JPS62139815A - Manufacture of high strength and toughness thick steel plate with added boron by direct quenching process - Google Patents

Manufacture of high strength and toughness thick steel plate with added boron by direct quenching process

Info

Publication number
JPS62139815A
JPS62139815A JP27801885A JP27801885A JPS62139815A JP S62139815 A JPS62139815 A JP S62139815A JP 27801885 A JP27801885 A JP 27801885A JP 27801885 A JP27801885 A JP 27801885A JP S62139815 A JPS62139815 A JP S62139815A
Authority
JP
Japan
Prior art keywords
rolling
temperature
less
boron
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27801885A
Other languages
Japanese (ja)
Other versions
JPH0663026B2 (en
Inventor
Makoto Imanaka
誠 今中
Hisae Terajima
寺嶋 久栄
Chiaki Shiga
千晃 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP27801885A priority Critical patent/JPH0663026B2/en
Publication of JPS62139815A publication Critical patent/JPS62139815A/en
Publication of JPH0663026B2 publication Critical patent/JPH0663026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture thick steel plate superior in strength and toughness, by hot rolling low alloy steel material with B added having a specified compsn. under a specified condition, thereafter, heat treating the plate. CONSTITUTION:Slab of low alloy steel with B added contg. by weight, 0.04-0.15% C, 0.01-0.30% Si, 0.10-2.0% Mn and 0.02-0.15% Al, 0.0003-0.0030% B, 0.0010-0.100% N under Al(%)XN(%)>10<-4> and B(%)XN(%)>2.5X10<-6> of further one or >=2 kinds among <0.6% Cu, <3.0% Ni, <0.7% Cr, <0.7% Mo, <0.1% V, <2.0% Nb, <0.1% Ti is heated to 1,180-1,300 deg.C. This is hot rolled to thick steel plate so that rolling is finished at >=850 deg.C, the plate is held at temp near rolling finish temp., or held at >=850 deg.C temp. range during cooling after hot rolling for the lapse of 1-6min, then rapidly cooled to <=300 deg.C, then temper treated.

Description

【発明の詳細な説明】 (産業上の利用分野) 熱間圧延後の冷却過程で焼入れし、その後焼きもどしを
施す直接焼入れ・焼戻し工程によって強度およびじん性
の優れた厚鋼板を得ることに関連した開発研究の成果に
基づくこの明細書の技術内容は、いわゆる調質厚鋼板の
製造に係わる技術分野に位置する。
[Detailed Description of the Invention] (Industrial Application Field) Related to obtaining thick steel plates with excellent strength and toughness through a direct quenching/tempering process in which quenching is performed during the cooling process after hot rolling, and then tempering is performed. The technical content of this specification, which is based on the results of the development research conducted by the present inventors, is located in the technical field related to the production of so-called tempered thick steel plates.

優れた強度、じん性を備えた厚鋼板を製造する方法とし
ては一般に圧延後、再び加熱して焼入れ。
The general method for manufacturing thick steel plates with excellent strength and toughness is to heat and quench the steel again after rolling.

焼戻しを行う調質熱処理が行われて来たが、この製造工
程に対し、工程の省略、あるいは連続化を目的に、スラ
ブ加熱に適用した熱エネルギーをそのまま圧延後の焼入
れにも利用することは有用である。
Tempering heat treatment has been used for tempering, but it has not been possible to directly use the thermal energy applied to slab heating for post-rolling quenching in order to omit or make the manufacturing process more continuous. Useful.

この直接焼入れ、焼戻し工程(DQ−T)においては、
従来の再加熱焼入れ、焼戻し工程(RHQ−T ”)に
比べて、上記の工程上のメリット以外にも、加熱温度が
高くその冷却過程で焼入れすることから、焼入れ時には
鋼の合金成分が十分固溶し、オーステナイトも均質であ
るため焼入れ性が向上するという利点が一般的には言わ
れている。
In this direct quenching and tempering process (DQ-T),
In addition to the process advantages mentioned above, compared to the conventional reheating quenching and tempering process (RHQ-T"), the heating temperature is high and quenching occurs during the cooling process, so the alloy components of the steel are sufficiently hardened during quenching. It is generally said that the advantage of improved hardenability is that the austenite is homogeneous.

しかしこの固溶元素量の増加による利点は、圧延終了時
に合金元素が過飽和に固溶した状態が持続しているうち
に焼入れするためにもたらされたものであって、非平衡
な状態を利用したものである。したがってDQ−T工程
においては圧延終了から焼入れまでの時間がその鋼の材
質に大きく影響する。
However, this advantage of increasing the amount of solid solution elements is brought about by quenching while the alloying elements remain in a supersaturated solid solution state at the end of rolling, making use of the non-equilibrium state. This is what I did. Therefore, in the DQ-T process, the time from the end of rolling to quenching greatly affects the material quality of the steel.

