipitate of nickel hydroxide N1(Ol4)2 and silver oxide A90 is precipitated.

そして、この共沈物に酸化剤ベルオキシ硫酸カリウムを
作用させ酸化してやると、上i6水酸化ニッケルはオキ
シ水酸化ニッケル(N i 001.1 )となり、こ
れがアルカリ溶液中でのAirzOの511’l離によ
って生ずるAyO−と反応して、 N i 001−1 +Ag0−− AyN i 02
 十〇H−に示す如く陽極活物質として1ilJIQL
;!、電導性を翁するAyNiOzを生成して上記へ2
20中に混入する。
When this coprecipitate is oxidized by the action of the oxidizing agent potassium peroxysulfate, the upper i6 nickel hydroxide becomes nickel oxyhydroxide (N i 001.1), which is the 511'l separation of AirzO in an alkaline solution. By reacting with AyO- generated by, N i 001-1 +Ag0-- AyN i 02
1ilJIQL as an anode active material as shown in 10H-
;! , generate AyNiOz with conductivity and proceed to the above 2
Mixed in 20.

しカルながら、得られる電導ぞ1−酸化銀をX腺回()
「て解析したところ、酸化銀At7zOのピークしか確
認されなかった。ただ、」−記電導性酸化銀の組成を分
析したLころ、A1原子きN1原子の比イ」は混合しを
付与するうえで何らかの形で関与しているものと考えら
れる。
While doing so, the electrical conductivity obtained is 1-silver oxide ()
When analyzed, only the peak of silver oxide At7zO was confirmed. However, when analyzing the composition of conductive silver oxide, the ratio of A1 atoms to N1 atoms was found to be mixed. It is likely that they are involved in some way.

一方、上記電導性酸化銀を調製する際に、銀塩とニッケ
ル塩の混合比が問題となる。本発明者等の実験によれは
、八7 原子に対するNi 原子のモル比Ni /Al
l カ0.01〜0.20の範囲である必要があり、0
.025〜0.15の範囲であるこ吉がより好ましいこ
とが分かった。すなイっち、上記N1/A9 が0.O
1以下であると得られる電導性酸化銀の抵抗値が急激に
増加し電池の陽極層として供することは回部である。一
方、上記Ni /A9 が0.20を越すと、得られる
電導性酸化銀のエネルギー密度が小さくなって、例えは
電池の陽極層よして用いた場合に、従来のクラファイト
を混入した酸化銀を用いた電池とその放電容量において
大差なくなってしまう。
On the other hand, when preparing the above conductive silver oxide, the mixing ratio of silver salt and nickel salt poses a problem. According to experiments conducted by the present inventors, the molar ratio of Ni atoms to 87 atoms is Ni /Al
l must be in the range of 0.01 to 0.20, and 0
.. It has been found that a Kokichi range of 0.025 to 0.15 is more preferred. Well, the above N1/A9 is 0. O
When it is less than 1, the resistance value of the resulting conductive silver oxide increases rapidly, making it difficult to use it as an anode layer of a battery. On the other hand, if the above Ni/A9 exceeds 0.20, the energy density of the resulting conductive silver oxide becomes small, and for example, when used as an anode layer of a battery, it is difficult to use conventional silver oxide mixed with graphite. There will be no significant difference in discharge capacity from batteries using this type of battery.

以上述べたように、これまては酸化銀に電導性を付与す
る方法としてカーボンやクラファイト等の電導補助物を
混入する方法が用いられていたが、とができその分多く
の陽極活物T1を充填することがてきるため、大容量の
酸化銀電池を作成することか可能となる等、工業的価値
は極めて大きい。
As mentioned above, the conventional method of imparting electrical conductivity to silver oxide was to mix conductive substances such as carbon and graphite into the silver oxide. Since it can be filled with T1, it is possible to create a large-capacity silver oxide battery, and the industrial value is extremely large.

以下、本発明の具体的な実施例について説明するが、本
発明はこれら実施例に限定されるものでないこと6」言
うまでもない。
Specific examples of the present invention will be described below, but it goes without saying that the present invention is not limited to these examples.

