JPH0574462A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0574462A
JPH0574462A JP3236040A JP23604091A JPH0574462A JP H0574462 A JPH0574462 A JP H0574462A JP 3236040 A JP3236040 A JP 3236040A JP 23604091 A JP23604091 A JP 23604091A JP H0574462 A JPH0574462 A JP H0574462A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
core materials
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3236040A
Other languages
Japanese (ja)
Other versions
JP3185273B2 (en
Inventor
Yukio Nishikawa
幸雄 西川
Teruyoshi Morita
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23604091A priority Critical patent/JP3185273B2/en
Publication of JPH0574462A publication Critical patent/JPH0574462A/en
Application granted granted Critical
Publication of JP3185273B2 publication Critical patent/JP3185273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a nonaqueous electrolyte secondary battery excellent in an overdischarge resistant characteristic and safety. CONSTITUTION:In a nonaqueous electrolyte secondary battery which uses lithium-containing composite oxides of transition metals as positive electrode material and a carbonaceous material as negative electrode material, a negative electrode plate 2 which uses nickel, titanium, and stainless steel as core materials is heat treated at temperatures above 180 deg.C. Thereby a very thin oxide film is formed on the surface of the core materials and so elusion of the core materials is prevented even if the electric potential of the negative electrode is raised by an overdischarging device, and thus the capacity of the battery is recovered simply by recharging. The ceiling temperature of the heat treatment is restricted depending on the thermal properties of the core materials and of a binding agent used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池、
特にその耐過放電特性の向上に関するものである。
The present invention relates to a non-aqueous electrolyte secondary battery,
In particular, it relates to the improvement of the over-discharge resistance.

【0002】近年、携帯電話,カムコーダなどのコード
レス情報・通信機器の目覚しいポータブル化,インテリ
ジェンス化に伴い、その駆動用電源として、小形,軽量
であり、しかも高エネルギー密度の非水電解液二次電池
が注目されている。さらに最近では、特にその安全性を
重要視する傾向にある。
In recent years, with the remarkable portable and intelligent use of cordless information / communication devices such as mobile phones and camcorders, a non-aqueous electrolyte secondary battery having a small size, a light weight and a high energy density has been used as a power source for driving the cordless information / communication devices. Is getting attention. More recently, there is a tendency to attach particular importance to its safety.

【0003】[0003]

【従来の技術】従来、正極材料に遷移金属の酸化物,硫
化物、例えば二酸化マンガン(MnO 2),二硫化モリ
ブデン(MoS2)などを、負極材料に金属リチウムを
それぞれ用いた電池系が提案されていた。しかし、充電
時のリチウムの析出形態が、非水電解液の組成、充電条
件などの影響を大きく受け、主として針状となり、これ
が負極から脱落して、あるいはセパレータを貫通して正
極と接触し、内部短絡および発火する原因となるなど、
安全性に問題があるとされている。
2. Description of the Related Art Conventionally, oxides of transition metals and sulfur have been used as positive electrode materials.
Compound such as manganese dioxide (MnO) 2), Molybdenum disulfide
Buden (MoS2), Etc., with metallic lithium as the negative electrode material
The battery system used for each has been proposed. But charging
When lithium is deposited, the non-aqueous electrolyte composition and charging
It is mainly needle-shaped due to the influence of the situation, etc.
Is removed from the negative electrode or penetrates the separator
It may come into contact with the pole and cause an internal short circuit or fire.
It is said that there is a problem with safety.

【0004】そこで、正,負極材料に電気化学的にリチ
ウムを挿入/脱離する化合物を用いた電池系が提案され
た。この場合、正極材料としては、遷移金属のリチウム
含有複合酸化物、すなわち、層状構造を有するLiMO
2(Mは遷移金属、例えば、コバルト,ニッケル,鉄)
が、また、負極材料としては、同じく層状構造を有する
炭素材が、可逆的にリチウムを挿入/脱離するため有望
視されている。
Therefore, a battery system using a compound that electrochemically inserts / extracts lithium into / from the positive and negative electrode materials has been proposed. In this case, the positive electrode material is a lithium-containing composite oxide of a transition metal, that is, LiMO having a layered structure.
2 (M is a transition metal such as cobalt, nickel, iron)
However, as a negative electrode material, a carbon material having a layered structure is also considered promising because it reversibly inserts / extracts lithium.