それ故、実際の製造工程においては同−鋼板内において
も焼入れ装置に入る時間的な「ずれ」のために材質のば
らつきの原因となり、この点DQ−T工程利用上の重要
事項である。
Therefore, in the actual manufacturing process, even within the same steel plate, the time lag in entering the quenching device causes variations in material quality, and this is an important point when using the DQ-T process.

(従来の技術) この問題の解決策として特公昭58−3011号公報に
おいては、圧延終了から焼入れまでの時間を限定するが
、強度レベル60kgf/flll112以上の調質高
張力鋼においては、ボロンを有効に利用し、焼入れ性を
確保することが不可欠の条件であるにもかかわらず、こ
の検討は加えられていない。
(Prior art) As a solution to this problem, in Japanese Patent Publication No. 58-3011, the time from the end of rolling to quenching is limited, but boron is Despite the fact that effective utilization and ensuring hardenability are essential conditions, this consideration has not been taken into account.

また、発明者らが以前提案した特願昭59−13308
5号明細書においては、このボロンの挙動に着目した対
策であるが、このために、Al、B、N量に厳しい条件
が加わっている。
In addition, the patent application No. 59-13308 previously proposed by the inventors
The specification of No. 5 focuses on the behavior of boron, but for this reason, strict conditions are added to the amounts of Al, B, and N.

この成分的な制約を緩和したDQ条件によって材質のば
らつきを、とくにボロン添加鋼において解決することに
ついての従来技術は未だ提案されていない。
No prior art has yet been proposed for solving material variations, particularly in boron-added steel, by using DQ conditions that relax this component restriction.

(発明が解決しようとする問題点) 鋼の焼入れ性と密接に関係するDQ工程におけるボロン
の挙動については、ボロン添加鋼のkl。
(Problems to be Solved by the Invention) Regarding the behavior of boron in the DQ process, which is closely related to the hardenability of steel, kl of boron-added steel.

BおよびNfiが著しく影響をもたらすことを発明者ら
は詳細な実験結果に基づいて明らかにした。
The inventors have clarified based on detailed experimental results that B and Nfi have a significant effect.

しかし、これによって求まる成分量の制限はAl量とN
量およびB量とN量の積を非常にせまい範囲内にするた
め非常に厳しいものであった。
However, the limit on the amount of components determined by this is the amount of Al and N
It was very difficult to keep the amount and the product of the amount of B and the amount of N within a very narrow range.

発明者らは、さらにボロンの挙動をDQ条件との関係か
ら調査した結果スラブ加熱温度および仕上温度を適切に
選択すればA’A×N、B×Nの1直が非常に広い範囲
において、ボロンの有効利用が可能であることを見出し
た。
The inventors further investigated the behavior of boron in relation to the DQ conditions, and found that if the slab heating temperature and finishing temperature are appropriately selected, one shift of A'A×N and B×N can be achieved in a very wide range. It was discovered that boron can be used effectively.

この知見の基づき、ボロン添加高張力鋼をDQ−T工程
で製造する場合のOQ条件を適正化し、Bを安定的に利
用することにより、DQ工程に由来した材質のばらつき
を解決することがこの発明の目的である。
Based on this knowledge, it is possible to solve the variation in material quality caused by the DQ process by optimizing the OQ conditions when manufacturing boron-added high-strength steel using the DQ-T process and stably utilizing B. This is the object of the invention.

(問題点を解決するための手段) 上記の目的は次の事項を骨子とする手順により成就され
る。
(Means for resolving the problem) The above purpose will be achieved through the steps outlined below.

1、  C: 0.04〜0.15wt%、 Si :
 0.01〜0.30wt%。
1. C: 0.04-0.15wt%, Si:
0.01-0.30wt%.

Mn : 0. II)〜2. 0wt%ヲ含ミカツ、
Al: 0.02〜0.15wt%、 B : 0.0
003〜0.0030wt%。
Mn: 0. II) ~2. Contains 0wt%,
Al: 0.02-0.15wt%, B: 0.0
003-0.0030wt%.

及びN : 0.0010〜0.0100wt%を、1
(wt%)×N(wt%) >10−’及び/又はB(
wt%)×N(wt%) >2.5 ×10−6におい
て含有するボロン添加低合金鋼を素材とし、 1180°〜1300℃の温度に加熱して熱間圧延し、
850℃以上で圧延を終了すること、 この圧延終了後、圧延仕上温度に近い温度での保持又は
圧延終了に引続く冷却の過程にて、850℃以上の温度
域での1分間以上、6分間以内の時間経過をまって、3
00℃以下の温度に急冷すること、 その後焼戻しを施すこと の結合を特徴とする、直接焼入れ工程による高強度高じ
ん性ボロン添加厚鋼板の製造法(第1発明)。
and N: 0.0010 to 0.0100 wt%, 1
(wt%)×N(wt%) >10-' and/or B(
wt%) × N (wt%) > 2.5
Finishing rolling at 850°C or higher; After this rolling, holding at a temperature close to the finishing rolling temperature or during the cooling process following the completion of rolling, rolling in a temperature range of 850°C or higher for 1 minute or more and 6 minutes. Wait for up to 3 minutes
A method for producing a high-strength, high-toughness, boron-added thick steel plate by a direct quenching process, characterized by combining rapid cooling to a temperature of 00°C or lower and then tempering (first invention).