実施例1 &lIRニッケルN i (NO3) 2の1モル士l
濃度の溶液61)m/と硝酸銀A Y No 3 の1
モルZla度の溶液1000m/とを混合し、これを1
0モル/l落度の水酸化カリウムIぐ011水溶敲中へ
注いた。これをよく攪拌しながら、酸化剤であるベルオ
キソ(uf酸カリウムに2S20Bを16.!7加えた
。このベルオキソ(lIIE酸カリウム添加後、温1.
1を800Gに保ちながらさらに約6時間4’、’t 
41’を続けた。
Example 1 1 mole of IR nickel Ni (NO3) 2
Solution of concentration 61) m/ and 1 of silver nitrate A Y No 3
Mix 1000 m/m of solution of molar Zla degree and add this to 1
The mixture was poured into an aqueous solution of potassium hydroxide IgO11 with a concentration of 0 mol/l. While stirring the mixture thoroughly, 16.7 g of 2S20B was added to the oxidizing agent, potassium berooxo(uf).
4','t for about 6 more hours while keeping 1 at 800G.
Continued 41'.

生成した沈澱物をろ過し、純水を用いて十分に洗浄した
後、80°Cで真空乾燥し粉砕して粉末状の電導性酸化
銀を得た。
The generated precipitate was filtered, thoroughly washed with pure water, dried under vacuum at 80°C and pulverized to obtain conductive silver oxide powder.

得られた電導性酸化銀をX線回折により解析したが、そ
の回折X線スペクトルは酸化銀AIi’zOO)回折X
線スペクトルと同じてあった。
The obtained conductive silver oxide was analyzed by X-ray diffraction, and the diffraction X-ray spectrum was as follows:
It was the same as the line spectrum.

また、得られた電導性酸化銀の粉末を硝酸に溶解し、チ
オシアン酸アンモニウム滴定により銀の含有量を、ED
TA滴定により、ニッケルの含有量をそれぞれめた。こ
の超果、粉末中の銀の含有量は88.60重量%、ニッ
ケルの含有量は2.811重量%あることが判明した。
In addition, the obtained conductive silver oxide powder was dissolved in nitric acid, and the silver content was determined by titration with ammonium thiocyanate.
The nickel content was determined by TA titration. It was found that the silver content in this superfruit powder was 88.60% by weight, and the nickel content was 2.811% by weight.

したがって、上記粉末中の原子比N1/kg は0.0
5 Illとなり、最初に添加した硝酸ニッケルと硝酸
銀の量から計算される理論値0.06に極めて近いもの
であった。
Therefore, the atomic ratio N1/kg in the above powder is 0.0
5 Ill, which was extremely close to the theoretical value of 0.06 calculated from the amounts of nickel nitrate and silver nitrate initially added.

このようにして得られた電導性酸化銀の粉末を成形圧力
を変えなから直径11.QVLjII、厚さQ、 97
Jl#のペレットに成形し、その電気抵抗を測定した。
The conductive silver oxide powder obtained in this way was molded with a diameter of 11 mm without changing the molding pressure. QVLjII, thickness Q, 97
It was molded into a Jl# pellet and its electrical resistance was measured.

結果を従来のものと比較して第2図に示す。なお、第2
図中、aはこの実施例1で得られた電導性酸化銀、bは
Ayzoにクラファイトを3.5重量係混入したもの、
Cは八720にクラファイトを5重量混入したもの、d
はA920にクラファイトを8重量饅混入したもの、を
それぞれ示す。
The results are shown in Figure 2 in comparison with the conventional results. In addition, the second
In the figure, a is the conductive silver oxide obtained in Example 1, b is Ayzo mixed with 3.5 weight percent of graphite,
C is 8720 mixed with 5 weight of graphite, d
1 shows A920 mixed with 8 weights of graphite.

この第2図より、本実施例で得られた電導性酸化銀は、
従来の酸化銀A 720に5重量%のクラファイトを混
入したものより低い抵抗値を示すことか分かる。
From FIG. 2, the conductive silver oxide obtained in this example is
It can be seen that the resistance value is lower than that of the conventional silver oxide A 720 mixed with 5% by weight of graphite.

さらに、得られた電導性酸化銀のエネルギー密度をその
成形圧力を変えながら測定した。結果を従来のものと比
較して第3図に示す。なお、この第3図においてa−d
は先の第2図におけるa〜dll!:同様のものを示し
、CはAy20単独で用いた場合を示す。
Furthermore, the energy density of the obtained conductive silver oxide was measured while changing the molding pressure. The results are shown in FIG. 3 in comparison with the conventional results. In addition, in this Figure 3, a-d
are a~dll! in Figure 2 above. : Shows the same thing, and C shows the case where Ay20 was used alone.

