JPH0572713B2 - - Google Patents

Info

Publication number
JPH0572713B2
JPH0572713B2 JP59262108A JP26210884A JPH0572713B2 JP H0572713 B2 JPH0572713 B2 JP H0572713B2 JP 59262108 A JP59262108 A JP 59262108A JP 26210884 A JP26210884 A JP 26210884A JP H0572713 B2 JPH0572713 B2 JP H0572713B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
pressure
battery
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59262108A
Other languages
Japanese (ja)
Other versions
JPS61140075A (en
Inventor
Nobuyuki Yanagihara
Hiroshi Kawano
Munehisa Ikoma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59262108A priority Critical patent/JPS61140075A/en
Publication of JPS61140075A publication Critical patent/JPS61140075A/en
Publication of JPH0572713B2 publication Critical patent/JPH0572713B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、負極活性質の水素を可逆的に吸蔵・
放出する合金を利用した水素吸蔵電極を負極とす
るアルカリ蓄電池の製造方法に関する。 従来の技術 一般にある種の水素吸蔵合金は、アルカリ溶液
中で電気化学的に水素を吸蔵・放出する性質が有
するので、水素吸蔵電極として利用することがで
きる。従来、この電極の放電容量を向上させるた
めに、水素の吸蔵と放出を繰り返し、水素化によ
り微砕化した合金粉末を用いて電極とする方法
(特開昭53−103910)が提案された。この方法に
よれば、初期放電容量の優れた電極が得られる。 発明が解決しようとする問題点 上記の方法では、水素化後の合金粉末を電極と
して仕上げる際、酸化防止対策などの問題から製
造工程が煩雑となつていた。また得られた電極も
充、放電サイクル寿命が短いなどの欠点を有して
いる。そこで、本発明者らは、水素吸蔵合金とそ
の水素化物とを混合して電極を作る方法(特願昭
59−171819号)を提案した。この方法により充、
放電サイクル寿命の点において改良されたが、水
素吸蔵合金を水素化する工程及び、電極を製造す
る工程においては前者と同じ問題点を持つてい
る。 本発明は、上記のような製造工程の煩雑さを解
消するとともに水素吸蔵電極の放電容量、サイク
ル寿命を改善して、性能のすぐれたアルカリ蓄電
池を提供することを目的とする。 問題点を解決するための手段 本発明は、水素平衡圧力の異なる2種以上の水
素吸蔵合金粉末を保有する負極をセパレータ、正
極とともに電槽内に入れ、前記水素平衡圧力の低
い水素吸蔵合金の水素吸蔵圧力以上で、しかも前
記水素平衡圧力の高い水素吸蔵合金の水素吸蔵圧
力未満の水素雰囲気中で水素化と活性化を同時に
行なうのである。 作 用 本発明は、上記のように水素吸蔵電極をセパレ
ータ及び正極と組合せて電槽内に入れてから圧力
制御された水素雰囲気で水素吸蔵電極中の水素成
衡圧力の低い水素吸蔵合金を水素化し、水素平衡
圧力の高い水素吸蔵合金を水素活性化するので、
製造工程が簡易になるとともに、電気化学的な水
素の吸蔵・放出性能が優れ、サイクル寿命の伸長
ができる。また、水素化合金を未水素化合金が包
囲した電極となり、さらに電槽中に密着して入つ
ているため大気中に触れる部分も少なく、酸化等
の反応を弱める役目もある。また、電池を組立て
る時に負極の合金が脱落することがないので短絡
等の不良もなくなる。 実施例 水素平衡圧力の高い水素吸蔵合金として
MmNi2.5Co2.5(Mm:希土類金属の混合物)、水
素平衡圧力の低い水素吸蔵合金としてLaNi3Co2
をそれぞれ用いる。これらの合金は、アルゴン雰
囲気のドライボツクス中で粉砕し、篩分けして
300メツシユ通過の粉末とした。そして水素平衡
圧力の高い合金の割合が40重量%となるように両
者を混合した。この混合粉末に結着剤としてフツ
素樹脂の水分散液を固形分で5重量%程混合して
ペースト状となし、これをニツケルの発泡状多孔
体に加圧充填し、常温で減圧乾燥して負極とし
た。この負極にセパレータと公知の酸化ニツケル
正極とを組合せて電槽内に入れた。この開放状態
にある電池を密閉容器内に入れ、排気後20℃で2
気圧の水素圧力を印加した。なお、20℃における
MmNi2.5Co2.5の水素吸蔵圧力は3気圧、
LaNi3Co2の水素吸蔵圧力は0.5気圧である。 上記のようにして水素平衡圧力の低い
LaNi3Co2のみ水素化し、水素平衡圧力の高い
MmNi2.5Co2.5は活性化した。ここで活性化とは
水素は未吸蔵、表面にのみ水素が吸着し、又は表
面の一部を還元し、活性の状態を作ることを云
う。この様に極板群を構成した状態で水素化と活
性化を行つた。 そして負極の大きさ40×50mm、圧さ1.5mmとし、
合金混合粉末の充填量は約5g、1枚当りの容量
は約1.25Ahとし、この負極板6枚と約1.0Ahのニ
ツケル正極6枚とを用い電解液量を適量加えて
6Ah相当のアルカリ蓄電池を構成した。この電池
をAとする。この電池の放電は正極律速で、最終
電圧1.0Vとして充放電した結果を説明する。 比較例として、水素吸蔵としてFaNi3Co2のみ
を用い、これをすべて水素化して構成した負極を
用いた以外は電池Aと同等としたアルカリ蓄電池
をBとし、LaNi3Co2とMmNi2.5Co2.5の粉末を前
記電池Aの60:40の重量比で混合した負極から
50:50の重量比で混合した負極に変えた以外の電
池をCとした。これらの電池を1.2Ahで充放電し
たときの初期容量と100サイクル後の容量を次表
に示す。
Industrial Application Field The present invention reversibly absorbs and absorbs hydrogen in the negative electrode active material.
The present invention relates to a method for manufacturing an alkaline storage battery using a hydrogen storage electrode as a negative electrode using a desorbing alloy. BACKGROUND ART In general, certain hydrogen storage alloys have the property of electrochemically storing and releasing hydrogen in an alkaline solution, and therefore can be used as hydrogen storage electrodes. Conventionally, in order to improve the discharge capacity of this electrode, a method was proposed (Japanese Unexamined Patent Publication No. 103910/1983) using an alloy powder made by pulverizing it by hydrogenation by repeatedly absorbing and desorbing hydrogen. According to this method, an electrode with excellent initial discharge capacity can be obtained. Problems to be Solved by the Invention In the above method, when finishing the hydrogenated alloy powder as an electrode, the manufacturing process is complicated due to problems such as measures to prevent oxidation. The obtained electrode also has shortcomings such as short charge and discharge cycle life. Therefore, the present inventors developed a method for making electrodes by mixing a hydrogen-absorbing alloy and its hydride.
59-171819). By this method,
Although the discharge cycle life has been improved, the process of hydrogenating the hydrogen storage alloy and the process of manufacturing the electrode have the same problems as the former. An object of the present invention is to provide an alkaline storage battery with excellent performance by eliminating the complexity of the manufacturing process as described above and improving the discharge capacity and cycle life of the hydrogen storage electrode. Means for Solving the Problems The present invention provides a method for placing a negative electrode containing two or more types of hydrogen storage alloy powders having different hydrogen equilibrium pressures in a battery case together with a separator and a positive electrode, Hydrogenation and activation are simultaneously carried out in a hydrogen atmosphere at a pressure higher than the hydrogen storage pressure and lower than the hydrogen storage pressure of the hydrogen storage alloy having the high hydrogen equilibrium pressure. Effects of the present invention As described above, after a hydrogen storage electrode is combined with a separator and a positive electrode and placed in a battery case, a hydrogen storage alloy having a low hydrogen equilibrium pressure in the hydrogen storage electrode is heated in a pressure-controlled hydrogen atmosphere. , and activates hydrogen storage alloys with high hydrogen equilibrium pressure.
In addition to simplifying the manufacturing process, it has excellent electrochemical hydrogen storage and release performance, and can extend cycle life. In addition, since the electrode is a hydrogenated alloy surrounded by an unhydrogenated alloy and is placed closely in the battery case, there is little contact with the atmosphere, which also serves to weaken reactions such as oxidation. Furthermore, since the negative electrode alloy does not fall off when assembling the battery, defects such as short circuits are eliminated. Example: As a hydrogen storage alloy with high hydrogen equilibrium pressure
MmNi 2.5 Co 2.5 (Mm: mixture of rare earth metals), LaNi 3 Co 2 as a hydrogen storage alloy with low hydrogen equilibrium pressure
are used respectively. These alloys are ground in a dry box under an argon atmosphere and sieved.
It was made into a powder that passed 300 meshes. The two were then mixed so that the proportion of the alloy with high hydrogen equilibrium pressure was 40% by weight. This mixed powder is mixed with an aqueous dispersion of fluororesin as a binder at a solid content of approximately 5% by weight to form a paste, which is then pressure-filled into a nickel foam porous material and dried under reduced pressure at room temperature. It was used as a negative electrode. This negative electrode was combined with a separator and a known nickel oxide positive electrode and placed in a battery case. Place this open battery in an airtight container and store it at 20℃ for 2 hours after exhausting the air.
Atmospheric hydrogen pressure was applied. In addition, at 20℃
The hydrogen storage pressure of MmNi 2.5 Co 2.5 is 3 atm,
The hydrogen storage pressure of LaNi 3 Co 2 is 0.5 atm. As mentioned above, the hydrogen equilibrium pressure is low.
Only LaNi 3 Co 2 is hydrogenated, and the hydrogen equilibrium pressure is high.
MmNi 2.5 Co 2.5 was activated. Here, activation means that hydrogen is not absorbed, hydrogen is adsorbed only on the surface, or a part of the surface is reduced to create an active state. Hydrogenation and activation were performed with the electrode plate group configured in this manner. And the size of the negative electrode is 40 x 50 mm, the pressure is 1.5 mm,
The filling amount of the alloy mixed powder was about 5 g, and the capacity per plate was about 1.25 Ah. Using 6 of these negative electrode plates and 6 nickel positive electrodes of about 1.0 Ah, an appropriate amount of electrolyte was added.
A 6Ah equivalent alkaline storage battery was constructed. This battery is called A. The discharge of this battery is rate-limited by the positive electrode, and the results of charging and discharging with a final voltage of 1.0V will be explained. As a comparative example, B is an alkaline storage battery that is the same as battery A except that only FaNi 3 Co 2 is used as hydrogen storage and a negative electrode made by completely hydrogenating this is used, and LaNi 3 Co 2 and MmNi 2.5 Co 2.5 from the negative electrode mixed with the powder of the battery A in a weight ratio of 60:40.
A battery other than that in which the negative electrode was mixed at a weight ratio of 50:50 was designated as C. The following table shows the initial capacity and capacity after 100 cycles when these batteries were charged and discharged at 1.2Ah.

【表】 いずれの電池も初期放電容量は6Ahで正極容量
を示しているが、比較例Bは100サイクル後では
4Ahと大きく低下している。これは負極容量の低
下による。電池Aは、100サイクル目の容量は
5.4Ahで、電池Bより優れているが、負極の容量
低下が見られる。これらに対して、本発明の他の
実施である電池Cは、100サイクル後でもまだ正
極律速で、しかも初期目標の6Ahの容量を維持し
ており、高性能になつていることがわかる。 本発明では、負極をセパレータ及び正極と組合
せて電槽内に入れ、電池構成の状態で水素化と活
性化を同時に行なうので、水素化による機械的強
度の弱さに起因した不良がなくなる。Bは電池構
成中に10%程度の短絡による不良などが発生する
事が見られた。しかしA及びCの電池では、この
現象が見られず、また充、放電サイクル中に合金
粉末の脱落もBと比べて少なかつた。 この様に合金の水素化と活性化を同時に電池構
成の状態で行なうことで製造工程の簡易化と不良
率の低減及び電池性能の向上を図ることができ
る。 なお実施例では水素平衡圧力の高い合金40重量
%に対して水素平衡圧力の低い合金60重量%の比
率で混合したが、水素平衡圧力の低い合金は40〜
80重量%が最適な範囲であり、これは40重量%未
満では水素化合金の効果が少なく、放電容量が少
なくなることによる。従つて水素平衡解離圧力の
高い合金粉末の配合比率は20〜60重量%が好まし
いことになる。一方80重量%を超えるとサイクル
寿命が短くなる。さらには製造上常温においてと
くに実施例の様に水素平衡圧力の低い合金が1気
圧以下の水素平衡解離圧力を持つ方が適してい
る。一方、電池構成の状態で、水素化した合金よ
り水素ができるだけ解離しない状態で電解液を入
れ、蓋をして開放型又は密閉型電池を製造する方
が好ましいが、水素化した合金から一部分水素を
除去しても従来の方法よりは優れている。いずれ
にしても水素化した後、水素が吸蔵した状態には
殆んど関係なく電池構成の状態で水素吸蔵条件を
制御して1回以上合金の水素化と活性化を同時に
行なえばよい。 また、水素吸蔵合金として先の実施例では
LaNi2.5Co2.5とMmNi2.5Co2.5系合金について説明
したが他の水素吸蔵合金を用いてもよい。また結
着剤としてフツ素樹脂を用いたが、これに代えて
ポリエチレンの水分散液や粉末を用いることもで
き、可溶性のたとえばメチルセルロース、ポリビ
ニルアルコール、カルボキシメチルセルロースな
ども利用可能である。 発明の効果 以上のように、本発明によれば、水素吸蔵合金
からなる負極を用いたアルカリ蓄電池の製造工程
の簡易化、不良率や製造コストの低減が図れるた
め、高性能なアルカリ蓄電池の製造が可能とな
る。
[Table] Both batteries have an initial discharge capacity of 6Ah, indicating a positive electrode capacity, but Comparative Example B has a positive electrode capacity after 100 cycles.
It has significantly decreased to 4Ah. This is due to a decrease in negative electrode capacity. The capacity of battery A at the 100th cycle is
5.4Ah, which is better than battery B, but a decrease in the capacity of the negative electrode is observed. In contrast, Battery C, which is another embodiment of the present invention, is still positive-electrode rate-limiting even after 100 cycles and maintains the initial target capacity of 6Ah, indicating that it has high performance. In the present invention, the negative electrode is combined with the separator and the positive electrode and placed in a battery case, and hydrogenation and activation are performed simultaneously in the battery configuration, thereby eliminating defects caused by weak mechanical strength due to hydrogenation. In case of B, defects such as short circuits of about 10% were observed to occur in the battery configuration. However, in batteries A and C, this phenomenon was not observed, and less alloy powder fell off during charging and discharging cycles than in battery B. By hydrogenating and activating the alloy simultaneously in the battery configuration in this way, it is possible to simplify the manufacturing process, reduce the defective rate, and improve battery performance. In the example, 40% by weight of the alloy with high hydrogen equilibrium pressure was mixed with 60% by weight of the alloy with low hydrogen equilibrium pressure, but the alloy with low hydrogen equilibrium pressure
80% by weight is the optimal range, because below 40% by weight, the hydrogenated alloy becomes less effective and the discharge capacity decreases. Therefore, the blending ratio of the alloy powder having a high hydrogen equilibrium dissociation pressure is preferably 20 to 60% by weight. On the other hand, if it exceeds 80% by weight, the cycle life will be shortened. Furthermore, for production purposes, it is particularly suitable for alloys with a low hydrogen equilibrium pressure, such as those in the examples, to have a hydrogen equilibrium dissociation pressure of 1 atmosphere or less at room temperature. On the other hand, in the battery configuration state, it is preferable to fill the electrolyte in a state in which hydrogen is not dissociated as much as possible from the hydrogenated alloy and to manufacture an open or closed battery by covering the battery with a lid. It is still better than the conventional method even if it is removed. In any case, after hydrogenation, hydrogenation and activation of the alloy may be simultaneously performed one or more times by controlling the hydrogen storage conditions in the state of the battery configuration, almost regardless of the state in which hydrogen is stored. In addition, in the previous example as a hydrogen storage alloy,
Although LaNi 2.5 Co 2.5 and MmNi 2.5 Co 2.5 based alloys have been described, other hydrogen storage alloys may be used. Furthermore, although a fluororesin is used as a binder, an aqueous dispersion or powder of polyethylene may be used instead, and soluble materials such as methyl cellulose, polyvinyl alcohol, and carboxymethyl cellulose can also be used. Effects of the Invention As described above, according to the present invention, it is possible to simplify the manufacturing process of an alkaline storage battery using a negative electrode made of a hydrogen storage alloy, and to reduce the defective rate and manufacturing cost, thereby manufacturing a high-performance alkaline storage battery. becomes possible.

Claims (1)

【特許請求の範囲】 1 水素平衡圧力の異なる2種以上の水素吸蔵合
金粉末を保有する負極と、セパレータ及び正極を
電槽内に入れ、前記水素平衡圧力の低い水素吸蔵
合金の水素吸蔵圧力以上で、かつ前記水素平衡圧
力の高い水素吸蔵合金の水素吸蔵圧力未満の水素
雰囲気中で水素化と活性化を同時にすることを特
徴とするアルカリ蓄電池の製造法。 2 水素吸蔵合金粉末中における水素平衡圧力の
低い水素吸蔵合金の比率が40〜80重量%である特
許請求の範囲第1項記載のアルカリ蓄電池の製造
法。 3 水素平衡圧力の低い水素吸蔵合金粉末が、常
温における水素平衡解離圧力が1気圧以下の水素
吸蔵合金を含む特許請求の範囲第1項記載のアル
カリ蓄電池の製造法。
[Scope of Claims] 1. A negative electrode containing two or more types of hydrogen storage alloy powders having different hydrogen equilibrium pressures, a separator, and a positive electrode are placed in a battery container, and the hydrogen storage pressure is higher than or equal to the hydrogen storage alloy powder having a lower hydrogen equilibrium pressure. A method for producing an alkaline storage battery, characterized in that hydrogenation and activation are carried out simultaneously in a hydrogen atmosphere below the hydrogen storage pressure of the hydrogen storage alloy having a high hydrogen equilibrium pressure. 2. The method for producing an alkaline storage battery according to claim 1, wherein the proportion of the hydrogen storage alloy having a low hydrogen equilibrium pressure in the hydrogen storage alloy powder is 40 to 80% by weight. 3. The method for producing an alkaline storage battery according to claim 1, wherein the hydrogen storage alloy powder having a low hydrogen equilibrium pressure includes a hydrogen storage alloy having a hydrogen equilibrium dissociation pressure of 1 atm or less at room temperature.
JP59262108A 1984-12-12 1984-12-12 Manufacture of alkaline battery Granted JPS61140075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59262108A JPS61140075A (en) 1984-12-12 1984-12-12 Manufacture of alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262108A JPS61140075A (en) 1984-12-12 1984-12-12 Manufacture of alkaline battery

Publications (2)

Publication Number Publication Date
JPS61140075A JPS61140075A (en) 1986-06-27
JPH0572713B2 true JPH0572713B2 (en) 1993-10-12

Family

ID=17371146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262108A Granted JPS61140075A (en) 1984-12-12 1984-12-12 Manufacture of alkaline battery

Country Status (1)

Country Link
JP (1) JPS61140075A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111439A (en) * 1977-03-03 1978-09-29 Philips Nv Rechargeable electrochemical battery enclosed from outer atmosphere and method of manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734678Y2 (en) * 1976-09-07 1982-07-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111439A (en) * 1977-03-03 1978-09-29 Philips Nv Rechargeable electrochemical battery enclosed from outer atmosphere and method of manufacturing same

Also Published As

Publication number Publication date
JPS61140075A (en) 1986-06-27

Similar Documents

Publication Publication Date Title
EP0522297B1 (en) Hydrogen storage electrode
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JPH0572713B2 (en)
US5401463A (en) Hydrogen-occlusion alloy electrode
JPS6215769A (en) Nickel-hydrogen alkaline battery
JP3012658B2 (en) Nickel hydride rechargeable battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
JP3373989B2 (en) Hydrogen storage alloy powder and manufacturing method
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JPH1040950A (en) Alkaline secondary battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH02220355A (en) Hydrogen storage alloy electrode
JPH06145849A (en) Hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS5931834B2 (en) Hydrogen storage electrode
JPH028419B2 (en)
JPH09171837A (en) Nickel-hydrogen secondary battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JP2854920B2 (en) Nickel-metal hydride battery
JPS61128462A (en) Manufacture of hydrogen absorption electrode
JPH04176833A (en) Hydrogen storage alloy electrode
JPH0479473B2 (en)
JPH0426057A (en) Sealed-type alkaline battery