2、  C:0.04〜0.15wt%、 Si :0
.01〜0.30wt%。
2. C: 0.04-0.15wt%, Si: 0
.. 01-0.30wt%.

Mn : 0.10〜2.0 wt%、[:u:0.6
wt%以下、Ni:3,0wt%以下、 [:r :0
.7 wt%以下、 Mo :0.7 wt%以下。
Mn: 0.10-2.0 wt%, [:u:0.6
wt% or less, Ni: 3.0wt% or less, [:r:0
.. 7 wt% or less, Mo: 0.7 wt% or less.

V:0.1wt%以下、  Nt] :2.0wt%以
下、Ti:0.1wt%以下のうち1種又は2種を含有
し、さらにAj2:0.02〜0.15wt%、 B 
: 0.0003〜0.0030wt%、及びN : 
0.0010〜O,oioowt%を、i (wt%)
×N(wt%) >10−’及び/又はB(wt%)×
N(wt%) >2.5 ×10−6において含有する
ボロン添加低合金鋼を素材とし、 1180°〜1300℃の温度に加熱して熱間圧延し、
850℃以上で圧延を終了すること、 この圧延終了後、圧延仕上温度に近い温度での保持又は
圧延終了に引続く冷却の過程にて、850℃以上の温度
域での1分間以上、6分間以内の時間経過をまって、3
00℃以下の温度に急冷すること、 その後焼戻しを施すこと の結合を特徴とする、直接焼入れ工程による高強度高じ
ん性ボロン添加厚鋼板の製造法(第2発明)。
Contains one or two of V: 0.1 wt% or less, Nt]: 2.0 wt% or less, Ti: 0.1 wt% or less, and further Aj2: 0.02 to 0.15 wt%, B
: 0.0003 to 0.0030wt%, and N :
0.0010 ~ O, oioowt%, i (wt%)
×N (wt%) >10-' and/or B (wt%) ×
Boron-added low alloy steel containing N (wt%) >2.5 x 10-6 is used as a material, heated to a temperature of 1180° to 1300°C and hot rolled,
Finishing rolling at 850°C or higher; After this rolling, holding at a temperature close to the finishing rolling temperature or during the cooling process following the completion of rolling, rolling in a temperature range of 850°C or higher for 1 minute or more and 6 minutes. Wait for up to 3 minutes
A method for producing a high-strength, high-toughness, boron-added thick steel plate by a direct quenching process (second invention), characterized by combining rapid cooling to a temperature of 00° C. or lower, and then tempering.

かくして引張強さ60kgf/mm2以上のボロン添加
高強度高じん性調質鋼板を有利に製造し得る。
In this way, a boron-added high-strength, high-toughness tempered steel sheet having a tensile strength of 60 kgf/mm2 or more can be advantageously produced.

ここに圧延終了から焼入れに至までの間におけるボロン
の挙動と鋼の焼入れ効果との関係が以下のように解明さ
れたことがこの発明の完成を導いた基礎である。
The clarification of the relationship between the behavior of boron and the quenching effect of steel during the period from the end of rolling to quenching as described below is the basis for the completion of this invention.

(作 用) さてボロン添加鋼の圧延終了から焼入れまでの時間設定
は、その間における鋼板内、特に鋼の焼入性のために不
可欠の成分であるボロンの変化を考慮して適切な条件を
設定する必要がある。
(Function) When setting the time from the end of rolling to quenching of boron-added steel, appropriate conditions should be set taking into consideration the changes in the steel plate during that time, especially the change in boron, which is an essential component for the hardenability of steel. There is a need to.

すなわちこの保持中には、ボロンは、 ■ オーステナイト粒界への固溶Bの拡散、偏析■ ボ
ロン窒化物などの析出 といった変化が考えられる。
That is, during this holding, boron is thought to undergo changes such as (1) diffusion of solid solution B to austenite grain boundaries, (2) segregation, and (2) precipitation of boron nitride.

この様なボロンの変化は圧延後の経過時間によって生ず
るために、鋼の焼入性もこの変化の程度によって異なる
と考えられる。特に、■のボロン窒化物などの析出は鋼
の焼入性劣化に直結するため重要な変化である。
Since such a change in boron occurs depending on the elapsed time after rolling, the hardenability of the steel is considered to vary depending on the degree of this change. Particularly, the precipitation of boron nitrides (2) is an important change because it is directly linked to deterioration of the hardenability of steel.

発明者らはボロン添加低合金鋼についてスラブ加熱温度
、圧延後保持温度を変化させ、圧延終了から焼入れまで
の時間をパラメーターとして引張強さの変化を調べた。
The inventors investigated changes in tensile strength of boron-added low alloy steel by varying the slab heating temperature and post-rolling holding temperature and using the time from the end of rolling to quenching as a parameter.

表1にこの実験のための鋼成分を示す。Table 1 shows the steel composition for this experiment.

DO条件として、 ■ スラブ加熱温度1220℃、熱間圧延後の保持温度
を900℃とした場合(イ)、 ■ 保持温度を850℃および800℃まで下げた場合
(ロ)、(ハ) ■ スラブ加熱温度を1150℃まで下げた場合(ニ)
それぞれにってOQを行い、ついで630℃ 40分間
の条件で焼きもどし処理をおこなった。圧延終了から焼
入れまでの保持時間に応じる引張り強さの変動推移を第
1図にまとめて示す。
As DO conditions, ■ When the slab heating temperature is 1220℃ and the holding temperature after hot rolling is 900℃ (A), ■ When the holding temperature is lowered to 850℃ and 800℃ (B), (C) ■ Slab When the heating temperature is lowered to 1150℃ (d)
Each was subjected to OQ, and then tempered at 630° C. for 40 minutes. Figure 1 summarizes the changes in tensile strength depending on the holding time from the end of rolling to quenching.

何れのDO条件でも、熱間圧延後1分以内にオーステナ
イト粒は再結晶しその結果焼入れ性の向上がもたらされ
る。しかしその後の保持時間がさらに長くなるとOQ条
件によって異なった挙動をする。
Under any DO conditions, austenite grains recrystallize within 1 minute after hot rolling, resulting in improved hardenability. However, when the subsequent retention time becomes longer, the behavior changes depending on the OQ conditions.

すなわち、スラブ加熱温度が1220℃と高い場合には
、保持時間が3分以上にわたっても強度は低下せず安定
して高強度が保持されるのに反し、スラブ加熱温度を1
150℃と低下させると、保持時間が2分程度にて強度
の急激な低下が認められる。同様に保持温度が850℃
から800℃まで低下すると、保持時間による強度の低
下が著しい。
In other words, when the slab heating temperature is as high as 1220°C, the strength does not decrease even if the holding time is 3 minutes or more, and high strength is stably maintained.
When the temperature is lowered to 150°C, a rapid decrease in strength is observed after a holding time of about 2 minutes. Similarly, the holding temperature is 850℃
When the temperature decreases from 800°C to 800°C, the strength decreases significantly depending on the holding time.

以上の結果をもとにこの発明においてはBの固溶効果を
得るためスラブ加熱温度を1180℃以上の温度、また
オーステナイト粒の粗大化を抑制するため1300℃以
下とし、圧延仕上温度は圧延中のON析出を抑制するた
め850℃以上、また再結晶γ粒の粗大化を抑制し靭性
を向上するために950℃以下、そして圧延後の保持温
度は圧延後のBNの析出を抑制しγ粒の再結晶を生じさ
せるため850℃以上に限定した。
Based on the above results, in this invention, the slab heating temperature is set to 1180°C or higher to obtain the solid solution effect of B, and 1300°C or lower to suppress coarsening of austenite grains, and the rolling finishing temperature is set during rolling. The holding temperature after rolling is 850°C or higher to suppress the ON precipitation of BN, and 950°C or lower to suppress the coarsening of recrystallized γ grains and improve toughness. The temperature was limited to 850°C or higher in order to cause recrystallization.

スラブ加熱温度が1220℃のときと1150℃のとき
とにつき、ともに保持温度900℃、保持時間2分の場
合におけるボロンの分布をフィッション・トラック・エ
ツチング法で調べた結果を第2図(a)(b)に示す。
Figure 2 (a) shows the results of examining the boron distribution using the fission track etching method when the slab heating temperature was 1220°C and 1150°C, and when the holding temperature was 900°C and the holding time was 2 minutes. Shown in (b).

これより明らかなように、スラブ加熱温度をこの発明の
範囲に設定することによって、圧延後の保持中における
ボロン析出が大幅に抑制されていることがわかる。この
ことは、ボロンを効果的に利用するため、固溶Bを確保
することにも通じる。
As is clear from this, by setting the slab heating temperature within the range of the present invention, boron precipitation during holding after rolling is significantly suppressed. This also leads to securing solid solution B in order to effectively utilize boron.

しかしスラブ加熱温度を1180℃以上としても圧延後
の保持温度を850℃以上にしないとやはり、ボロンの
析出が生じ焼入性が低下する。すなわち、この発明の範
囲のスラブ加熱温度、および保持温度を設定することに
よって、圧延後長時間にわたって固溶Bを確保すること
が可能となり、Bの焼入効果が有効に利用できる。
However, even if the slab heating temperature is 1180° C. or higher, if the holding temperature after rolling is not 850° C. or higher, boron will still precipitate and hardenability will deteriorate. That is, by setting the slab heating temperature and holding temperature within the range of the present invention, it becomes possible to ensure solid solution B for a long time after rolling, and the hardening effect of B can be effectively utilized.

この発明においては、上記DQ条件にさらに、圧延終了
後焼入れまでの時間として1分以上6分以内に限定して
いるが、1分未満では圧延直後のオーステナイト粒再結
晶中においては、ボロンが十分オーステナイト粒界に偏
析できないために焼入性が低下するため、再結晶が完了
し、Bが粒界に偏析するための時間を与えるものである
。しかし、6分超の時間は生産能率が低下し、効果も増
加もしないので必要としない。焼入れはマルテンサイト
変態を完全に完了させ良好な焼入れ組織を得るために3
00℃以下まで急冷する必要がある。
In this invention, in addition to the above DQ conditions, the time from completion of rolling to quenching is limited to 1 minute or more and 6 minutes or less, but if it is less than 1 minute, boron is not sufficiently absorbed during austenite grain recrystallization immediately after rolling. Since hardenability deteriorates because B cannot segregate at austenite grain boundaries, time is given for recrystallization to complete and for B to segregate at grain boundaries. However, if the time exceeds 6 minutes, the production efficiency will decrease and the effect will not increase, so it is not necessary. In order to completely complete the martensitic transformation and obtain a good hardened structure,
It is necessary to rapidly cool down to below 00°C.

この発明においては、ボロンの利用が不可欠でありその
ためBは0.0003wt%以上必要である。またAβ
は脱酸、細粒効果を得るために0.02%以上必要であ
る。
In this invention, the use of boron is essential, and therefore B is required in an amount of 0.0003 wt% or more. Also, Aβ
is required to be 0.02% or more in order to obtain deoxidizing and fine grain effects.

しかし、0.0030wt%をこえるBの添加、0.1
596をこえるAβの添加は何れも効果の増強が認めら
れず、さらに却って溶接性を悪くするため上記値に上限
を定めた。
However, the addition of B exceeding 0.0030 wt%, 0.1
Addition of Aβ exceeding 596% did not increase the effect, and on the contrary worsened the weldability, so the upper limit was set at the above value.

またN量は母材靭性を害するため0.01wt%を超え
ることは好ましくない、しかし0.001 wt%未満
にすることは製鋼技術から困難である。
Furthermore, it is not preferable for the amount of N to exceed 0.01 wt% because it impairs the toughness of the base metal, but it is difficult to reduce the amount to less than 0.001 wt% due to steel manufacturing technology.

この発明は加熱温度を特定範囲の値にすることにより(
特願昭59−133085 )号明細書における(1.
N)あるいは(B−N)の値の制限を不要とし、先願に
記載した上記成分積の範囲をこの発明の範囲から除外し
た。すなわち(Aj’wt%)X(Nwt%> >io
−’および/または(8wt%)×(Nwt%) >2
.5 ×10−6の範囲の場合に、この発明を適用する
ことによって効果的に00時にBを利用できる。
This invention is achieved by setting the heating temperature to a value within a specific range (
(1.
There is no need to limit the value of N) or (BN), and the range of the component products described in the previous application is excluded from the scope of the present invention. That is, (Aj'wt%)X(Nwt%>>io
-' and/or (8wt%) x (Nwt%) >2
.. In the case of a range of 5 x 10-6, B can be effectively used at 00 o'clock by applying the present invention.

H!、B、N以外の成分の限定理由は、本発明の鋼板の
強度レベルであるTSが70kgf/mm2以上を満足
するために必要とされる合金成分の範囲を限定するもの
である。
H! , B, and N is to limit the range of alloy components required to satisfy the strength level TS of the steel sheet of the present invention of 70 kgf/mm 2 or more.

層は、焼入性と強度の確保のため不可欠な成分であり、
O,Q4wt%以上必要である。しかし、溶接性のため
に0.15wt%以下とする必要がある。
The layer is an essential component to ensure hardenability and strength.
O,Q 4wt% or more is required. However, for the sake of weldability, it is necessary to keep it at 0.15 wt% or less.

Siは、脱酸と強度確保のため添加されるが0.01w
t%未満ではその効果が十分でなく、0.3wt%を越
えると靭性が劣化する。
Si is added to deoxidize and ensure strength, but it is 0.01w
If it is less than t%, the effect will not be sufficient, and if it exceeds 0.3wt%, the toughness will deteriorate.

)Jnは、鋼の焼入性を確保するため0.1wt%以上
添加するが、靭性および溶接性に悪影響を及ぼさないよ
う2.Qwt%以下とした。
) Jn is added in an amount of 0.1 wt% or more to ensure the hardenability of the steel, but 2. Qwt% or less.

C’uは、これにより強度向上を期待するとき0.1w
t%以上添加するが、0.5II+t%を越える添加は
靭性、溶接、性の点から適当でない。
C'u is 0.1w when expected to improve strength by this.
It is added in an amount of t% or more, but adding more than 0.5II+t% is not appropriate from the viewpoint of toughness, weldability, and properties.

Niもまた、焼入性の確保と低温靭性の向上のために0
. l wt%以上添加しても良いが、3.Qwt%を
越える添加は経済性から適当でない。
Ni is also added to ensure hardenability and improve low temperature toughness.
.. 1 wt% or more may be added, but 3. It is not appropriate to add more than Qwt% from an economic point of view.

Crは、焼入性、耐酸化性と高温強度を向上させる元素
であり、0.1wt%以上添加しても良いが、溶接性、
母材靭性を劣化させないよう0.7シIt%以下とする
Cr is an element that improves hardenability, oxidation resistance, and high-temperature strength, and may be added in an amount of 0.1 wt% or more, but it improves weldability,
The content should be 0.7% or less so as not to deteriorate the toughness of the base material.

MOは、焼入性を確保するため0.Q1wt%以上添加
しても良いが、溶接性およびコストの点から0.70w
t%以下とする。
MO is set to 0.0 to ensure hardenability. Q1wt% or more may be added, but from the viewpoint of weldability and cost, 0.70w
t% or less.

ヱは、強度確保のため0.01wt%以上添加しても良
いが、母材靭性と溶接性のために0. lQwt%以下
とする必要がある。
0.01wt% or more may be added to ensure strength, but 0.01wt% or more may be added to ensure base material toughness and weldability. It is necessary to keep it below 1Qwt%.

他は、強度確保のため0.O1〜2.Qwt%添加でき
る。
Others are set to 0.0 to ensure strength. O1-2. Qwt% can be added.

Lは、NをTiNとして固定する効果があり、かつ、強
度上昇のために、鉤001 wt%以上添加することが
できるが、母材靭性のために0.lvt%を越える添加
は不利である。
L has the effect of fixing N as TiN and can be added in an amount of 0.01 wt% or more to increase strength, but it can be added in an amount of 0.01 wt% or more to improve base material toughness. Addition exceeding lvt% is disadvantageous.

以上の合金成分の中で、C、Si 、 !、lnは必須
であり、Cu、 Ni、 Cr、 Mo、 v、 Nb
およびTiは必要とされる強度レベルおよび性能に応じ
て1種又は2種以上添加するが、これら合金成分の添加
は、この発明の基本となるBの有効利用には影響を及ぼ
すことはない。この発明は直接焼入れ後、十分な靭性レ
ベルと強度を要求範囲内に調整するため焼きもどし処理
を行う。
Among the above alloy components, C, Si, ! , ln are essential, Cu, Ni, Cr, Mo, v, Nb
Although one or more types of Ti and Ti are added depending on the required strength level and performance, the addition of these alloy components does not affect the effective use of B, which is the basis of this invention. In this invention, after direct quenching, a tempering treatment is performed to adjust the sufficient toughness level and strength within the required range.

(実施例) 表2に示す組成の鋼を供試材として板厚100 mmの
ブロックを1250℃又は1150℃で1時間加熱し板
厚30mn+まで圧延した。圧延仕上温度を900℃か
ら800℃の間に変化させ、圧延終了後、別に用意した
圧延仕上温度と等しい温度に設定した炉の中に入れて6
0秒あるいは360秒保持した。
(Example) A 100 mm thick block of steel having the composition shown in Table 2 was heated at 1250° C. or 1150° C. for 1 hour and rolled to a plate thickness of 30 mm+. The finishing temperature of rolling was varied between 900°C and 800°C, and after the rolling was completed, it was placed in a separately prepared furnace set at the same temperature as the finishing rolling temperature.
It was held for 0 seconds or 360 seconds.

その後800〜500℃の間を冷却速度10℃/Sで1
50℃まで急冷した。
After that, the cooling rate is 10℃/s between 800 and 500℃.
It was rapidly cooled to 50°C.

次に焼きもどしは630 ℃、4Q+ninとした。Next, tempering was performed at 630°C and 4Q+nin.

熱処理後シャルピー試験、引張試験を行った。After heat treatment, Charpy test and tensile test were conducted.

その結果を表3に示す。The results are shown in Table 3.

この発明に従う場合(スラブ加熱温度、仕上温度)にお
いてのみ6分間圧延後保持を経た場合においても強度、
靭性が優れているが、残りの条件の場合は、6分保持し
た場合に、急激に強度が低下し、靭性も劣化した。
Even when holding after rolling for 6 minutes only in the case according to this invention (slab heating temperature, finishing temperature), the strength
Although the toughness was excellent, under the remaining conditions, the strength suddenly decreased and the toughness also deteriorated after being held for 6 minutes.

以上の実施例より明らかなようにこの発明法によってD
Q−T工程による高強度高靭性鋼の材質を高水準でかつ
「ばらつき」を最小限にして製造できることがわかる。
As is clear from the above examples, by this invention method, D
It can be seen that high-strength, high-toughness steel can be manufactured using the Q-T process to a high standard and with minimal "variation."

これは、圧延板のトップとボトムでの焼入れ装置に入る
時間的の「ずれJによる材質の「ばらつき」がなく高品
質の厚鋼板が製造可能であることを示すものである。
This shows that it is possible to produce high-quality thick steel plates without "variation" in material quality due to the time difference J between the top and bottom of the rolled plate entering the quenching device.

上述実施例は圧延仕上温度と等しい温度で1分以上の保
持を行う場合について述べたが、この保持は、それに加
えて、圧延終了後、焼入れのための急冷前における冷却
過程にて850 tに至までの間の経過時間を1分以上
とすることによっても同等の効果が得られる。
In the above embodiment, the case was described in which the temperature was maintained at the same temperature as the finishing rolling temperature for 1 minute or more. The same effect can be obtained by setting the elapsed time to 1 minute or more.

(発明の効果) 広範囲の成分のB添加鋼をDQ−T工程で製造する場合
、従来しばしば生じた強度靭性のばらつきがなく、それ
らの水準の高い厚鋼板が安定的にi等られる。
(Effects of the Invention) When B-added steel with a wide range of components is manufactured by the DQ-T process, there is no variation in strength and toughness that often occurred in the past, and thick steel plates with high standards can be stably produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は圧延終了後焼入れまでの時間に応じた引張強さ
の変動を示す比較グラフ、 第2図(a)、 (b)はスラブ加熱温度が圧延後2分
経過後のボロン分布変化に及ぼす影響を示す金属組織顕
微鏡写真である。 第1図 /l終了稜fig、a、よで力吟ルロ   渭l〃第2
図 (2L) (b) z(7θP
Figure 1 is a comparison graph showing the change in tensile strength depending on the time from completion of rolling to quenching. Figures 2 (a) and (b) are graphs showing changes in boron distribution when the slab heating temperature changes 2 minutes after rolling. This is a metallographic micrograph showing the influence of Fig. 1/l end ridge fig, a, Yode Riki Gin Rulo Wei l〃2nd
Figure (2L) (b) z(7θP

Claims (1)

【特許請求の範囲】 1、C:0.04〜0.15wt%、Si:0、01〜
0.30wt%、Mn:0.10〜2.0wt%を含み
かつ、Al:0.02〜0.15wt%、B:0.00
03〜0.0030wt%、及びN:0.0010〜0
.0100wt%を、Al(wt%)×N(wt%)>
10^−^4及び/又はB(wt%)×N(wt%)>
2.5×10^−^6において含有するボロン添加低合
金鋼を素材とし、1800°〜1300℃の温度に加熱
して熱間圧延し、850℃以上で圧延を終了すること、 この圧延終了後、圧延仕上温度に近い温度 での保持又は圧延終了に引続く冷却の過程にて、850
℃以上の温度域での1分間以上、6分間以内の時間経過
をまって、300℃以下の温度に急冷すること、 その後焼戻しを施すこと の結合を特徴とする、直接焼入れ工程による高強度高じ
ん性ボロン添加厚鋼板の製造法。 2、C:0.04〜0.15wt%、Si:0.01〜
0.30wt%、Mn:0.10〜2.0wt%、Cu
:0.6wt%以下、Ni:3.0wt%以下、Cr:
0.7wt%以下、Mo:0.7wt%以下、V:0.
1wt%以下、Nb:2.0wt%以下、Ti:0.1
wt%以下のうち1種又は2種を含有し、さらに Al:0.02〜0.15wt%、B:0.0003〜
0.0030wt%、及びN:0.0010〜0.01
00wt%を、Al(wt%)×N(wt%)>10^
−^4及び/又はB(wt%)×N(wt%)>2.5
×10^−^6において含有するボロン添加低合金鋼を
素材とし、1180°〜1300℃の温度に加熱して熱
間圧延し、850℃以上で圧延を終了すること、 この圧延終了後、圧延仕上温度に近い温度 での保持又は圧延終了に引続く冷却の過程にて、850
℃以上の温度域での1分間以上、6分間以内の時間経過
をまって、300℃以下の温度に急冷すること、 その後焼戻しを施すこと の結合を特徴とする、直接焼入れ工程による高強度高じ
ん性ボロン添加厚鋼板の製造法。
[Claims] 1. C: 0.04~0.15wt%, Si: 0, 01~
0.30 wt%, Mn: 0.10 to 2.0 wt%, Al: 0.02 to 0.15 wt%, B: 0.00
03~0.0030wt%, and N:0.0010~0
.. 0100wt%, Al (wt%) x N (wt%)>
10^-^4 and/or B (wt%) x N (wt%)>
The material is boron-added low alloy steel containing 2.5 x 10^-^6, heated to a temperature of 1800° to 1300°C and hot rolled, and the rolling is completed at 850°C or higher. After that, in the process of holding at a temperature close to the finishing rolling temperature or the cooling process following the completion of rolling, 850
High-strength, high-strength steel produced by a direct quenching process, characterized by a combination of cooling to a temperature of 300°C or less after waiting for at least 1 minute to 6 minutes at a temperature above 300°C, followed by tempering. A method for manufacturing tough boron-added thick steel plates. 2, C: 0.04~0.15wt%, Si: 0.01~
0.30wt%, Mn: 0.10-2.0wt%, Cu
: 0.6wt% or less, Ni: 3.0wt% or less, Cr:
0.7wt% or less, Mo: 0.7wt% or less, V: 0.
1wt% or less, Nb: 2.0wt% or less, Ti: 0.1
Contains one or two of the following wt%, further Al: 0.02 to 0.15 wt%, B: 0.0003 to
0.0030wt%, and N: 0.0010-0.01
00wt%, Al(wt%)×N(wt%)>10^
-^4 and/or B (wt%) x N (wt%) > 2.5
The material is boron-added low alloy steel containing in 850 in the process of holding at a temperature close to the finishing temperature or cooling following the completion of rolling.
High-strength, high-strength steel produced by a direct quenching process, characterized by a combination of cooling to a temperature of 300°C or less after a period of 1 minute or more and less than 6 minutes at a temperature above 300°C, followed by tempering. A method for manufacturing tough boron-added thick steel plates.
JP27801885A 1985-12-12 1985-12-12 Manufacturing method of high strength and high toughness boron-added thick steel plate by direct quenching process. Expired - Lifetime JPH0663026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27801885A JPH0663026B2 (en) 1985-12-12 1985-12-12 Manufacturing method of high strength and high toughness boron-added thick steel plate by direct quenching process.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27801885A JPH0663026B2 (en) 1985-12-12 1985-12-12 Manufacturing method of high strength and high toughness boron-added thick steel plate by direct quenching process.

Publications (2)

Publication Number Publication Date
JPS62139815A true JPS62139815A (en) 1987-06-23
JPH0663026B2 JPH0663026B2 (en) 1994-08-17

Family

ID=17591495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27801885A Expired - Lifetime JPH0663026B2 (en) 1985-12-12 1985-12-12 Manufacturing method of high strength and high toughness boron-added thick steel plate by direct quenching process.

Country Status (1)

Country Link
JP (1) JPH0663026B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272125A (en) * 1991-02-26 1992-09-28 Nippon Steel Corp Production of low-alloy heat resistant steel having superior fatigue characteristic at high temperature and low cycle and superior strength at high temperature
US5938865A (en) * 1995-05-15 1999-08-17 Sumitomo Metal Industries, Ltc. Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
US6024808A (en) * 1996-04-19 2000-02-15 Sumitomo Metal Industries, Ltd. Seamless steel pipe manufacturing method and equipment
JP4842402B2 (en) * 2009-04-17 2011-12-21 新日本製鐵株式会社 Manufacturing method of high production type 780 MPa class high strength steel sheet with excellent low temperature toughness
JP2020204072A (en) * 2019-06-17 2020-12-24 日本製鉄株式会社 High strength steel sheet for high heat input welding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272125A (en) * 1991-02-26 1992-09-28 Nippon Steel Corp Production of low-alloy heat resistant steel having superior fatigue characteristic at high temperature and low cycle and superior strength at high temperature
US5938865A (en) * 1995-05-15 1999-08-17 Sumitomo Metal Industries, Ltc. Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
US6024808A (en) * 1996-04-19 2000-02-15 Sumitomo Metal Industries, Ltd. Seamless steel pipe manufacturing method and equipment
JP4842402B2 (en) * 2009-04-17 2011-12-21 新日本製鐵株式会社 Manufacturing method of high production type 780 MPa class high strength steel sheet with excellent low temperature toughness
JP2020204072A (en) * 2019-06-17 2020-12-24 日本製鉄株式会社 High strength steel sheet for high heat input welding

Also Published As

Publication number Publication date
JPH0663026B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
JP6846522B2 (en) High-strength cold-rolled steel sheets with excellent yield strength, ductility, and hole expansion properties, hot-dip galvanized steel sheets, and methods for manufacturing these.
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
JPS62139815A (en) Manufacture of high strength and toughness thick steel plate with added boron by direct quenching process
JP4061003B2 (en) Cold forging bar wire with excellent induction hardenability and cold forgeability
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JP2655901B2 (en) Manufacturing method of direct quenching type high strength steel sheet with excellent toughness
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JPH0277521A (en) Production of ultra-high-tension steel sheet for welding having excellent homogeneity in thickness direction
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JPS6358906B2 (en)
JP2661768B2 (en) Manufacturing method of high strength steel sheet with high fatigue limit by thin cast strip
JPS62139821A (en) Production of high-ductility high-strength cold rolled steel sheet
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JPS6365021A (en) Production of b-containing non-tempered high tensile steel sheet having excellent low-temperature toughness
JPH0192317A (en) Manufacture of high-strength sheet metal excellent in stretch-flange workability
JPH01159316A (en) Production of low yielding ratio high tensile steel having softened surface layer
JPH03223420A (en) Production of high strength steel
JPH0573808B2 (en)
JPS61174328A (en) Production of structural thick steel plate having high toughness
JPS63140034A (en) Production of low yield ratio high tensile steel having excellent low-temperature toughness
JPH0617507B2 (en) High strength and high toughness steel plate manufacturing method
JPH0735538B2 (en) Method for manufacturing high strength and high toughness thick steel plate with excellent weldability
JPS6142766B2 (en)
JPH0366367B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term