この第3図より、本実施例により苅られる電導性酸化銀
は、Ag2Oにクラファイトを3.5重量係混入したも
のよりもエネルギー密度が高く、通常の成形圧範囲(4
〜55 ton/c+# )てはA7□O単独て用いた
場合に近いエネルギー密度を有することが分かる。した
かって、得られる1[う導性酸化銀を11夕化銀電池に
用いれば放電容量を大きくすることかできることは明白
である。
From FIG. 3, it can be seen that the conductive silver oxide produced in this example has a higher energy density than that of Ag2O mixed with 3.5% of graphite by weight, and that it has a higher energy density than that of Ag2O mixed with 3.5% of graphite by weight.
~55 ton/c+#), it can be seen that the energy density is close to that when A7□O is used alone. Therefore, it is clear that the discharge capacity can be increased by using the obtained 1[ conductive silver oxide in a 11 silver oxide battery.

実施例2 イ消門掟ニッケルへi (NO3) 2の1モル士l濃
度の溶液94 +++/’と硝酸銀A9NO3の1モル
/l濃度の溶液10(Jon/とを混合し、先の実施例
1と同様な方法で電導性酸化銀を得た。
Example 2 A solution of nickel (NO3) 2 with a concentration of 1 mol/l 94 +++/' and a solution of silver nitrate A9NO3 with a concentration of 1 mol/l 10 (Jon/) were mixed, and the solution of the previous example was prepared. Conductive silver oxide was obtained in the same manner as in Example 1.

得られた電導性酸化銀のエネルギー密度を第3図中fで
示す。この第3図において、実施例1て得られたものに
比へて本実施例で得られたものは20 mH/ca程度
のエネルギー密度の低下が見られるが実用上は問題はな
い。
The energy density of the conductive silver oxide obtained is indicated by f in FIG. In FIG. 3, there is a decrease in energy density of about 20 mH/ca in the product obtained in this example compared to that obtained in Example 1, but there is no problem in practical use.

このように、ニッケル原子の比率を上昇すると電導性酸
化銀のエネルギー密度が減少してしまい、実用に供する
ためにはAyLi子に対するN1 原子のモル比A9/
Niを0.20以下、好ましくは0゜15以下とする必
要があると考えられる。
In this way, increasing the ratio of nickel atoms reduces the energy density of conductive silver oxide, and for practical use the molar ratio of N1 atoms to AyLi atoms must be A9/
It is thought that it is necessary to keep Ni at 0.20 or less, preferably at 0.15 or less.

実施例3 先の実施例1て得られた電導性酸化銀を5 ton/ 
cAの成形圧力て直径11. Q ru+、厚さQ、9
m+aノヘレソ+−1に成形した。これを、第4図に示
すように、電池陽極缶2に入れ、陽極材となした。
Example 3 The conductive silver oxide obtained in Example 1 was used at 5 tons/
cA molding pressure and diameter 11. Q ru+, thickness Q, 9
It was molded into m+a nohereso+-1. This was placed in a battery anode can 2, as shown in FIG. 4, and used as an anode material.

次に、上記ペレット1上にセロハンシート及びコツトン
不織布からなるセパレ−り3を置き、28%NaOH溶
液を電解液として加えた。
Next, a separator 3 made of a cellophane sheet and a cotton nonwoven fabric was placed on the pellet 1, and a 28% NaOH solution was added as an electrolyte.

られたものき同等の性能を示した。It showed the same performance as the one that was used.

実施例6 先の実施例2て得られた電導性酸化銀を用いて、先の実
施例3と同様の方法で電池を作成した。
Example 6 Using the conductive silver oxide obtained in Example 2 above, a battery was produced in the same manner as in Example 3 above.

本実施例で作成した電池は、先の実施例3て得られたも
のに比べると、容量が〕?11干小さかった。
The battery produced in this example has a higher capacity than that obtained in the previous example 3. It was 11 times smaller.

