KR100401167B1 - Bainite-based high strength steel with excellent weld toughness and manufacturing method - Google Patents

Bainite-based high strength steel with excellent weld toughness and manufacturing method Download PDF

Info

Publication number
KR100401167B1
KR100401167B1 KR10-1998-0060182A KR19980060182A KR100401167B1 KR 100401167 B1 KR100401167 B1 KR 100401167B1 KR 19980060182 A KR19980060182 A KR 19980060182A KR 100401167 B1 KR100401167 B1 KR 100401167B1
Authority
KR
South Korea
Prior art keywords
steel
temperature
bainite
toughness
strength
Prior art date
Application number
KR10-1998-0060182A
Other languages
Korean (ko)
Other versions
KR20000043761A (en
Inventor
주세돈
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0060182A priority Critical patent/KR100401167B1/en
Publication of KR20000043761A publication Critical patent/KR20000043761A/en
Application granted granted Critical
Publication of KR100401167B1 publication Critical patent/KR100401167B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Abstract

본 발명은 용접부 인성이 우수한 고강도강 및 제조방법에 관한 것으로, 강의 성분을 중량%로 C: 0.01%∼0.04%, Mn: 1.2%∼2.0%, Si: 0.1%∼0.3%, Al: 0.02%∼0.06%, Ti: 0.01∼0.03%, Nb: 0.04∼0.06%. V: 0.05∼0.07%, Mo: 0.15∼0.25%, sol_B: 0.001∼0.002, S: 0.002% 이하, P: 0.02% 이하, N: 10∼100ppm, O: 0.01%∼0.05%, Ca: 10∼100ppm, 나머지 Fe 및 기타 불가피한 불순원소로 조성하는 강의 슬라브를 1150∼1250℃의 온도범위에서 가열한 후 변태온도보다 100℃∼200℃ 높은 온도에서 압연을 종료한 후 가속냉각법으로 냉각하여 생산성을 향상시키는 것을 특징으로 하는, 용접부 저온인성이 특히 우수한 인장강도 70kgf/mm2급 강재의 제조방법에 관한 것을 그 요지로 한다.The present invention relates to a high-strength steel and a manufacturing method excellent in the toughness of the welded part, the composition of the steel by weight% C: 0.01% to 0.04%, Mn: 1.2% to 2.0%, Si: 0.1% to 0.3%, Al: 0.02% 0.06%, Ti: 0.01% to 0.03%, and Nb: 0.04% to 0.06%. V: 0.05 to 0.07%, Mo: 0.15 to 0.25%, sol_B: 0.001 to 0.002, S: 0.002% or less, P: 0.02% or less, N: 10 to 100 ppm, O: 0.01% to 0.05%, Ca: 10 to Improved productivity by heating slab of steel composed of 100ppm, remaining Fe and other unavoidable impurity elements in the temperature range of 1150 ~ 1250 ℃, finishing rolling at the temperature of 100 ℃ ~ 200 ℃ higher than transformation temperature, and then cooling by accelerated cooling method. The present invention relates to a method for producing a tensile strength 70 kgf / mm 2 grade steel having particularly good low-temperature toughness of welded portions.

Description

용접부 인성이 우수한 베이나이트계 고강도강 및 그 제조방법Bainite-based high strength steel with excellent weld toughness and manufacturing method

본 발명은 용접부 인성이 우수한 베이나이트계 고강도강 및 그 제조방법에 관한 것이고, 보다 상세하게는 후판 강재를 고온압연 및 급속냉각에 의해 제조함으로써 인장강도 70kgf/mm2이상을 유지하면서 -27℃에서의 용접부의 저온인성을 350J/cm 이상으로 확보될 수 있을 뿐만 아니라 생산성을 향상시킨 베이나이트계 고강도강 및 그 제조방법에 관한 것이다.The present invention relates to a bainite-based high strength steel having excellent weld toughness and a method of manufacturing the same, and more particularly, to fabricating a thick steel plate by high temperature rolling and rapid cooling, while maintaining a tensile strength of 70 kgf / mm 2 or more at -27 ° C. The low temperature toughness of the welded portion of 350J / cm or more, as well as to improve the productivity of the bainite-based high-strength steel and a method for manufacturing the same.

종래에는 인장강도 60kgf/mm2급 이상을 요구하는 고강도 구조용 강재는 C, Mn 및 미량원소들을 다량 함유시켜 강재의 강도를 높이거나 또는 강재의 가공시 후속공정인 용접시의 용접성을 개선하기 위하여 합금원소의 함유를 가급적 줄이고, 이에 따른 강도 저하는 급속냉각을 통한 미세조직의 제어를 통하여 보상하는 방법이 주로 이용되어 왔다.Conventionally, high-strength structural steels requiring a tensile strength of 60kgf / mm 2 or more alloy contain a large amount of C, Mn, and trace elements to increase the strength of the steel or to improve weldability during welding, which is a subsequent process in the processing of the steel. The method of compensating the content of the element as much as possible and thus reducing the strength through the control of the microstructure through rapid cooling has been mainly used.

한편, 극저탄소형 베이나이트 합금의 경우에는 압연후 급속냉각을 통하여 기저조직을 베이나이트로 만들어서 강도 및 용접성을 향상시키는 방법이 최근에 공지된 바 있다(대한민국 특허출원번호 제1997-73716호, 제1997-62741호). 그러나, 이러한 방법은 인장강도 60kgf/mm2정도의 수준을 보이고 있으며, 특히 바나듐 등을 다량 함유함으로써 용접부 인성이 취약한 단점을 갖고 있다.On the other hand, in the case of ultra-low carbon type bainite alloy, a method of improving the strength and weldability by making the base structure into bainite through rapid cooling after rolling has been recently known (Korean Patent Application No. 1997-73716, No. 1997-62741). However, this method shows a level of tensile strength of about 60kgf / mm 2 , and particularly has a disadvantage in that the weld part toughness is weak by containing a large amount of vanadium.