【0005】[0005]

【発明が解決しようとする課題】以上のように、正極材
料に遷移金属のリチウム含有複合酸化物を、負極材料に
炭素材を用いることにより、小形,軽量であり、しかも
高エネルギー密度の非水電解液二次電池を提供できると
想定される。
As described above, by using a lithium-containing composite oxide of a transition metal as a positive electrode material and a carbon material as a negative electrode material, a non-aqueous liquid having a small size and a high energy density and high energy density can be obtained. It is assumed that an electrolyte secondary battery can be provided.

【0006】しかし、この電池にはまだいくつかの課題
が残されている。そのひとつとして、耐過放電特性の向
上が挙げられる。
However, some problems still remain in this battery. One of them is improvement in over-discharge resistance.

【0007】炭素材がリチウムを挿入/脱離する電位
は、炭素材の物性、特に層状構造の発達の度合い(層間
距離,層の重なり)により異なり、リチウムに対して約
0.1V〜約0.8Vである。
The potential at which the carbon material inserts / extracts lithium differs depending on the physical properties of the carbon material, particularly the degree of development of the layered structure (interlayer distance, layer overlap), and is about 0.1 V to about 0 relative to lithium. It is 0.8V.

【0008】したがって、芯材としては、この電位の範
囲でリチウムを吸蔵/放出するなどの相互作用をほとん
ど及ぼさない材料、例えばニッケル,チタン,ステンレ
ス鋼などを用いる必要がある。
Therefore, it is necessary to use, as the core material, a material such as nickel, titanium, or stainless steel which hardly causes an interaction such as occluding / releasing lithium within this potential range.

【0009】しかし、過放電時には、負極の電位が芯材
の溶解電位以上に上昇してしまうため、芯材が溶解して
正極に析出する現象が見られると同時に、負極の集電性
が著しく低下して過放電後、再充電しても容量がほとん
ど回復しないなどの課題があった。
However, at the time of over-discharging, the potential of the negative electrode rises above the melting potential of the core material, so that the phenomenon that the core material melts and deposits on the positive electrode is seen, and at the same time, the current collecting property of the negative electrode is remarkable. However, there was a problem that the capacity hardly recovered even after re-charging after the decrease and over-discharge.

【0010】[0010]

【課題を解決するための手段】これらの課題を解決する
ために本発明は、芯材にニッケル,チタン,ステンレス
鋼のいずれかを用いた負極板を熱処理するものであり、
好ましくは180℃以上で熱処理するものである。
In order to solve these problems, the present invention is to heat-treat a negative electrode plate using a core material of nickel, titanium or stainless steel.
Preferably, the heat treatment is performed at 180 ° C. or higher.

【0011】[0011]

【作用】本発明により、芯材の表面に非常に薄い酸化被
膜を形成させることができる。この酸化被膜により過放
電放置して負極の電位が芯材の溶解電位以上に上昇した
場合においても、芯材が溶解し正極へ析出することがな
い。したがって、再充電によって容量が速やかに回復す
るので、耐過放電特性を向上することができる。
According to the present invention, a very thin oxide film can be formed on the surface of the core material. Even if the potential of the negative electrode rises above the dissolution potential of the core material after being left to overdischarge due to this oxide film, the core material does not dissolve and deposit on the positive electrode. Therefore, the capacity is quickly restored by recharging, and the over-discharge resistance can be improved.

【0012】[0012]

【実施例】以下、本発明の実施例について図面を参照し
説明する。本発明の円筒形非水電解液二次電池の構成断
面を図1に示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross section of the configuration of the cylindrical non-aqueous electrolyte secondary battery of the present invention.