上述の実施例3ないし実施例6により作成される電池の
内部抵抗を測定し、へg原子に対するNi原子のモル比
Ni /A9 と内部(1(抗の関係を第5図に示した
。なお、第5図において、Aは実施例3、Bは実施例4
、Cは実施例5、Dは実施例6の内部抵抗の値を示すも
のである。
The internal resistance of the batteries prepared according to Examples 3 to 6 above was measured, and the relationship between the molar ratio Ni /A9 of Ni atoms to Heg atoms and the internal resistance (1) is shown in Figure 5. , in FIG. 5, A is Example 3 and B is Example 4.
, C shows the value of the internal resistance of Example 5, and D shows the value of the internal resistance of Example 6.

この第5図より、実用的な電池の内部抵抗から考えて、
上記AV原子に対するNi原子のモル比Ni /AF 
は少なくとも0.01以上であることが必要であり、0
.025以上であることが好ましい。
From this figure 5, considering the internal resistance of a practical battery,
Molar ratio of Ni atoms to the above AV atoms Ni/AF
must be at least 0.01 or more, and 0
.. It is preferable that it is 025 or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸化銀に幻するクラブアイ1−の混入泣とそれ
を直径11.6 mm、厚さ3. Onuj+の電池に
用いたときの電池内部抵抗との関係を示すグラフてあ第
2図は本発明を適用した実施例により得られる電導性酸
化銀の抵抗値を従来のものと比較して示すクラブであり
、第3図はそのエネルギー密度を従来のものと比較して
示すクラブである。 第4図は本発明を適用した酸化銀電池の構造を示す断面
図である。 第5図は電導性酸化銀に含まれるAy原子とNi原子の
モル比Ni / Ay と作成される電池の内部抵抗の
関係を示すクラブである。 1・・・・・・・・・ペレット(陽極材)特許出願人 
ソニーζパーティ(作 置 正同化学工業(閑 代理人 弁理士 小 池 晃 同 1) 村 榮 − 第1図 り′う7アイト ンた> 量 くIt %) −一一→
第2図 ぐし、ト 色性り斤 −一一→ 第3図 ダレ、l−+5wネ& −□−−子 第4図 第5図 NJ/A38
Figure 1 shows a crab eye 1- mixed with silver oxide, and it is 11.6 mm in diameter and 3.5 mm thick. Figure 2 is a graph showing the relationship with the battery internal resistance when used in Onuj+ batteries. FIG. 3 shows a club whose energy density is compared with that of a conventional club. FIG. 4 is a sectional view showing the structure of a silver oxide battery to which the present invention is applied. FIG. 5 is a chart showing the relationship between the molar ratio Ni/Ay of Ay atoms and Ni atoms contained in conductive silver oxide and the internal resistance of the battery produced. 1... Pellet (anode material) patent applicant
Sony ζ Party (Seido Kagaku Kogyo (official agent, patent attorney Kodo Koike 1) Eiji Mura - 1st plan 7 items > Quantity %) -11→
Figure 2: Gushi, To Colored Rito -11→ Figure 3: Dare, l-+5wne & -□--Chi Figure 4: Figure 5 NJ/A38

Claims (1)

【特許請求の範囲】 1) AgJjX子に対するNl原子のモル比が0.0
1から0.20となるような混合比て銀塩とニノ゛ケル
塩とをアルカリ水溶液に添加し、得られる共沈物に酸化
剤を作用させることににり調製される電導性酸化銀。 2)Ay原子に対するNi原子のモル比が0.01から
0.20となるような混合比で銀塩とニッケル塩とをア
ルカリ水溶液に添加し、得られる共沈物に酸化剤を作用
させることにより調製される電導性酸化銀を陽極材さし
てなる酸化銀電池。
[Claims] 1) The molar ratio of Nl atoms to AgJj X atoms is 0.0.
Conductive silver oxide prepared by adding a silver salt and a nitrogen salt to an alkaline aqueous solution at a mixing ratio of 1 to 0.20, and allowing an oxidizing agent to act on the resulting coprecipitate. 2) Adding a silver salt and a nickel salt to an alkaline aqueous solution at a mixing ratio such that the molar ratio of Ni atoms to Ay atoms is 0.01 to 0.20, and allowing an oxidizing agent to act on the resulting coprecipitate. A silver oxide battery comprising conductive silver oxide prepared by the method as an anode material.
JP58211433A 1983-11-10 1983-11-10 Electroconductive silver oxide and silver oxide battery Granted JPS60105170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58211433A JPS60105170A (en) 1983-11-10 1983-11-10 Electroconductive silver oxide and silver oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58211433A JPS60105170A (en) 1983-11-10 1983-11-10 Electroconductive silver oxide and silver oxide battery