본 발명은 상기 문제점을 해결하기 위하여 안출된 것으로서, 기존에 공지된 극저 베이나이트 강의 합금성분 중 바나듐을 제외하여 용접부 인성을 향상시키고, 대신 붕소를 이용한 경화능 증대 효과를 극대화하여 강도의 증가를 도모함으로써, 용접부 인성이 우수한 인장강도 70kgf/mm2급 베이나이트계 고강도강 및 그 제조방법을 제공하고자 하는데 그 목적이 있다.The present invention has been made to solve the above problems, to improve the toughness of the weld by excluding vanadium of the conventionally known alloys of ultra-low bainite steel, instead of maximizing the effect of increasing the hardenability using boron to increase the strength by, in to provide a weld zone toughness of high tensile strength of 70kgf / mm 2 class bainite-based high strength steel and a method of manufacturing it is an object.

도 1은 본 발명강과 비교강의 항복강도 및 인장강도를 도시한 그래프.1 is a graph showing the yield strength and tensile strength of the present invention steel and comparative steel.

도 2는 본 발명강과 비교강의 용접 모사시편의 열영향부 인성 실험 결과를 도시한 그래프.Figure 2 is a graph showing the heat affected zone toughness test results of the weld simulation specimens of the present invention steel and comparative steel.

본 발명에 따르면, 상기 목적을 달성하기 위하여, 용접부 인성이 우수한 베이나이트계 고강도강은 중량%로 C : 0.01%∼0.04%, Mn : 1.2%∼2.0%, Si : 0.1%∼0.2%, Al : 0.02%∼0.06%, Ti : 0.01∼0.03%, Nb : 0.04∼0.06%. Mo : 0.15∼0.25%, sol_B(고용붕소) : 0.001∼0.002%, S : 0.002% 이하, P : 0.02% 이하, N : 10∼100ppm, O : 0.01%∼0.05%, Ca : 10∼100ppm, 나머지 Fe 및 기타 불가피한 불순물로 이루어진 것을 특징으로 한다.According to the present invention, in order to achieve the above object, the bainite-based high strength steel having excellent weld toughness is 0.01% to 0.04% by weight, Mn: 1.2% to 2.0%, Si: 0.1% to 0.2%, and Al. : 0.02% to 0.06%, Ti: 0.01 to 0.03%, Nb: 0.04 to 0.06%. Mo: 0.15 to 0.25%, sol_B (Soluble Boron): 0.001 to 0.002%, S: 0.002% or less, P: 0.02% or less, N: 10 to 100 ppm, O: 0.01% to 0.05%, Ca: 10 to 100 ppm, It is characterized by consisting of the remaining Fe and other unavoidable impurities.

또한, 본 발명은 다른 실시예에 따르면, 용접부 인성이 우수한 베이나이트계 고강도강 제조방법은 상기 조성으로 이루어진 강의 슬라브를 1150℃∼1250℃의 온도범위에서 가열하는 단계와; 변태온도(Ar3)보다 100℃∼200℃ 높은 온도에서 압연을 종료한 후 급속냉각하는 단계로 이루어져 치밀한 베이나이트 조직을 얻을 수 있는 것을 특징으로 한다.In addition, according to another embodiment of the present invention, a method for manufacturing bainite-based high strength steel having excellent weld toughness includes heating a slab of steel having the composition in a temperature range of 1150 ° C to 1250 ° C; After finishing rolling at a temperature of 100 ° C. to 200 ° C. higher than the transformation temperature Ar 3 , rapid cooling is performed to obtain a dense bainite structure.

이하, 본 발명의 실시예를 더욱 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in more detail.

본 발명에 따르면, 용접부 인성이 우수하고 인장강도 70kgf/mm2급인 베이나이트계 구조강은 중량%로 C : 0.01%∼0.04%, Mn : 1.2%∼2.0%, Si : 0.1%∼0.3%, Al : 0.02%∼0.06%, Ti : 0.01∼0.03%, Nb : 0.04∼0.06%. Mo : 0.15∼0.25%, sol_B(고용붕소) : 0.001∼0.002%, S : 0.002% 이하, P : 0.02% 이하, N : 10∼100ppm, O : 0.01%∼0.05%, Ca : 10∼100ppm, 나머지 Fe 및 기타 불가피한 불순물로 이루어집니다.According to the present invention, the bainite-based structural steel having excellent weld toughness and tensile strength of 70kgf / mm 2 has a weight% of C: 0.01% to 0.04%, Mn: 1.2% to 2.0%, Si: 0.1% to 0.3%, Al: 0.02% to 0.06%, Ti: 0.01 to 0.03%, Nb: 0.04 to 0.06%. Mo: 0.15 to 0.25%, sol_B (Soluble Boron): 0.001 to 0.002%, S: 0.002% or less, P: 0.02% or less, N: 10 to 100 ppm, O: 0.01% to 0.05%, Ca: 10 to 100 ppm, The rest is made of Fe and other unavoidable impurities.