【0013】正極板1は、炭素リチウム(LiCO3
と四三酸化コバルト(Co34)を混合して空気中にお
いて900℃で焼成したコバルト酸リチウム(LiCo
2)を活物質とし、導電剤としてアセチレンブラック
を3重量%、グラファイトを4重量%混合した後、結着
剤としてポリ4フッ化エチレンの水性ディスパージョン
を7重量%練合してペースト状とした合剤を、アルミニ
ウム箔を芯材に用い、その両面に塗着,乾燥し圧延した
ものである。またその端部に正極リード板4をスポット
溶接している。
The positive electrode plate 1 is made of carbon lithium (LiCO 3 )
And cobalt trioxide (Co 3 O 4 ) were mixed and fired at 900 ° C. in air lithium cobalt oxide (LiCo
O 2 ) as an active material, 3% by weight of acetylene black as a conductive agent and 4% by weight of graphite were mixed, and then 7% by weight of an aqueous dispersion of poly (tetrafluoroethylene) was kneaded as a binder to prepare a paste form. The mixture was prepared by applying aluminum foil to the core material, applying the mixture on both sides, drying and rolling. Further, the positive electrode lead plate 4 is spot-welded to the end portion thereof.

【0014】また、負極板2は、メソフェーズピッチを
アルゴン雰囲気下において2800℃で熱処理した球状
黒鉛を活物質とし、結着剤としてポリ4フッ化エチレン
の水性ディスパージョンを5重量%練合してペースト状
とした合剤を用い、以下の製造方法で作製したものであ
る。またその端部に負極リード板5をスポット溶接して
いる。
The negative electrode plate 2 was prepared by kneading mesophase pitch in an argon atmosphere at 2800 ° C. with spherical graphite as an active material and kneading 5% by weight of an aqueous dispersion of polytetrafluoroethylene as a binder. It was prepared by the following manufacturing method using a paste-form mixture. Further, the negative electrode lead plate 5 is spot-welded to the end portion thereof.

【0015】セパレータ3はポリプロピレンからなる多
孔性フィルムを正,負極板よりも幅広く裁断したもので
ある。
The separator 3 is formed by cutting a porous film made of polypropylene wider than the positive and negative electrode plates.

【0016】正,負極板の間にセパレータを介在させて
全体を渦巻き状に巻回して極板群を構成した。
An electrode group was constructed by spirally winding the whole with a separator interposed between the positive and negative plates.

【0017】次に、上記極板群の上下部を温風で加熱
し、セパレータ3を熱収縮させる。極板群の下側に下部
絶縁リング6を装着し、ケース7に収容して負極リード
板5をケース7にスポット溶接する。また極板群の上側
には上部絶縁リング8を装着し、ケース7の上部に溝入
れした後、非水電解液を注入する。非水電解液は、エチ
レンカーボネート(EC)およびジエチレンカーボネー
ト(DEC)を体積比1:1に混合し、過塩素酸リチウ
ム(LiClO4)を1モル/l溶解させた。あらかじ
めガスケットが組み込まれた組立封口板9と正極リード
板4をスポット溶接した後、組立封口板9をケース7に
装着しカシメ封口する。
Next, the upper and lower parts of the electrode plate group are heated with warm air to heat-shrink the separator 3. The lower insulating ring 6 is attached to the lower side of the electrode plate group, is housed in the case 7, and the negative electrode lead plate 5 is spot-welded to the case 7. Further, an upper insulating ring 8 is attached to the upper side of the electrode plate group, a groove is formed in the upper portion of the case 7, and then a nonaqueous electrolytic solution is injected. The non-aqueous electrolytic solution was prepared by mixing ethylene carbonate (EC) and diethylene carbonate (DEC) at a volume ratio of 1: 1 and dissolving lithium perchlorate (LiClO 4 ) at 1 mol / l. After spot welding the assembled sealing plate 9 having a gasket incorporated therein and the positive electrode lead plate 4, the assembled sealing plate 9 is mounted on the case 7 and caulked.