Publications (2)

Publication Number Publication Date
JPS60105170A true JPS60105170A (en) 1985-06-10
JPH0576745B2 JPH0576745B2 (en) 1993-10-25

Family

ID=16605865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58211433A Granted JPS60105170A (en) 1983-11-10 1983-11-10 Electroconductive silver oxide and silver oxide battery

Country Status (1)

Country Link
JP (1) JPS60105170A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1324408A1 (en) * 2000-09-11 2003-07-02 Dowa Mining Co., Ltd. Positive electrode active material for alkaline cell
EP1675199A1 (en) * 2004-12-27 2006-06-28 Dowa Mining Co., Ltd. Battery positive electrode material
JP2006286234A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Material for battery positive electrode
JP2007213829A (en) * 2006-02-07 2007-08-23 Sony Corp Alkaline cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654761A (en) * 1979-10-09 1981-05-14 Toshiba Battery Co Ltd Manufacture of alkaline battery
JPS56143665A (en) * 1980-04-10 1981-11-09 Sony Ebaredei Kk Silver oxide battery
JPS587766A (en) * 1981-07-08 1983-01-17 Toshiba Battery Co Ltd Divalent silver oxide battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654761A (en) * 1979-10-09 1981-05-14 Toshiba Battery Co Ltd Manufacture of alkaline battery
JPS56143665A (en) * 1980-04-10 1981-11-09 Sony Ebaredei Kk Silver oxide battery
JPS587766A (en) * 1981-07-08 1983-01-17 Toshiba Battery Co Ltd Divalent silver oxide battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1324408A1 (en) * 2000-09-11 2003-07-02 Dowa Mining Co., Ltd. Positive electrode active material for alkaline cell
EP1324408A4 (en) * 2000-09-11 2008-08-13 Dowa Electronics Materials Co Positive electrode active material for alkaline cell
EP1675199A1 (en) * 2004-12-27 2006-06-28 Dowa Mining Co., Ltd. Battery positive electrode material
AU2005247037B2 (en) * 2004-12-27 2011-01-27 Dowa Mining Co., Ltd. Battery positive electrode material
JP2006286234A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Material for battery positive electrode
EP1707537A3 (en) * 2005-03-31 2010-08-04 DOWA Electronics Materials Co., Ltd. Battery positive electrode material
JP2007213829A (en) * 2006-02-07 2007-08-23 Sony Corp Alkaline cell

Also Published As

Publication number Publication date
JPH0576745B2 (en) 1993-10-25

Similar Documents

Publication Publication Date Title
JP2007091573A (en) Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
US6153334A (en) Active materials for the positive electrode in alkaline storage battery and the manufacturing method of them
WO2005104272A1 (en) Alkaline battery and method for producing positive electrode material therefor
EP0881698B1 (en) Alkaline storage battery
JP4412936B2 (en) Cobalt oxyhydroxide, method for producing the same, and alkaline storage battery using the same
EP0809309A1 (en) Positive plate active material for alkaline storage battery and positive electrode
JPH11317224A (en) Positive electrode active material for alkaline storage battery and manufacture thereof
EP1219368B1 (en) Method for producing an electrode alloy powder
JP3355102B2 (en) Positive active material for lithium secondary battery and secondary battery using the same
JP2680673B2 (en) Non-aqueous electrolyte battery manufacturing method
JPS60105170A (en) Electroconductive silver oxide and silver oxide battery
JPH10172564A (en) Active material, its manufacture, and lithium ion secondary battery using active material
JPH01197964A (en) Secondary battery
JPH0221098B2 (en)
EP0848439B1 (en) An active material for a cathode of a nickel cell, a production method thereof, and a production method of a cathode of a nickel cell
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP4374430B2 (en) Cathode active material for alkaline electrolyte battery and alkaline electrolyte battery using the same
JPS62226563A (en) Nonaqueous electrolyte secondary battery
JPH06103974A (en) Paste type positive electrode active material for alkali secondary battery and its manufacture
JP3433031B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
US2655456A (en) Manganese dioxide for primary cells
JP3229801B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
US3554802A (en) Process for making sulfur iron active material for battery plates

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term