또한, 본 발명의 다른 실시예에 따르면, 용접부 인성이 우수한 베이나이트계 고강도강의 제조방법은 상기와 같이 조성되는 강의 슬라브를 1150∼1250℃의 온도범위에서 가열시키고, 변태온도(Ar3)보다 100℃∼200℃ 높은 온도에서 압연을 종료하고, 급속냉각법으로 냉각한다.In addition, according to another embodiment of the present invention, the manufacturing method of the bainite-based high-strength steel with excellent weld toughness is heated to a slab of the steel is formed as described above in the temperature range of 1150 ~ 1250 ℃, 100 than the transformation temperature (Ar 3 ) Rolling is complete | finished at the temperature of C-200 degreeC high, and it cools by the rapid cooling method.

이하, 본 발명의 실시예에 따른 베이나이트계 고강도강의 성분한정 이유에 대하여 설명한다.Hereinafter, the reason for component limitation of the bainite-based high strength steel according to the embodiment of the present invention will be described.

강의 합금성분중, C의 함유량이 작은 경우 제2상 조직의 분율이 저하하여 강도가 저하된다. 그리고, C의 함유량이 많은 경우에 강의 강도는 증가하지만 충격 인성 특히 저온인성을 해치고 용접시의 용접성을 저하시킨다. 따라서, 본 발명에 따르면, C의 함유량은, 압연 후의 기지조직을 베이나이트로 만들고 제2상의 생성을 억제시키기 위하여, 0.04% 미만으로 극저 관리되지만, 베이나이크 기지상의 자체 강도가 저하되는 것을 방지하기 위하여 C의 최소 함유량을 0.01% 이상으로 유지한다. 따라서, C의 함유량을 0.01%∼0.04% 범위로 한정한다.If the content of C is small in the alloy component of the steel, the fraction of the second phase structure is lowered and the strength is lowered. When the C content is high, the strength of the steel is increased, but the impact toughness, especially low temperature toughness, is impaired and the weldability at the time of welding is lowered. Therefore, according to the present invention, the content of C is extremely low at less than 0.04% in order to make the base structure after rolling into bainite and suppress the formation of the second phase, but prevents the self strength of the bainike matrix from decreasing. In order to maintain the minimum content of C to 0.01% or more. Therefore, the content of C is limited to 0.01% to 0.04% of range.

Si은 제강시에 탈산제로 첨가되는 원소로서, 고용강화 효과 및 충격천이 온도를 향상시키기 위하여 0.1 % 이상 첨가되지만, 0.3%를 초과하여 첨가되면 강판표면에 산화 피막이 심하게 형성되어 용접성이 저하되므로, 그 함유량은 0.1∼0.3% 범위로 한정하는 것이다.Si is an element added as a deoxidizer during steelmaking, and is added in an amount of 0.1% or more to improve the solid solution strengthening effect and impact transition temperature, but when it is added in excess of 0.3%, an oxide film is severely formed on the surface of the steel sheet. Content is limited to 0.1 to 0.3% of range.

Mn은 S와 함께 연신된 비금속개재물인 MnS를 형성하여 상온연신율 및 저온인성을 저하시키므로 2.0% 이하로 관리하는 것이 바람직하나, 1.2% 미만으로 되면 강의 소입성을 저하시켜 공냉시에 베이나이트를 형성하기 어려워 강도 확보가 어려우므로, 그 함유량은 1.2∼2.0%로 제한한다.Since Mn forms MnS, a non-metallic inclusion drawn together with S, which lowers the normal temperature elongation and low temperature toughness, it is preferable to manage it at 2.0% or less. However, when Mn is less than 1.2%, bainite is formed during air cooling by reducing the hardenability. Since it is difficult to do it and it is difficult to secure strength, the content is limited to 1.2 to 2.0%.

Al은 제강시에 탈산제로 첨가되나, 0.06%를 초과하여 첨가되면 비금속 산화물인 Al2O3를 형성하여 충격인성을 저하시키고, 0.02% 미만으로 되면 제강시에 탈산효과를 기대할 수 없으므로, 그 함유량은 0.02∼0.06% 범위로 제한한다.Al is added as a deoxidizer during steelmaking, but when it is added in excess of 0.06%, Al 2 O 3 , a nonmetal oxide, is formed to lower impact toughness, and when it is less than 0.02%, deoxidation effect cannot be expected during steelmaking. Is limited to the range of 0.02% to 0.06%.

Ti은 강의 응고과정에서 TiN 석출물을 형성하여 주괴를 가열하는 동안에 결정립의 성장을 억제하고, 열간압연과정에서 재결정립의 성장을 억제함으로써, 강의결정립 미세화에 큰 역할을 하는 주요한 원소이다. 본 발명에 따르면, Ti의 적정 첨가량은 N의 함유량에 따라 변하게 되며, 질소(N)의 함유량에 비해 Ti의 함유량이 상대적으로 적으면, 즉 Ti의 함유량이 0.01%보다 적으면 형성되는 TiN의 양이 적어서 결정립을 미세화시키는데 불리하고, 반면 0.03%를 초과하여 과량으로 첨가되면 가열중 TiN이 조대해져서 결정립 성장 억제 효과가 감소하게 된다. 따라서 Ti의 함유량은 0.01∼0.03%로 한정한다.Ti is a major element that forms a TiN precipitate during the solidification process of steel and suppresses grain growth during heating of the ingot, and inhibits the growth of recrystallized grains during hot rolling, thereby playing a major role in grain refinement of steel. According to the present invention, the appropriate amount of Ti changes depending on the content of N, and the amount of TiN formed when the content of Ti is relatively small compared to the content of nitrogen (N), that is, the content of Ti is less than 0.01%. This amount is disadvantageous for miniaturizing the grains, whereas when excessively added in excess of 0.03%, TiN becomes coarse during heating, thereby reducing the effect of inhibiting grain growth. Therefore, content of Ti is limited to 0.01 to 0.03%.