【0018】過放電特性は以下の方法で評価した。ま
ず、電池を構成して20℃で100mAの定電流充放電を
5サイクル繰り返した。なお、充電時の上限電圧を4.
1V、放電時の下限電圧を3.0Vとした。その後、電
池を放電状態としてさらに100Ωの定抵抗放電を行
い、電池電圧が0Vを示した状態で2週間放置した。そ
の後、再び100mAの定電流充放電を行い、容量の回復
特性を比較した。
The overdischarge characteristic was evaluated by the following method. First, a battery was constructed and a constant current charge / discharge of 100 mA at 20 ° C. was repeated for 5 cycles. The upper limit voltage during charging is 4.
The lower limit voltage during discharge was 1 V and 3.0 V. Then, the battery was placed in a discharged state and further subjected to constant resistance discharge of 100Ω, and left for 2 weeks in a state where the battery voltage was 0V. Then, 100 mA constant current charging / discharging was performed again, and the capacity recovery characteristics were compared.

【0019】(実施例1)負極板2は、種々の温度で5
時間熱処理したニッケル箔,チタン箔,ステンレス鋼箔
を用い、上記合剤をその両面に塗着,乾燥し圧延したも
のである。これらの負極板を用いた電池の過放電放置後
の容量回復率を図2に示した。
(Example 1) The negative electrode plate 2 was subjected to various temperatures at various temperatures.
A nickel foil, titanium foil, or stainless steel foil that had been heat treated for a period of time was used, and the above mixture was applied to both sides, dried and rolled. FIG. 2 shows the capacity recovery rate of a battery using these negative electrode plates after being left over-discharged.

【0020】(実施例2)負極板2は、ニッケル箔,チ
タン箔,ステンレス鋼箔を芯材に用い、上記合剤をその
両面に塗着,乾燥し圧延した後、種々の温度で5時間熱
処理したものである。これらの負極板を用いた電池の過
放電放置後の容量回復率を図3に示した。
(Example 2) The negative electrode plate 2 uses a nickel foil, a titanium foil, and a stainless steel foil as a core material, and after coating the above mixture on both surfaces thereof, drying and rolling, it is carried out at various temperatures for 5 hours. It was heat treated. FIG. 3 shows the capacity recovery rate of a battery using these negative electrode plates after being left over-discharged.

【0021】図2および図3から明らかなように、少な
くとも180℃以上で熱処理した負極板を用いた場合、
過放電放置後も70%以上の容量回復が見られた。
As is apparent from FIGS. 2 and 3, when a negative electrode plate heat-treated at at least 180 ° C. is used,
A 70% or more capacity recovery was observed even after standing for over-discharge.

【0022】これは、過放電により負極の電位が上昇し
た場合においても、少なくとも180℃以上で熱処理す
ることにより芯材に用いたニッケル,チタン,ステンレ
ス鋼の表面に非常に薄い酸化被膜が形成されるため、芯
材が溶解しないことによるものと考えられる。
Even if the potential of the negative electrode rises due to over-discharge, a very thin oxide film is formed on the surface of nickel, titanium or stainless steel used for the core material by heat treatment at at least 180 ° C. or higher. Therefore, it is considered that the core material is not melted.

【0023】ここで、実施例1において320℃以上で
熱処理した場合、芯材の表面に形成される酸化被膜が成
長するため集電性および合剤との付着性が低下する。そ
のため、再充電により炭素材が膨脹すると、負極板の崩
壊(合剤の芯材からの剥離や脱落)が起こるので、容量
回復率は低下する。すなわち、用いる芯材の物性、特に
熱的性質により熱処理の上限温度が制限される。
Here, when the heat treatment is performed at 320 ° C. or higher in Example 1, the oxide film formed on the surface of the core material grows, so that the current collecting property and the adhesion property to the mixture are deteriorated. Therefore, when the carbon material expands due to recharging, the negative electrode plate collapses (the mixture is peeled or dropped from the core material), and the capacity recovery rate decreases. That is, the upper limit temperature of the heat treatment is limited by the physical properties of the core material used, particularly the thermal properties.

【0024】また、実施例2において280℃以上で熱
処理した場合、結着剤としてポリ4フッ化エチレンを用
いているため結着性が一部失われる。そのため、再充電
により炭素材が膨脹すると、負極板の崩壊(合剤の芯材
からの剥離や脱落)が起こるので、容量回復率は低下す
る。すなわち、用いる結着剤の物性、特に熱的性質によ
り熱処理の上限温度が制限される。
When heat-treated at 280 ° C. or higher in Example 2, the binding property is partially lost because polytetrafluoroethylene is used as the binding agent. Therefore, when the carbon material expands due to recharging, the negative electrode plate collapses (the mixture is peeled or dropped from the core material), and the capacity recovery rate decreases. That is, the upper limit temperature of the heat treatment is limited by the physical properties of the binder used, particularly the thermal properties.

【0025】[0025]

【発明の効果】以上のように本発明によれば、正極材料
に遷移金属のリチウム含有複合酸化物を、負極材料に炭
素材をそれぞれ用いた非水電解液二次電池において、芯
材にニッケル,チタン,ステンレス鋼を用いた負極板を
180℃以上で熱処理することにより、耐過放電特性を
向上させることができる。
As described above, according to the present invention, in a non-aqueous electrolyte secondary battery using a lithium-containing composite oxide of a transition metal as a positive electrode material and a carbon material as a negative electrode material, nickel is used as a core material. By heat-treating a negative electrode plate made of titanium, titanium or stainless steel at 180 ° C. or higher, the over-discharge resistance can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】円筒形非水電解液二次電池の構成断面図FIG. 1 is a sectional view of the configuration of a cylindrical non-aqueous electrolyte secondary battery.

【図2】実施例1の過放電特性を示す図FIG. 2 is a diagram showing overdischarge characteristics of Example 1.

【図3】実施例2の過放電特性を示す図FIG. 3 is a diagram showing overdischarge characteristics of Example 2.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 正極リード板 5 負極リード板 6 下部絶縁リング 7 ケース 8 上部絶縁板 9 組立封口板 1 Positive Electrode Plate 2 Negative Electrode Plate 3 Separator 4 Positive Electrode Lead Plate 5 Negative Electrode Lead Plate 6 Lower Insulation Ring 7 Case 8 Upper Insulation Plate 9 Assembly Seal Plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】正極材料に遷移金属のリチウム含有複合酸
化物を、負極材料に炭素材をそれぞれ用いた非水電解液
二次電池において、180℃以上で熱処理した負極板を
用いることを特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery using a lithium-containing composite oxide of a transition metal as a positive electrode material and a carbon material as a negative electrode material, wherein a negative electrode plate heat-treated at 180 ° C. or higher is used. Non-aqueous electrolyte secondary battery.
【請求項2】負極板は、180℃以上で熱処理したニッ
ケル,チタン,ステンレス鋼のいずれかを芯材に用いた
請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode plate uses, as a core material, any one of nickel, titanium, and stainless steel heat-treated at 180 ° C. or higher.
【請求項3】負極板は、ニッケル,チタン,ステンレス
鋼を芯材に用いて炭素材塗着後少なくとも180℃以上
で熱処理した請求項1記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode plate is made of nickel, titanium or stainless steel as a core material and is coated with a carbon material and then heat-treated at a temperature of at least 180 ° C. or higher.
JP23604091A 1991-09-17 1991-09-17 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3185273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23604091A JP3185273B2 (en) 1991-09-17 1991-09-17 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23604091A JP3185273B2 (en) 1991-09-17 1991-09-17 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0574462A true JPH0574462A (en) 1993-03-26
JP3185273B2 JP3185273B2 (en) 2001-07-09

Family

ID=16994873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23604091A Expired - Fee Related JP3185273B2 (en) 1991-09-17 1991-09-17 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3185273B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596439B1 (en) 2000-04-26 2003-07-22 Quallion Llc Lithium ion battery capable of being discharged to zero volts
US6852449B2 (en) 2002-08-29 2005-02-08 Quallion Llc Negative electrode including a carbonaceous material for a nonaqueous battery
US6998192B1 (en) 2002-08-29 2006-02-14 Quallion Llc Negative electrode for a nonaqueous battery
US7174207B2 (en) 2004-09-23 2007-02-06 Quallion Llc Implantable defibrillator having reduced battery volume
US7177691B2 (en) 1999-07-30 2007-02-13 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US20140224696A1 (en) * 2010-04-08 2014-08-14 Miguel Pujadas S.A. Dishwasher tray

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070218333A1 (en) * 2004-04-12 2007-09-20 Kazuya Iwamoto Metal-Oxide Containing Substrate and Manufacturing Method Therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177691B2 (en) 1999-07-30 2007-02-13 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US7184836B1 (en) 1999-07-30 2007-02-27 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US7248929B2 (en) 1999-07-30 2007-07-24 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US7818068B2 (en) 1999-07-30 2010-10-19 Boston Scientific Neuromodulation Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US6596439B1 (en) 2000-04-26 2003-07-22 Quallion Llc Lithium ion battery capable of being discharged to zero volts
US7101642B2 (en) 2000-04-26 2006-09-05 Quallion Llc Rechargeable lithium battery for tolerating discharge to zero volts
US8637184B2 (en) 2000-04-26 2014-01-28 Quallion Llc Rechargeable lithium battery for tolerating discharge to zero volts
US6852449B2 (en) 2002-08-29 2005-02-08 Quallion Llc Negative electrode including a carbonaceous material for a nonaqueous battery
US6998192B1 (en) 2002-08-29 2006-02-14 Quallion Llc Negative electrode for a nonaqueous battery
US7174207B2 (en) 2004-09-23 2007-02-06 Quallion Llc Implantable defibrillator having reduced battery volume
US20140224696A1 (en) * 2010-04-08 2014-08-14 Miguel Pujadas S.A. Dishwasher tray
US9095249B2 (en) * 2010-04-08 2015-08-04 Miguel Pujadas, S.A. Dishwasher tray

Also Published As

Publication number Publication date
JP3185273B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
US5506068A (en) Non-aqueous safe secondary cell
US5591546A (en) Secondary cell
WO2011145462A1 (en) Positive electrode body for nonaqueous electrolyte battery, method for producing same, and nonaqueous electrolyte battery
CN100466363C (en) Secondary battery
JPWO2002054524A1 (en) Non-aqueous electrolyte secondary battery
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP4710099B2 (en) Nonaqueous electrolyte secondary battery
JP3063320B2 (en) Non-aqueous electrolyte secondary battery
JP4907996B2 (en) Non-aqueous electrolyte secondary battery
JP3030996B2 (en) Non-aqueous electrolyte secondary battery
JPH06349493A (en) Secondary battery
JP4534263B2 (en) Nonaqueous electrolyte secondary battery
JPH0574462A (en) Nonaqueous electrolyte secondary battery
JPH07288124A (en) Nonaqueous electrolyte secondary battery
JP2890839B2 (en) Non-aqueous electrolyte secondary battery charging method
JP3030995B2 (en) Non-aqueous electrolyte secondary battery
JPH05174872A (en) Nonaqueous electrolyte secondary battery
JP4753690B2 (en) Organic electrolyte battery
JP3489381B2 (en) Non-aqueous electrolyte secondary battery
JP2001266890A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JPH07335201A (en) Nonaqueous electrolyte secondary battery
JP4534264B2 (en) Nonaqueous electrolyte secondary battery
JPH04269466A (en) Nonaqueous electrolyte secondary battery
JPH05166537A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees