JPH0573808B2 - - Google Patents

Info

Publication number
JPH0573808B2
JPH0573808B2 JP14758784A JP14758784A JPH0573808B2 JP H0573808 B2 JPH0573808 B2 JP H0573808B2 JP 14758784 A JP14758784 A JP 14758784A JP 14758784 A JP14758784 A JP 14758784A JP H0573808 B2 JPH0573808 B2 JP H0573808B2
Authority
JP
Japan
Prior art keywords
less
steel
cooling rate
toughness
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14758784A
Other languages
Japanese (ja)
Other versions
JPS6126727A (en
Inventor
Masataka Suga
Hiroshi Kamio
Norihiro Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP14758784A priority Critical patent/JPS6126727A/en
Publication of JPS6126727A publication Critical patent/JPS6126727A/en
Publication of JPH0573808B2 publication Critical patent/JPH0573808B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明は調質型厚肉80Kgf/mm2以上級高張力
鋼の製造方法に関し、全板厚方向位置において均
一で優れた強度、靭性を付与することを目的とす
る。 <従来の技術> 鋼の焼入れ方法として従来は可能な限り高速で
冷却させるのが一般的であり、また冷却開始から
終了まで鋼板表面を単一の水量で冷却していた。 しかしこのような従来の冷却方法では、被処理
鋼板の板厚が大きい場合には厚さ方向の冷却速度
分布が一様にならない問題がある。 厚さ方向の冷却速度分布の不均一はNiを含ま
ない80Kgf/mm2以上級の強度の鋼では問題は生じ
ないが、鋼板に強度又は靭性を付与させるため
Niを含有(0.3%以上)させたものでは表層部近
傍の靭性の劣化が問題となつている。第1図は冷
却速度と強度及び靭性との関係を示すもので冷却
速度により特に靭性の変化が大きく、板厚方向に
生じる冷却速度の不均一は板厚方向の材質不均一
特に靭性の不均一を生じることがわかる。 このような観点から、板厚方向の冷却速度分布
を均一化するために従来より下記する技術が提案
されている。 特開昭57−152430号 特願昭57−207629号 上記はいずれも冷却ままで板厚方向の硬さ分
布を均一化しようとするもので、本発明のような
焼戻しを前提とした方法ではなく、その焼入まま
硬さは板厚中心部でHv300以下程度のものに関す
る技術である。本発明のように焼戻し後の拡張力
が80Kgf/mm2以上とするためには焼入れまま硬さ
がHv300以上必要である。 また上記では板厚方向の均一性は得られる
が、板厚中心部の冷却速度の絶対値が低下するた
め所望の焼入硬さを得るためには合金元素量の増
加が必要となる問題がある。 <発明の概要> 本発明は上記した従来技術の問題点を改善する
ためになされたもので、特定の成分と冷却法によ
り80Kgf/mm2以上級でしかも板厚方向の強度、靭
性が均一な鋼を提供しようとするものである。 まず本発明鋼の成分は次のように限定される。 C:0.03〜0.15% 0.03%未満では必要な焼入性が得られず、そ
のため80Kgf/mm2以上の強度が得られない。ま
た0.15%を超えると鋼の溶接性が劣化するた
め、上記範囲とする。 Si:0.50%以下 Siは鋼の溶製上不可欠な元素であるが、0.50
%を超えると溶接性が悪化し、母材靭性も劣化
するため、これを上限とする。 Mn:0.40〜1.60% 0.40%未満では焼入性が不足し、1.60%を超
えると溶接性が悪化するだけでなく、焼戻脆化
感受性も増加する。よつて上記範囲とする。 Ni:0.30〜5.0% 前述したように靭性への焼入冷却速度の影響
は0.30%以上の含有から大きくなる。また5.0
%を超えた場合は靭性レベルが大巾に向上し、
板厚方向の靭性のバラツキがあつても実用上問
題とならない。したがつて本発明ではNi:0.30
〜5.0%の範囲と対象とする。 Sol.Al:0.005〜0.08% Sol.Alは粒度調整、N固定に必要な元素で
0.005%未満では効果がない。また0.08%を超
えると母材靭性が悪くなるため上記範囲とす
る。 上記成分に加えて、更に機械的特性の向上を図
る場合は、下記成分のうち1種又は2種以上を添
加してもよい。 Cu:1.0%以下 焼入性、強度に効果があるが、1.0%を超え
ると圧延中熱間脆性がでてくるため、1.0%以
下とする。 Cr:1.5%以下 焼入性、強度に効果があるが、1.5%を超え
ると溶接性が悪化するためこの範囲とする。 Mo、W:0.8%以下 Moは焼入れ、焼戻し軟化抵抗性を与える
が、多すぎると溶接性劣化及びコストアツプを
招くため上記範囲とする。またMoはその全量
又は一部を当量のWと置換できる。 Nb:0.08%以下 Nbは直接焼入れの焼入性増加や、再加熱焼
入れにおいてオーステナイト粒か細かくする等
の効果があるが、0.08%を超えると効果が飽和
する上溶接部靭性劣化を招くため、これを上限
とする。 V:0.15%以下 Vは焼戻軟化抵抗性を与えるが、0.15%を超
えて添加しても効果が飽和するから、これを上
限とする。 Ti:0.05%以下 Tiは細粒化、Nの固定効果があるが、多す
ぎると大型TiNが生じ母材靭性の劣化を招く
ため、0.05%を上限とする。 Zr:0.1%以下 同様に細粒化、Nの固定に有用であるが多す
ぎると大型窒化物を生じ母材靭性を劣化させ
る。 Ca、REM:0.01%以下 Ca、REMは介在物形状制御により靭性を向
上させるが、多すぎると大型介在物が生じ母材
靭性を劣化させるため0.01%以下とする。 B:0.004%以下 焼入性向上に効果があるが、多すぎると焼入
性が落ちてくるため0.004%以下とする。 以上の成分と残部Fe及び不可避不純物よりな
る鋼を溶製しスラブとした後熱間圧延後オーステ
ナイト域から直ちに、またはオーステナイト域に
再加熱後焼入冷却するに際し、鋼板表面温度が低
下するにつれて水量密度を増加させて板厚方向冷
却速度を均一にするように冷却する。次いで焼戻
しを行い全板厚位置において60%以上のマルテン
サイト組織と5%以上のベイナイト混合組織とす
る。 いまこれを2段冷却を例にとつて説明すると、
まず鋼板表層部において体積率5%以上のベイナ
イト組織が生成する温度まで低水量密度で冷却し
たのち、水量密度を増加させて強冷却すれば、未
変態オーステナイトはマルテンサイト組織とな
り、最終組織は60%以上のマルテンサイトとベー
ナイトの混合組織となる。一方鋼板中心部は表層
部に比べて冷却に時間的ずれが生じ、変態に関与
する温度域ではほぼ一定速度で冷却される。この
変態に関与する温度域での冷却速度は表層部にお
ける弱冷却より大きく、かつ強冷却より小さくな
るため、中心部ではマルテンサイトとベイナイト
の混合組織となる。 本発明においてマルテンサイトを60%以上、ベ
イナイトを5%以上と限定したのは、第1図に示
すようにこの範囲で優れた靭性を得られるためで
ある。 強度と靭性を得るための最適冷却速度は、第2
図に示すように鋼の成分により異なるから、これ
に基づいて適宜決定する。そして、この冷却速度
はたとえば2段冷却を例にとれば、1段目の冷却
時間、板厚、1段目と2段目の水量密度に依存す
るから、第3図に示すように予め伝熱計算により
板厚方向位置の冷却速度をこれらの関数として求
めておき、最適冷却速度を得られる条件を求めれ
ば良い。 第4図に本発明法による板厚方向の冷却速度と
材質を従来のR.Q法と対比して示す。また該冷却
速度における強度と靭性の関係を示す。本発明法
では板厚方向の冷却速度が一様であるため、板厚
方向全位置において最も優れた靭性を得られる冷
却速度とすることができる。一方R.Q法では板厚
中心部ではこのような冷却速度を得られても、表
層部では冷却速度が大きくなるため特に靭性が悪
化していることがわかる。 <実施例> 次に実施例を示す。 下掲第1表に示す組成の鋼を溶製熱間圧延後、
第2表に示す条件で冷却し、次いで焼戻しを行な
い製品を得た。その機械的性質を同表に示す。
<Industrial Application Field> The present invention relates to a method for producing heat-treated thick-walled 80 kgf/mm 2 or higher grade high-tensile steel, and its purpose is to impart uniform and excellent strength and toughness throughout the entire plate thickness. . <Prior Art> Conventionally, the conventional method for quenching steel was to cool it as quickly as possible, and the surface of the steel plate was cooled with a single amount of water from the start to the end of cooling. However, in such conventional cooling methods, there is a problem that when the thickness of the steel plate to be treated is large, the cooling rate distribution in the thickness direction is not uniform. Non-uniform cooling rate distribution in the thickness direction does not pose a problem with steels that do not contain Ni and have a strength of 80Kgf/mm2 or higher, but in order to impart strength or toughness to the steel plate,
In those containing Ni (0.3% or more), deterioration of toughness near the surface layer becomes a problem. Figure 1 shows the relationship between cooling rate, strength, and toughness. The change in toughness is particularly large depending on the cooling rate. Nonuniformity in cooling rate that occurs in the thickness direction is due to nonuniformity in the material in the thickness direction, especially nonuniformity in toughness. It can be seen that this occurs. From this point of view, the following techniques have been proposed in the past in order to make the cooling rate distribution uniform in the plate thickness direction. JP-A No. 57-152430 Japanese Patent Application No. 57-207629 The above methods all attempt to make the hardness distribution in the thickness direction uniform while cooling, and are not methods based on tempering like the present invention. This is a technology whose as-quenched hardness is approximately Hv300 or less at the center of the plate thickness. In order to achieve an expansion force of 80 Kgf/mm 2 or more after tempering as in the present invention, as-quenched hardness is required to be 300 Hv or more. Furthermore, although uniformity in the sheet thickness direction can be obtained in the above method, the absolute value of the cooling rate at the center of the sheet thickness decreases, resulting in the problem that it is necessary to increase the amount of alloying elements in order to obtain the desired hardening hardness. be. <Summary of the invention> The present invention has been made to improve the problems of the prior art described above, and uses specific ingredients and cooling methods to produce a sheet with a strength and toughness of 80 Kgf/mm 2 or higher, and with uniform strength and toughness in the thickness direction. The aim is to provide steel. First, the ingredients of the steel of the present invention are limited as follows. C: 0.03 to 0.15% If it is less than 0.03%, the necessary hardenability cannot be obtained, and therefore a strength of 80 Kgf/mm 2 or more cannot be obtained. Moreover, if it exceeds 0.15%, the weldability of the steel will deteriorate, so it is set within the above range. Si: 0.50% or less Si is an essential element for melting steel, but 0.50% or less
%, weldability deteriorates and base metal toughness also deteriorates, so this is set as the upper limit. Mn: 0.40-1.60% If it is less than 0.40%, hardenability will be insufficient, and if it exceeds 1.60%, not only will weldability deteriorate, but also susceptibility to temper embrittlement will increase. Therefore, it is within the above range. Ni: 0.30-5.0% As mentioned above, the influence of the quenching cooling rate on toughness becomes greater when the Ni content is 0.30% or more. Also 5.0
If it exceeds %, the toughness level will be greatly improved,
Even if there is variation in toughness in the thickness direction, it does not pose a practical problem. Therefore, in the present invention, Ni: 0.30
~5.0% range and target. Sol.Al: 0.005~0.08% Sol.Al is an element necessary for particle size adjustment and N fixation.
It has no effect at less than 0.005%. Moreover, if it exceeds 0.08%, the toughness of the base material deteriorates, so it is set within the above range. In addition to the above components, in order to further improve mechanical properties, one or more of the following components may be added. Cu: 1.0% or less It has an effect on hardenability and strength, but if it exceeds 1.0%, hot brittleness occurs during rolling, so it should be kept at 1.0% or less. Cr: 1.5% or less It is effective for hardenability and strength, but if it exceeds 1.5%, weldability deteriorates, so it should be within this range. Mo, W: 0.8% or less Mo provides hardening and tempering softening resistance, but too much will cause deterioration of weldability and increase in cost, so it is set within the above range. Further, Mo can be replaced with an equivalent amount of W in whole or in part. Nb: 0.08% or less Nb has the effect of increasing hardenability in direct quenching and making the austenite grains finer in reheat quenching, but if it exceeds 0.08%, the effect will be saturated and the toughness of the weld will deteriorate. This is the upper limit. V: 0.15% or less V gives resistance to temper softening, but the effect is saturated even if it is added in excess of 0.15%, so this is the upper limit. Ti: 0.05% or less Ti has the effect of refining grains and fixing N, but if it is too large, large TiN forms and deteriorates the toughness of the base material, so the upper limit is set at 0.05%. Zr: 0.1% or less Similarly, Zr is useful for refining grains and fixing N, but too much Zr causes large nitrides and deteriorates the toughness of the base material. Ca, REM: 0.01% or less Ca and REM improve toughness by controlling the shape of inclusions, but if they are too large, large inclusions will occur and deteriorate the toughness of the base material, so the content should be 0.01% or less. B: 0.004% or less It is effective in improving hardenability, but if it is too large, hardenability