Nb은 오스테나이트에 고용되어 오스테나이트의 경화능을 증대시키고, 기지(Matrix)와 정합을 이루는 탄질화물[Nb(C, N)]로 석출되어 강의 강도를 증가시키는 중요한 원소이다. 본 발명에 따르면, 베이나이트 기지 조직의 형성에 의하여 강도 및 저온인성이 우수한 강을 제조할 때, 경화능을 증진시키기 위해서는 Nb을 다량 함유시키는 것이 중요하지만, Nb가 0.06%를 초과하여 첨가되어도 이러한 효과를 증대시키지 않고 페라이트 내에 고용된 상태로 존재하여 충격인성을 저하시킬 위험이 있고 용접성을 저하시킬 수도 있다. 그리고, Nb이 0.04% 미만으로 첨가되면 경화능 증진효과가 저감된다. 따라서, Nb의 함유량은 0.04%∼0.06%로 제한된다.Nb is an important element that is dissolved in austenite to increase the hardenability of austenite and precipitates as carbonitride [Nb (C, N)] matching with matrix (Matrix) to increase the strength of steel. According to the present invention, when producing a steel having excellent strength and low temperature toughness by forming bainite matrix, it is important to contain a large amount of Nb in order to enhance the hardenability, even if Nb is added in excess of 0.06% It exists in the solid solution state in a ferrite without augmenting an effect, and there exists a danger of reducing impact toughness, and can also reduce weldability. And, when Nb is added less than 0.04%, the effect of improving hardenability is reduced. Therefore, content of Nb is restrict | limited to 0.04%-0.06%.

B은 기지조직에 고용되어 있을때(sol_B: 고용붕소) 경화능을 증대시킬 뿐만 아니라 입계에 편석하여 입계의 결합력을 증진시키는 것으로 알려져 있다. 이는 입계를 따라 파단이 진전되는 인성 파괴 특성을 보이는 강에서의 저온인성을 증진시키는 데 sol_B가 큰 기여를 하기 때문이다. 즉, sol_B을 0.001% 이상으로 함유시키는 것이 필요하다. 그러나, sol_B의 함유량이 0.002%를 초과하여 첨가되면 입계를 오히려 취화시킨다. 따라서, sol_B의 함유량을 0.001%∼0.002%의 범위로 제한한다.경화능을 극대화하기 위한 붕소의 함유량은 강 전체의 함유된 붕소량을 의미하지 않고 기지조직에 고용되어 있는 sol_B의 함유량을 의미한다.B is known not only to increase the hardenability when it is employed in the matrix structure (sol_B: boron solid solution) but also to segregate at the grain boundary to enhance the binding force of the grain boundary. This is because sol_B makes a great contribution to improving low temperature toughness in steels with toughness fracture properties where fracture propagates along grain boundaries. That is, it is necessary to contain sol_B at 0.001% or more. However, when the content of sol_B exceeds 0.002%, the grain boundary becomes rather brittle. Therefore, the content of sol_B is limited to the range of 0.001% to 0.002%. The content of boron for maximizing the hardenability does not mean the amount of boron contained in the entire steel but the content of sol_B dissolved in the matrix structure. .

한편, 고용붕소(sol_B)의 함유량은 하기 식 1에 나타난 바와 같이 Ti와 N의 함유양에 의해 결정된다. 즉, 제강공정 중에서 Ti와 N의 함유량은 기존의 기술로 제어할 수 있으므로, 하기 식(1)에 따라 sol_B의 양을 상기의 조성범위에 맞게 제조할 수 있다.On the other hand, the content of boron solid solution (sol_B) is determined by the content of Ti and N, as shown in Equation 1 below. That is, since the content of Ti and N in the steelmaking process can be controlled by the existing technology, the amount of sol_B can be manufactured according to the composition range according to the following formula (1).

Mo는 경화능을 증진시켜 페라이트 변태를 억제함으로써 기지조직을 베이나이트 조직으로 만드는데 필수적인 원소이나, 0.25%를 초과하여 함유하면 Mo-C 석출물이 형성되어 입계를 취화시키고, C에 의한 냉각능 또한 저하시키며, 0.15% 미만으로 함유되면 경화능 확보가 어렵다. 따라서, Mo의 함유량은 0.15∼0.25% 범위로 제한한다.Mo is an essential element to make the matrix structure into bainite structure by enhancing the hardenability and suppressing ferrite transformation, but when it contains more than 0.25%, Mo-C precipitates are formed to embrittle grain boundaries, and the cooling ability by C is also lowered. If less than 0.15% is contained, it is difficult to secure hardenability. Therefore, the content of Mo is limited to the range of 0.15 to 0.25%.

P는 충격인성에 특히 나쁜 원소로서 함유량이 낮으면 낮을수록 좋으나 제강과정에서 피할 수 없는 원소이므로 물성에 해로운 영향을 끼치지 않도록 그 함유량은 0.02% 이하로 제한한다.P is an element that is particularly bad for impact toughness. The lower the content, the better. However, P is inevitable in steelmaking, so the content is limited to 0.02% or less so as not to adversely affect the physical properties.

S는 MnS의 비금속 개재물로 존재하여 열간압연에 의하여 길게 연신되어 강판 물성의 이방성을 조장하고 충격인성을 저하시키므로, 그 함유량은 0.002% 이하로 제한한다.S is present as a non-metallic inclusion of MnS and is elongated by hot rolling to promote anisotropy of steel sheet properties and to lower impact toughness. Therefore, the content is limited to 0.002% or less.

상기 합금 성분 외에 다른 합금 성분으로서, N, O 및 Ca은 일반 구조용 강재의 경우 통상 함유되는 성분으로서, 그들의 함유량은 통상의 범위, 즉 N : 10∼100ppm, O : 0.01%∼0.05%, Ca : 10∼100ppm으로 제한한다.As other alloy components in addition to the alloy components, N, O and Ca are components commonly contained in the case of general structural steels, and their contents are in a conventional range, that is, N: 10 to 100 ppm, O: 0.01% to 0.05%, and Ca: Limited to 10 to 100 ppm.

이하, 본 발명에 따른 베이나이트계 고강도강의 열간압연조건 및 냉각조건에 대해 보다 상세히 설명한다.Hereinafter, hot rolling conditions and cooling conditions of the bainite-based high strength steel according to the present invention will be described in more detail.

본 발명에 따르면, 상기와 같이 조성되는 강의 슬라브를 1150℃∼1250℃의 온도 범위에서 가열한 후, 재결정 영역에서 열간압연하고, 열간압연을 변태온도(Ar3) + 100℃∼200℃의 온도범위에서 종료한 압연판을 냉각속도 7~15℃/sec로 급냉시킨다.According to the present invention, after heating the slab of the steel composition as described above in the temperature range of 1150 ℃ 1250 ℃, hot rolling in the recrystallization region, hot rolling is transformed temperature (Ar 3 ) + 100 ℃ ~ 200 ℃ The rolled sheet finished in the range is quenched at a cooling rate of 7 to 15 ° C / sec.

상기와 같이 조성되는 저합금강의 슬라브를 열간압연하기 전에 1150 ∼ 1250℃의 온도범위에서 가열해 주게 되는데, 그 이유는 다음과 같다.Before hot-rolling the slab of the low alloy steel is formed as described above is heated in the temperature range of 1150 ~ 1250 ℃, the reason is as follows.

Nb를 오스테나이트 중에 용해된 상태로 존재하도록 하고, 이 Nb에 의한 경화능 증가로 생기는 변태온도의 강하로 페라이트를 미세화시키는 것이 강도 및 저온 인성 향상을 위하여 주요한 점이다. 즉, 슬라브 상태에서는 Nb가 C와 결합하여 탄화물 NbC로 존재하며, 따라서 열간압연전에 슬라브를 1150℃ 이상으로 가열하면 NbC가 용해되어 Nb는 원자상태로 존재하도록 해야 하며, 단 가열 온도가 1250℃를 초과하는 경우에는 오스테나이트 입자가 너무 조대화되고, 강중에 델타 페라이트(δ-ferrite)가 일부 생성되어 강판의 성질을 열화시킨다. 따라서, 슬라브 가열온도는 1150∼1250℃ 범위로 제한한다.It is important to make Nb exist in a dissolved state in austenite, and to refine the ferrite with the drop in transformation temperature caused by the increase in the hardenability by Nb, thereby improving strength and low temperature toughness. That is, in the slab state, Nb is combined with C to exist as carbide NbC. Therefore, when the slab is heated to 1150 ° C or higher before hot rolling, NbC must be dissolved and Nb exists in an atomic state, provided that the heating temperature is 1250 ° C. If exceeded, the austenite particles become too coarse and some delta ferrite (δ-ferrite) is formed in the steel, which degrades the properties of the steel sheet. Therefore, slab heating temperature is limited to the range of 1150 ~ 1250 ℃.

상기 가열온도로 가열된 주괴는 재결정영역에서 열간압연한다.압연종료온도(T5)는 강도 이외에도 저온인성에 밀접한 연관이 있으므로 특히 엄격하게 관리하여야 할 지표이다. 예를들어, 종래의 급속냉각강의 경우에는 하기 식 2로 표현되는 변태온도(Ar3)를 기준으로 ±30℃ 정도에서 압연을 종료하였다. 이는 압연종료온도(T5)가 너무 높으면 연성, 저온인성 등은 우수하지만 강도가 저하되고, 압연종료온도가 너무 낮으면 이상역 압연이 발생하여 연신된 페라이트와 퍼얼라이트가 존재하고 퍼얼라이트 밴드가 형성되어 연성 및 저온인성을 매우 저하시키기 때문이었다.The ingot heated to the heating temperature is hot rolled in the recrystallization zone. The rolling finish temperature (T5) is closely related to low temperature toughness in addition to strength, and thus is an index to be particularly strictly managed. For example, in the case of the conventional rapid cooling steel, the rolling was finished at about ± 30 ° C based on the transformation temperature (Ar 3 ) represented by the following formula (2). If the rolling end temperature (T5) is too high, the ductility, low temperature toughness, etc. is excellent, but the strength is lowered. If the rolling end temperature is too low, abnormal reverse rolling occurs, the stretched ferrite and perlite are present, and the pearlite band is formed. This is because the ductility and low temperature toughness are greatly reduced.

그러나, 본 발명의 특징은 종래 기술과는 달리 보다 더 고온에서 압연을 종료함으로써 생산성을 25% 정도 향상시킨 강재의 제조방법을 제공하는데에도 있다. 이는 압연종료온도를 상기 식 2로 표현되는 변태온도(Ar3)보다 100℃ 이상의 온도로 유지하여 공냉 후의 미세조직을 베이나이트화 시킬 수 있기 때문이다. 한편, 압연 종료온도가 Ar3+ 200℃를 초과하면 오스테나이크가 조대화되어 입도의 미세화가 저지되어 강도가 저하된다.However, a feature of the present invention is also to provide a method for producing a steel material which improves productivity by about 25% by finishing rolling at a higher temperature, unlike the prior art. This is because it is possible to bainize the microstructure after the air cooling by maintaining the end temperature of the rolling at a temperature of 100 ℃ or more than the transformation temperature (Ar 3 ) represented by the formula (2). On the other hand, when the rolling end temperature exceeds Ar 3 + 200 ° C, the austenite becomes coarse and fineness of the particle size is prevented and the strength is lowered.

따라서, 본 발명에서는 압연종료온도를 Ar3온도보다 100℃~200℃ 정도 높은 온도범위로 한정한다.Therefore, in the present invention, the rolling end temperature is limited to a temperature range of about 100 ° C to 200 ° C higher than the Ar 3 temperature.

압연 후에는 물을 이용하여 급속냉각하는 냉각단계를 거친다. 이때, 냉각속도는 베이나이트 조직이 조성될 수 있도록 경화능을 증가시키기 위하여 7℃/sec 이상으로 유지한다. 한편, 냉각속도가 15℃/sec를 초과하면 마르텐사이트가 생성되어 인성이 저하된다. 따라서, 냉각속도는 7~15℃/sec로 유지한다.After rolling, a cooling step of rapid cooling using water is performed. At this time, the cooling rate is maintained at 7 ℃ / sec or more to increase the hardenability so that the bainite structure can be formed. On the other hand, when the cooling rate exceeds 15 ° C / sec, martensite is produced and the toughness is lowered. Therefore, the cooling rate is maintained at 7 ~ 15 ℃ / sec.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예)(Example)

하기 [표 1]과 같이 조성되는 합금강의 슬라브를 제작하였는데, 개발강 A는 본 발명의 성분 범위를 만족하는 강이고, 기존강 B는 기 출원된 기술(대한민국 특허출원번호 제1997-73716호)에 의해 제조된 성분이다.To produce a slab of alloy steel composition as shown in Table 1, the development steel A is a steel that satisfies the component range of the present invention, the existing steel B is a previously filed technology (Korean Patent Application No. 1997-73716) It is a component manufactured by.

하기 합금 성분 이외에 다른 합금성분으로서, Al, S, P, N, O 및 Ca은 일반 구조용 강재의 경우 통상 함유되는 성분으로서, 그들의 함유량은 통상의 범위, 즉 Al : 0.02~0.06%, S : 0.002% 이하, P : 0.02% 이하, N : 10∼100ppm, O : 0.01%∼0.05%, Ca : 10∼100ppm 범위로 한정한다.As alloy components other than the following alloy components, Al, S, P, N, O and Ca are components commonly contained in the case of general structural steels, and their contents are in a conventional range, that is, Al: 0.02 to 0.06%, S: 0.002 % Or less, P: 0.02% or less, N: 10 to 100 ppm, O: 0.01% to 0.05%, and Ca: 10 to 100 ppm.

[표 1]TABLE 1

발명강과 비교강의 조성 차이는 다음과 같다.The difference in composition between the inventive steel and the comparative steel is as follows.

즉, 발명강은 용접부 인성을 향상시키기 위하여, 비교강에 비하여 V을 함유하고 있지 않는다. 대신 기지에 고용되어 있는 sol_B의 양을 10ppm 이상으로 증가시킴으로써 소입성을 향상시켜 베이나이트 변태를 촉진시킨다.That is, the invention steel does not contain V in comparison with the comparative steel in order to improve welded toughness. Instead, it increases the hardenability by increasing the amount of sol_B dissolved in the base to 10 ppm or more, thereby promoting bainite transformation.

상기 [표 1]의 두 개 강종 슬라브를 두 부분으로 나누어 압연종료온도를 950℃, 850℃ 등으로 제어하여 압연하였으며, 압연된 판재는 급속냉각하였는데, 압연 조건 및 냉각조건은 하기 [표 2]에 나타내었다.The two steel grade slabs of [Table 1] were divided into two parts, and the rolling finish temperature was controlled by 950 ° C., 850 ° C., etc., and the rolled plate was rapidly cooled, and rolling conditions and cooling conditions are shown in the following [Table 2]. Shown in

[표 2]TABLE 2

상기 [표 2]에 보인 4종류의 압연판(A 및 B : 성분강종을 구분하고, 950℃ 및 850℃ : 압연종료온도를 의미함) 대한 인장실험 결과를 도 1에 보였다.Tensile test results for the four kinds of rolled plates (A and B: component steel types and 950 ° C. and 850 ° C .: rolling end temperature) shown in [Table 2] are shown in FIG. 1.

압연종료온도와는 거의 무관하게 기존강은 항복강도 52kgf/mm2, 인장강도 60kgf/mm2정도의 강도를 보인 반면 발명강의 경우는 이보다 10kgf/mm2정도 상회하여 항복강도 60kgf/mm2, 인장강도 70kgf/mm2정도인 것을 알 수 있다. 그리고, 인장강도 70kgf/mm2정도의 고강도강은 기존의 비열처리강에서는 구현할 수 없는 고강도강으로써, 본 발명강은 열처리를 생략하고 기지조직을 베이나이트로 제어하여 고강도를 얻을 수 있는 특유한 효과가 있다.Yield strength 52kgf / mm for existing steels, almost independent of rolling end temperature2Tensile strength 60kgf / mm2Intensity of 10kgf / mm in the case of invention steel2Yield strength 60kgf / mm above2, Tensile Strength 70kgf / mm2It is understood that it is degree. And 70kgf / mm tensile strength2High-strength steel of the degree is a high-strength steel that can not be implemented in the existing non-heat treatment steel, the present invention has a peculiar effect of eliminating heat treatment and controlling the base structure to bainite to obtain high strength.