deteriorates, so the content should be 0.004% or less. After melting steel consisting of the above components and the balance of Fe and unavoidable impurities to form a slab, the amount of water increases as the steel plate surface temperature decreases, either immediately from the austenite region after hot rolling, or when quenching and cooling after reheating to the austenite region. Cooling is performed to increase the density and make the cooling rate uniform in the thickness direction. Next, tempering is performed to create a mixed structure of 60% or more martensite structure and 5% or more bainite structure at the entire plate thickness position. Now, to explain this using two-stage cooling as an example,
First, the surface layer of the steel sheet is cooled with a low water flow density to a temperature at which a bainite structure with a volume fraction of 5% or more is generated, and then the water flow density is increased and the untransformed austenite becomes a martensitic structure, and the final structure is 60 % or more, resulting in a mixed structure of martensite and bainite. On the other hand, there is a time lag in the cooling of the center of the steel sheet compared to the surface layer, and in the temperature range involved in transformation, it is cooled at a nearly constant rate. The cooling rate in the temperature range involved in this transformation is higher than the weak cooling in the surface layer and lower than the strong cooling, so the center has a mixed structure of martensite and bainite. In the present invention, martensite is limited to 60% or more and bainite is limited to 5% or more because excellent toughness can be obtained within these ranges, as shown in FIG. The optimum cooling rate for strength and toughness is the second
As shown in the figure, it varies depending on the composition of the steel, so it is determined appropriately based on this. Taking two-stage cooling as an example, this cooling rate depends on the cooling time of the first stage, the plate thickness, and the water density of the first and second stages. The cooling rate at the position in the plate thickness direction can be determined as a function of these functions by thermal calculation, and the conditions for obtaining the optimum cooling rate can be determined. Figure 4 shows the cooling rate in the plate thickness direction and the material quality according to the method of the present invention in comparison with the conventional RQ method. The relationship between strength and toughness at the cooling rate is also shown. In the method of the present invention, since the cooling rate in the plate thickness direction is uniform, it is possible to set the cooling rate to obtain the most excellent toughness at all positions in the plate thickness direction. On the other hand, with the RQ method, even if such a cooling rate can be obtained at the center of the plate thickness, the cooling rate increases at the surface layer, resulting in particularly poor toughness. <Example> Next, an example will be shown. After melting and hot rolling steel with the composition shown in Table 1 below,
The product was cooled under the conditions shown in Table 2 and then tempered to obtain a product. Its mechanical properties are shown in the same table.

【表】【table】

【表】 上記からわかるように本発明の化学組成範囲に
含まれない比較鋼では、従来の一段冷却法によつ
ても、特に表層部靭性劣化は認められない(No.1
とNo.9の比較)。 一方、含Ni鋼では一段冷却では表層部靭性の
劣化が認められるのに対し、本発明法で焼入した
ものは、表層部と中心部の靭性は同等である。ま
た、中心部の強度も一段強冷却と同等である(No.
2〜5とNo.6〜8の比較)。 また一段冷却で水量密度を低くしたもの(No.
10)は表層部と中心部の材質の差は少ないが、冷
却速度の絶対値が低下し、マルテンサイト組織の
体積率が60%以下となるため本発明法(No.2)に
比べて強度、靭性共に低い値となつている。
[Table] As can be seen from the above, in the comparative steels that are not included in the chemical composition range of the present invention, no particular deterioration in surface layer toughness is observed even by the conventional one-step cooling method (No. 1
and No. 9). On the other hand, in Ni-containing steel, deterioration in the toughness of the surface layer is observed in one-step cooling, whereas in the case of steel quenched by the method of the present invention, the toughness of the surface layer and the center portion are the same. In addition, the strength of the center is equivalent to that of one-stage strong cooling (No.
Comparison of Nos. 2 to 5 and Nos. 6 to 8). Also, one-stage cooling with lower water density (No.
10) has a small difference in material quality between the surface layer and the center, but the absolute value of the cooling rate decreases and the volume fraction of the martensitic structure becomes less than 60%, so the strength is lower than that of the method of the present invention (No. 2). Both the toughness and toughness are low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷却速度と体積率、破面遷移温度、引
張強さとの関係を示すグラフ、第2図は組成によ
る冷却速度と強度、靭性との関係を示すグラフ、
第3図は伝熱計算による板厚方向冷却速度分布と
一段目冷却時間の関係を示すグラフ、第4図は本
発明法による板厚方向の冷却速度と材質変動の関
係を示すグラフである。
Figure 1 is a graph showing the relationship between cooling rate, volume fraction, fracture surface transition temperature, and tensile strength; Figure 2 is a graph showing the relationship between cooling rate, strength, and toughness depending on the composition;
FIG. 3 is a graph showing the relationship between the cooling rate distribution in the thickness direction and the first stage cooling time based on heat transfer calculations, and FIG. 4 is a graph showing the relationship between the cooling rate in the thickness direction and material variation according to the method of the present invention.

Claims (1)

【特許請求の範囲】 1 C:0.03〜0.15%、Si:0.50%以下、Mn:
0.40〜1.60%、Ni:0.30〜5.0%、Sol.Al:0.005〜
0.08%を含有し、残部がFe及び不可避不純物から
なる鋼を熱間圧延後オーステナイト域から直ち
に、又は熱間圧延後Ar1点以下まで放冷された上
記鋼をオーステナイト域に再加熱後焼入冷却する
に際し、鋼板表面温度が低下するにつれて水量密
度を増加させて板厚方向の冷却速度を均一にする
ように冷却し、次いで焼戻しを行い全板厚位置に
おいて60%以上のマルテンサイトと5%以上のベ
ーナイトとの混合組織とすることを特徴とする調
質型厚肉80Kgf/mm2以上級高張力鋼の製造方法。 2 C:0.03〜0.15%、Si:0.50%以下、Mn:
0.40〜1.60%、Ni:0.30〜5.0%、Sol、Al:0.005
〜0.08%を含有し、さらにCu:1.0%以下、Cr:
1.5%以下、Mo:0.8%以下、W:0.8%以下、
Nb:0.08%以下、V:0.15%以下、Ti:0.05%以
下、Zr:0.1%以下、Ca:0.01%以下、REM:
0.01%以下、B:0.004%以下のうち1種又は2
種以上を含有し、残部がFe及び不可避不純物か
らなる鋼を熱間圧延後オーステナイト域から直ち
に、又は熱間圧延後Ar1点以下まで放冷された上
記鋼をオーステナイト域に再加熱後焼入冷却する
に際し、鋼板表面温度が低下するにつれて水量密
度を増加させて板厚方向の冷却速度を均一にする
ように冷却し、次いで焼戻しを行い全板厚位置に
おいて60%以上のマルテンサイトと5%以上のベ
ーナイトとの混合組織とすることを特徴とする調
質型厚肉80Kgf/mm2以上級高張力鋼の製造方法。
[Claims] 1 C: 0.03 to 0.15%, Si: 0.50% or less, Mn:
0.40~1.60%, Ni: 0.30~5.0%, Sol.Al: 0.005~
0.08% with the balance consisting of Fe and unavoidable impurities immediately after hot rolling from the austenite region, or after hot rolling the above steel that has been allowed to cool to Ar below 1 point is reheated to the austenite region and then quenched. During cooling, as the surface temperature of the steel plate decreases, the water volume density is increased to make the cooling rate uniform in the thickness direction, and then tempering is performed to reduce the martensite content to 60% or more and 5% martensite to the entire plate thickness. A method for producing a tempered thick-walled 80Kgf/mm 2 or higher grade high tensile strength steel, characterized by forming a mixed structure with the above bainite. 2 C: 0.03-0.15%, Si: 0.50% or less, Mn:
0.40~1.60%, Ni: 0.30~5.0%, Sol, Al: 0.005
Contains ~0.08%, further Cu: 1.0% or less, Cr:
1.5% or less, Mo: 0.8% or less, W: 0.8% or less,
Nb: 0.08% or less, V: 0.15% or less, Ti: 0.05% or less, Zr: 0.1% or less, Ca: 0.01% or less, REM:
0.01% or less, B: 1 or 2 of 0.004% or less
After hot rolling, the steel containing at least 10% of Ar, with the remainder consisting of Fe and unavoidable impurities, is immediately removed from the austenite region, or after hot rolling, the above-mentioned steel, which has been allowed to cool down to 1 point or less of Ar, is reheated to the austenite region, and then quenched. During cooling, as the surface temperature of the steel sheet decreases, the water flow density is increased to make the cooling rate uniform in the thickness direction, and then tempering is performed to reduce the martensite content to 60% or more and 5% martensite at the entire thickness position. A method for manufacturing a tempered thick-walled 80Kgf/mm 2 or higher grade high tensile strength steel, characterized by forming a mixed structure with the above bainite.
JP14758784A 1984-07-18 1984-07-18 Manufacture of refined and thick-walled steel plate having >=80kgf/mm2 high tensile Granted JPS6126727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14758784A JPS6126727A (en) 1984-07-18 1984-07-18 Manufacture of refined and thick-walled steel plate having >=80kgf/mm2 high tensile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14758784A JPS6126727A (en) 1984-07-18 1984-07-18 Manufacture of refined and thick-walled steel plate having >=80kgf/mm2 high tensile

Publications (2)

Publication Number Publication Date
JPS6126727A JPS6126727A (en) 1986-02-06
JPH0573808B2 true JPH0573808B2 (en) 1993-10-15

Family

ID=15433717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14758784A Granted JPS6126727A (en) 1984-07-18 1984-07-18 Manufacture of refined and thick-walled steel plate having >=80kgf/mm2 high tensile

Country Status (1)

Country Link
JP (1) JPS6126727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200075964A (en) * 2018-12-18 2020-06-29 현대제철 주식회사 Ultra-high strength and high toughness steel plate and method for manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213535A (en) * 1985-07-12 1987-01-22 Kawasaki Steel Corp Manufacture of high tension steel plate
KR101758497B1 (en) * 2015-12-22 2017-07-27 주식회사 포스코 Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200075964A (en) * 2018-12-18 2020-06-29 현대제철 주식회사 Ultra-high strength and high toughness steel plate and method for manufacturing the same

Also Published As

Publication number Publication date
JPS6126727A (en) 1986-02-06

Similar Documents

Publication Publication Date Title
JPH10509768A (en) High strength secondary hardened steel with excellent toughness and weldability
JPH0615689B2 (en) Method of manufacturing low yield ratio high strength steel
JPS6141968B2 (en)
JPH01279709A (en) Production of pre-hardened steel for plastic die by directly quenching
KR100470671B1 (en) A method for manufacturing non-hteat-treated steel with excellent cold formability
JPH0573808B2 (en)
JP2655901B2 (en) Manufacturing method of direct quenching type high strength steel sheet with excellent toughness
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPS63161117A (en) Production of hot rolled steel products having high strength and high toughness
JPH0277521A (en) Production of ultra-high-tension steel sheet for welding having excellent homogeneity in thickness direction
JPH09302445A (en) Nickel-containing steel for low temperature use and its production
JPH0741865A (en) Method for spheroidizing high carbon steel sheet by continuous annealing
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JPH01159316A (en) Production of low yielding ratio high tensile steel having softened surface layer
JPS62139815A (en) Manufacture of high strength and toughness thick steel plate with added boron by direct quenching process
JP3692565B2 (en) Method for producing B-added high-strength steel
KR950003547B1 (en) Making method of low temperature ni-steel
JPH10152757A (en) High carbon steel sheet small in plane anisotropy
JPH0215122A (en) Production of high strength and high toughness thick steel plate having excellent weldability
JP2708540B2 (en) Method for producing high-strength steel sheet mainly composed of ferrite structure
JPH0920921A (en) Production of high toughness steel plate by means of separation
JPS62180012A (en) Manufacture of high toughness thick steel plate
KR100401167B1 (en) Bainite-based high strength steel with excellent weld toughness and manufacturing method
JPH0366367B2 (en)
JPH0559171B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term