또한, 기존의 페라이트+퍼얼라이트 강에서는 압연종료온도가 증가함에 따라 강도가 저하하므로, 그 강도를 유지하기 위해서는 압연종료온도를 800℃ 이하로 낮추어야 하는 어려움이 있었으나, 본 발명강과 같은 베이나이트 조직강은 강도가 압연종료온도에 거의 영향을 받지 않으므로 고온에서 압연을 마무리할 수 있는 장점이 있으므로 생산단가 측면에서도 매우 유리한 강종이다.In addition, in the conventional ferritic + perlite steel, the strength decreases as the rolling end temperature increases, but in order to maintain the strength, the rolling end temperature has to be lowered to 800 ° C. or lower, but the bainite structured steel such as the present invention steel Since the strength is hardly influenced by the end temperature of rolling, it is very advantageous in terms of production cost since it has the advantage of finishing rolling at a high temperature.

구조용 후판재에 필요한 물성은 강도와 저온인성이다. 특히, 후판재는 항시 후속공정에서 용접을 시공하게 되는데, 주로 구조물의 파단이 용접부에서 발생하게 되므로 후판재의 용접부 저온인성은 강재의 물성을 평가하는데 주요한 비교 항목이다. 용접부 물성을 평가하는데는 실제 용접 후의 열영향부를 채취하여 저온인성을 평가하는 방법과 실험적으로 용접 열싸이클을 재현한 시편의 열영향부의 저온인성을 비교하는 방법이 있다.Physical properties required for structural thick plates are strength and low temperature toughness. In particular, the thick plate is always welded in a subsequent process, mainly because the fracture of the structure occurs in the weld, the low temperature toughness of the weld portion of the thick plate is a major comparison item in evaluating the properties of the steel. There are two methods for evaluating the weld properties: a method of evaluating the low temperature toughness by collecting the heat affected zone after the actual welding and a comparison of the low temperature toughness of the heat affected zone of the test specimen which reproduces the welding heat cycle experimentally.

본 실시예에서는 후자의 경우로서, 실제 후판재 용접에 주로 이용되는 잠호아아크 용접법을 가정하여 입열량 42.5kj/cm로 용접하였을 때의 용접 열영향부의 저온인성을 시험하였다. 도 2에 발명강과 기존강의 차피충격 시험값을 시험온도에 대하여 도시하였다. 기존강은 상온에서는 300J/cm의 값을 가지지만 0℃ 이하에서는 충격값이 급격히 감소하여 50J/cm 정도의 값을 보인 반면 발명강은 -27℃ 까지도 350J/cm의 높은 충격값을 보임을 알 수 있다.In the present example, the low temperature toughness of the weld heat affected zone when the weld heat was welded at a heat input amount of 42.5 kJ / cm was tested assuming a late arc arc welding method, which is mainly used for welding thick plates. In FIG. 2, the test value for the impact resistance of the inventive steel and the existing steel is shown with respect to the test temperature. Existing steels have a value of 300J / cm at room temperature, but the impact value rapidly decreases below 0 ℃, showing a value of about 50J / cm, while the inventive steel shows a high impact value of 350J / cm even at -27 ℃. Can be.

상기한 바와 같이, 본 발명에 의하면, 미량의 합금원소를 조정하고 고온압연 및 급속냉각법을 이용하여 인장강도 70kgf/mm2급을 만족하고, 용접부 저온인성이 350J/cm 정도로 우수한 강재를 제조할 수 있는 효과를 가진다.As described above, according to the present invention, by adjusting a small amount of alloying elements and using a high temperature rolling and rapid cooling method, it is possible to produce a steel that satisfies the tensile strength of 70kgf / mm 2 grade, and excellent weld temperature low-temperature toughness of about 350 J / cm Has the effect.

Claims (3)

중량%로 C : 0.01%∼0.04%, Mn : 1.2%∼2.0%, Si : 0.1%∼0.2%, Al : 0.02%∼0.06%, Ti : 0.01%∼0.03%, Nb : 0.04%∼0.06%. Mo : 0.15∼0.25%, sol_B(고용붕소) : 0.001%∼0.002%, S : 0.002% 이하, P : 0.02% 이하, N : 10∼100ppm, O : 0.01%∼0.05%, Ca : 10∼100ppm, 나머지 Fe 및 기타 불가피한 불순물로 이루어진 것을 특징으로 하는 용접부 인성이 우수한 베이나이트계 고강도강.% By weight C: 0.01% to 0.04%, Mn: 1.2% to 2.0%, Si: 0.1% to 0.2%, Al: 0.02% to 0.06%, Ti: 0.01% to 0.03%, Nb: 0.04% to 0.06% . Mo: 0.15 to 0.25%, sol_B (Soluble Boron): 0.001% to 0.002%, S: 0.002% or less, P: 0.02% or less, N: 10 to 100 ppm, O: 0.01% to 0.05%, Ca: 10 to 100 ppm , Bainite-based high strength steel excellent in weldability, characterized in that the remaining Fe and other unavoidable impurities. 중량%로 C : 0.01%∼0.04%, Mn : 1.2%∼2.0%, Si : 0.1%∼0.2%, Al : 0.02%∼0.06%, Ti : 0.01%∼0.03%, Nb : 0.04%∼0.06%. Mo : 0.15∼0.25%, sol_B(고용붕소) : 0.001%∼0.002%, S : 0.002% 이하, P : 0.02% 이하, N : 10∼100ppm, O : 0.01%∼0.05%, Ca : 10∼100ppm, 나머지 Fe 및 기타 불가피한 불순물로 이루어진 용접부 인성이 우수한 베이나이트계 고강도강의 제조방법에 있어서,% By weight C: 0.01% to 0.04%, Mn: 1.2% to 2.0%, Si: 0.1% to 0.2%, Al: 0.02% to 0.06%, Ti: 0.01% to 0.03%, Nb: 0.04% to 0.06% . Mo: 0.15 to 0.25%, sol_B (Soluble Boron): 0.001% to 0.002%, S: 0.002% or less, P: 0.02% or less, N: 10 to 100 ppm, O: 0.01% to 0.05%, Ca: 10 to 100 ppm In the manufacturing method of the bainite-based high-strength steel having excellent weld toughness made of the remaining Fe and other unavoidable impurities, 상기 조성의 슬라브를 1150℃∼1250℃의 온도범위에서 가열하는 단계와;Heating the slab of the composition in a temperature range of 1150 ° C to 1250 ° C; 변태온도(Ar3)보다 100℃∼200℃ 높은 온도에서 압연을 종료한 후 급속냉각하는 단계로 이루어지고,After the end of the rolling at a temperature higher than the transformation temperature (Ar 3 ) 100 ℃ ~ 200 ℃ consists of a rapid cooling step, 상기 변태온도(Ar3)는 하기 식,The transformation temperature (Ar 3 ) is the following formula, 으로 표현되는 것을 특징으로 하는 용접부 인성이 우수한 베이나이트계 고강도강의 제조방법.Method for producing a bainite-based high strength steel excellent in weldability toughness, characterized in that represented by. 제2항에 있어서,The method of claim 2, 상기 급속냉각에서 냉각속도를 7℃/sec∼15℃/sec 범위오 조절하는 것을 특징으로 하는 용접부 인성이 우수한 베이나이트계 고강도강의 제조방법.The method of manufacturing bainite-based high strength steel having excellent weld toughness, characterized in that the cooling rate in the rapid cooling range 7 ℃ / sec ~ 15 ℃ / sec.
KR10-1998-0060182A 1998-12-29 1998-12-29 Bainite-based high strength steel with excellent weld toughness and manufacturing method KR100401167B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0060182A KR100401167B1 (en) 1998-12-29 1998-12-29 Bainite-based high strength steel with excellent weld toughness and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0060182A KR100401167B1 (en) 1998-12-29 1998-12-29 Bainite-based high strength steel with excellent weld toughness and manufacturing method

Publications (2)

Publication Number Publication Date
KR20000043761A KR20000043761A (en) 2000-07-15
KR100401167B1 true KR100401167B1 (en) 2003-12-31

Family

ID=19567017

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0060182A KR100401167B1 (en) 1998-12-29 1998-12-29 Bainite-based high strength steel with excellent weld toughness and manufacturing method

Country Status (1)

Country Link
KR (1) KR100401167B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950703661A (en) * 1993-08-04 1995-09-20 미노루 다나까 HIGH TENSILE STEEL HAVING SUPERIOR FATIGUE STRENGTH AND WELDABILITY AT WELDS AND METHOD FOR MANUFACTURING THE SAME
KR970065742A (en) * 1996-03-18 1997-10-13 에모토 간지 Manufacturing method of high strength high toughness thick steel with low material dispersion and excellent weldability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950703661A (en) * 1993-08-04 1995-09-20 미노루 다나까 HIGH TENSILE STEEL HAVING SUPERIOR FATIGUE STRENGTH AND WELDABILITY AT WELDS AND METHOD FOR MANUFACTURING THE SAME
KR970065742A (en) * 1996-03-18 1997-10-13 에모토 간지 Manufacturing method of high strength high toughness thick steel with low material dispersion and excellent weldability

Also Published As

Publication number Publication date
KR20000043761A (en) 2000-07-15

Similar Documents

Publication Publication Date Title
US5876521A (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
WO1999002747A1 (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
US6454881B1 (en) Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP6492862B2 (en) Low temperature thick steel plate and method for producing the same
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
KR20070116561A (en) Steel sheets having superior haz toughness and reduced lowering of strength by post weld heat treatment
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
CN104099515B (en) A kind of steel, its heat treatment steel formed and manufacture method thereof
JP2007191785A (en) Method for manufacturing high-tensile steel material superior in weld cracking resistance
KR100401167B1 (en) Bainite-based high strength steel with excellent weld toughness and manufacturing method
KR100325714B1 (en) A bainitic steel with good low temperature toughness and a method of manufacturing thereof
KR910003883B1 (en) Making process for high tension steel
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
CN114341386B (en) Steel material excellent in strength and low-temperature impact toughness and method for producing same
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method
KR970009089B1 (en) Method for manufacturing a hot rolled steel sheet
KR100368241B1 (en) A method for manufacturing hot rolled trip steels with excellent flange formability
KR100311791B1 (en) METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART
KR100273948B1 (en) The manufacturing method of hot rolling transformation organicplasticity steel with excellent tensile strength
KR100363191B1 (en) The method of manufacturing linepipe steel with good formability
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JP3956634B2 (en) Steel sheet with excellent toughness and method for producing the same
JP3692565B2 (en) Method for producing B-added high-strength steel
KR100276312B1 (en) The manufacturing method of 80kg grade direct quenching type high strength steel sheet with excellent toughness

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120831

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130917

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140919

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150916

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160920

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170905

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee