JPH0479473B2 - - Google Patents

Info

Publication number
JPH0479473B2
JPH0479473B2 JP59171819A JP17181984A JPH0479473B2 JP H0479473 B2 JPH0479473 B2 JP H0479473B2 JP 59171819 A JP59171819 A JP 59171819A JP 17181984 A JP17181984 A JP 17181984A JP H0479473 B2 JPH0479473 B2 JP H0479473B2
Authority
JP
Japan
Prior art keywords
alloy
electrode
hydride
hydrogen
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59171819A
Other languages
Japanese (ja)
Other versions
JPS6149375A (en
Inventor
Nobuyuki Yanagihara
Hiroshi Kawano
Munehisa Ikoma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59171819A priority Critical patent/JPS6149375A/en
Publication of JPS6149375A publication Critical patent/JPS6149375A/en
Publication of JPH0479473B2 publication Critical patent/JPH0479473B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素を可逆的に吸蔵・放出する合金
を利用した電池の負極、いわゆる水素吸蔵電極の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a battery negative electrode, a so-called hydrogen storage electrode, using an alloy that reversibly stores and releases hydrogen.

従来例の構成とその問題点 従来、水素吸蔵電極は、導電性の電極支持体に
水素吸蔵合金を有機高分子結着剤で結合させて構
成されていた。その製造方法は、まず、活物質と
なる水素吸蔵合金を合成し、次にその合金を機械
的に細かく粉砕する。あるいは、合金を粒状に細
かくした後、さらに耐圧容器内で水素の吸蔵、放
出を数回繰り返して細分化する。この場合、合金
は活用化されるとともに水素化される。これらの
方法で得た水素吸蔵合金粉末に、たとえば、ポリ
エチレン、フツ素樹脂等の有機高分子結着剤を混
合し、その混合物を導電性の電極支持体に圧縮成
形で保持させた後、不活性ガス雰囲気中で、結着
剤の融点付近の温度で熱処理を施し、電極を得て
いた。
Structure of Conventional Examples and Problems Thereto Conventionally, hydrogen storage electrodes have been constructed by bonding a hydrogen storage alloy to a conductive electrode support using an organic polymer binder. The manufacturing method involves first synthesizing a hydrogen storage alloy as an active material, and then mechanically crushing the alloy into fine particles. Alternatively, after pulverizing the alloy into granules, hydrogen is absorbed and released several times in a pressure-resistant container, and the alloy is further finely divided. In this case, the alloy is conjugated and hydrogenated. The hydrogen storage alloy powder obtained by these methods is mixed with an organic polymer binder such as polyethylene or fluororesin, and the mixture is held on a conductive electrode support by compression molding. Electrodes were obtained by heat treatment in an active gas atmosphere at a temperature near the melting point of the binder.

しかし、前者の機械的粉砕で得た水素吸蔵合金
粉末を用いた電極は、合金が活性化されていない
ために、電気化学的水素吸蔵(充電)、水素放出
(放電)の容量が少なく、さらに電極の充放電を
繰り返すと、電極を構成する水素吸蔵合金粒子の
活性化が起こり、電極性能は徐々に向上する。
However, electrodes using hydrogen-absorbing alloy powder obtained by mechanical grinding have low electrochemical hydrogen storage (charging) and hydrogen release (discharging) capacity because the alloy is not activated. When the electrode is repeatedly charged and discharged, the hydrogen storage alloy particles that make up the electrode are activated, and the electrode performance gradually improves.

従つて初期の放電容量が小さい欠点を持つてい
る。
Therefore, it has the disadvantage of a small initial discharge capacity.

一方、後者の方法で得た水素吸蔵合金粉末を用
いた電極は、合金の活性化と水素化が十分行なわ
れているので、初期には高い容量が得られるが、
その反面、水素化合金粉末は水素を含むために非
常に活性で、空気中では酸化される程度も大き
く、また急激に多くの水素量を吸蔵したり、放出
したりするために、電極が一度に膨張する見掛上
の割合が大きく、わん曲、亀裂の発生原因となる
などの問題点があつた。
On the other hand, electrodes using hydrogen-absorbing alloy powder obtained by the latter method can obtain high initial capacity because the alloy is sufficiently activated and hydrogenated.
On the other hand, hydrogenated alloy powder is very active because it contains hydrogen, and is oxidized to a large extent in the air, and because it rapidly absorbs and releases large amounts of hydrogen, the electrode The apparent rate of expansion was large, causing problems such as bending and cracking.

発明の目的 本発明は、上記のような従来の欠点を除き、放
電初期の容量も大きく、しかも充放電サイクル寿
命の長い水素吸蔵電極を得る製造方法を提供する
ものである。
OBJECTS OF THE INVENTION The present invention provides a manufacturing method for obtaining a hydrogen storage electrode which has a large initial discharge capacity and a long charge/discharge cycle life, while eliminating the above-mentioned conventional drawbacks.

発明の構成 本発明は、水素吸蔵能力を有する合金粉末とこ
の合金の水素化物粉末の混合物に耐アルカリ性の
高分子結着剤を加え、加圧成形により集電体と一
体に結合する水素吸蔵電極の製造方法である。
Structure of the Invention The present invention provides a hydrogen storage electrode in which an alkali-resistant polymer binder is added to a mixture of an alloy powder having hydrogen storage capacity and a hydride powder of this alloy, and the mixture is integrally bonded to a current collector by pressure molding. This is a manufacturing method.

実施例の説明 純度99.5%以上のランタン、カルシウム、ニツ
ケル金属より構成される3元系合金を選び、性能
比較を行なつた。
Description of Examples A ternary alloy composed of lanthanum, calcium, and nickel metal with a purity of 99.5% or more was selected and the performance was compared.

まず、原子比でランタン(La)0.8、カルシウ
ム(Ca)0.2、ニツケル(Ni)5の配合組成にな
るよう秤量し、アーク溶解炉に入れ、10-3torrま
で真空吸引した後アルゴンガス雰囲気の減圧状態
で溶解させる。均質化を図るために、銅るつぼ内
の溶解合金を数回反転させてLa0.8Ca0.2Ni5合金を
製造した。
First, the mixture was weighed to have an atomic ratio of 0.8 lanthanum (La), 0.2 calcium (Ca), and 5 nickel (Ni), placed in an arc melting furnace, vacuumed to 10 -3 torr, and then placed in an argon gas atmosphere. Dissolve under reduced pressure. The La 0.8 Ca 0.2 Ni 5 alloy was produced by inverting the molten alloy in the copper crucible several times for homogenization.

得られた合金試料をアルゴン雰囲気中のドライ
ボツクス中で粉砕し、節分けして300メツシユ通
過の合金粉末を用意した。
The obtained alloy sample was crushed in a dry box in an argon atmosphere and divided into sections to prepare an alloy powder that could pass through 300 meshes.

一方、溶解した同じ合金試料を粒状に粗粉砕
し、耐圧容器内に入れ、この容器内に圧力を持つ
た水素を供給し、次いで脱水素する操作を数回以
上行ない合金の活性化と水素化を行なう。水素を
吸蔵した状態でアルゴン雰囲気中に取り出し、先
に製造した合金に各10〜90重量%の比率になるよ
うに加え、両者の混合物粉末を準備した。この混
合粉末に高分子結着剤としてフツ素樹脂の水分散
液を固形分で5重量%程混和してペースト状とな
し、これをニツケル発泡状多孔体に加圧充填し、
約200Kg/cm2の圧力で加圧し水素化物粒子から水
素が放出しない様に乾燥した雰囲気中で20℃の温
度を保持しつつ、水分のみ除去し電極とした。こ
の電極の大きさは40×50mm、厚さ1.5mmであり、
活物質である前記混合粉末の充填量は約6gであ
る。
On the other hand, the same melted alloy sample is coarsely ground into granules, placed in a pressure vessel, hydrogen is supplied under pressure into this vessel, and then dehydrogenation is performed several times or more to activate and hydrogenate the alloy. Do this. The hydrogen absorbed state was taken out into an argon atmosphere and added to the previously produced alloy at a ratio of 10 to 90% by weight to prepare a powder mixture of the two. This mixed powder is mixed with an aqueous dispersion of fluororesin as a polymeric binder at a solid content of approximately 5% by weight to form a paste, which is then pressure-filled into a nickel foam porous body.
The hydride particles were pressurized at a pressure of approximately 200 kg/cm 2 and kept at a temperature of 20°C in a dry atmosphere to prevent hydrogen from being released from the hydride particles, and only moisture was removed to form an electrode. The size of this electrode is 40 x 50 mm and thickness 1.5 mm.
The amount of the mixed powder, which is the active material, was about 6 g.

第1図は上記の電極を負極とし、公知の酸化ニ
ツケル電極を正極とし組み合わせた蓄電池の単セ
ル構成を示す。図中、1は正極、2は負極、3は
セパレータ、4はアルカリ電解液、5は電槽、6
は蓋、7は正極端子、8は負極端子、9は注液口
である。
FIG. 1 shows a single cell configuration of a storage battery in which the above electrode is used as a negative electrode and a known nickel oxide electrode is used as a positive electrode. In the figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is an alkaline electrolyte, 5 is a battery container, and 6
is a lid, 7 is a positive terminal, 8 is a negative terminal, and 9 is a liquid inlet.

この電池の負極として前記合金と水素化物の配
合比の異なる試料を用い、第1図の蓄電池の充・
放電をくりかえした。200mAの充・放電時の放
電容量を測定し、初期容量と200サイクル目の容
量を比較した。但し、負極で容量が下がる様に、
負極より高容量の正極を用いた。また、従来電極
として、水素化物を含まない合金粉末のみからな
る電極と水素化物のみからなる電極を用いた。第
2図にその性能の結果を示す。従来型の合金単体
の電極は初期放電容量が小さく、また、100%水
素化物電極では初期容量が非常に大きいが、サイ
クル寿命が短くなる。
Using samples with different blending ratios of the alloy and hydride as negative electrodes of this battery, charging and charging of the storage battery shown in Fig.
The discharge was repeated. The discharge capacity during charging and discharging at 200 mA was measured, and the initial capacity and the capacity at the 200th cycle were compared. However, as the capacity decreases at the negative electrode,
A positive electrode with a higher capacity than the negative electrode was used. Furthermore, as conventional electrodes, an electrode made only of alloy powder containing no hydride and an electrode made only of hydride were used. Figure 2 shows the performance results. Conventional pure alloy electrodes have low initial discharge capacity, and 100% hydride electrodes have very high initial capacity but short cycle life.

以上から水素化物の量が増加するにつれて、初
期の放電容量は著しく向上することがわかる。し
かし、電極の膨張の度合や電解液中での酸化の度
合、わん曲などの度合が大きい事が観察され、少
しずつ容量低下を起こしているものと考えられ
る。これに対して、水素化物と合金との混合物は
両者の利点がうまく調和し、電極の容量、耐久性
も保持し、水素化物の量が10〜60重量%の範囲内
が実用的な電極と云える(0.2Ah/g以上)。
From the above, it can be seen that as the amount of hydride increases, the initial discharge capacity improves significantly. However, it was observed that the degree of expansion of the electrode, the degree of oxidation in the electrolyte, and the degree of curvature were large, and it is thought that the capacity was gradually decreasing. On the other hand, mixtures of hydrides and alloys have the advantages of both in good balance, maintain electrode capacity and durability, and are considered practical electrodes when the amount of hydride is in the range of 10 to 60% by weight. Yes (0.2Ah/g or more).

初期の容量は水素化物層の効果で向上し、高い
容量でもつてサイクル寿命も比較的長い範囲を見
い出すことが出来た。電池を組立てる時、電極の
中に水素化物の型であらかじめ混在させておくこ
とにより、両者の利点の相乗効果により、従来に
は見られなかつた優れた電極を得ることができ
た。
The initial capacity was improved by the effect of the hydride layer, and a range of high capacity and relatively long cycle life was found. By pre-mixing the hydride in the electrode when assembling the battery, the synergistic effect of the advantages of both made it possible to obtain an excellent electrode that had never been seen before.

2また、密閉型電池を構成する場合、充電中にお
いて、前もつて水素化物の型で合金層の中に混在
してあるために、電池内ガス圧力の上昇を抑制す
る。とくに、水素化物として混在しているため、
過充電時に正極から発生する酸素と負極での水素
との反応性がよく、電池内圧の上昇を防止し、し
かも負極の分極が小さくなるので高率放電特性が
向上するという効果もある。
2. Furthermore, when forming a sealed battery, during charging, since the hydride is mixed in the alloy layer in the form of a hydride, an increase in gas pressure within the battery is suppressed. In particular, since it is mixed as a hydride,
Oxygen generated from the positive electrode and hydrogen at the negative electrode have good reactivity during overcharging, preventing an increase in battery internal pressure, and also has the effect of improving high-rate discharge characteristics because the polarization of the negative electrode is reduced.

電極の製造に際して水素化物を耐圧密閉容器内
から取り出す必要のために、常温付近で1気圧以
下の水素解離圧力を持つ合金材料を選択する必要
がある。何故ならば、電極製造中に水素化物から
水素が大気中に出てしまう心配があるためであ
る。したがつて、電池に組込む前に水素化物とし
て水素が適量存在していなければならないため、
本実施例にあつては、比較的低温の不活性雰囲気
中で電極を製造した。たとえば、周囲温度10〜15
℃、アルゴンガス雰囲気中などである。また、結
着剤としては、ポリビニルアルコール、カルボキ
シメチルセルロースの様な水溶性の合成樹脂も利
用できる。本実施例では常温で1気圧を示す1例
の合金としてLa0.8Ca0.2Ni5を用いたが、常温で水
素解離圧力が1気圧以下の別の水素吸蔵合金を用
いてもかまわない。
Since it is necessary to take out the hydride from the pressure-tight sealed container when manufacturing the electrode, it is necessary to select an alloy material that has a hydrogen dissociation pressure of 1 atmosphere or less at around room temperature. This is because there is a concern that hydrogen may escape from the hydride into the atmosphere during electrode manufacturing. Therefore, an appropriate amount of hydrogen must be present as a hydride before it is incorporated into a battery.
In this example, the electrode was manufactured in an inert atmosphere at a relatively low temperature. For example, ambient temperature 10-15
℃, in an argon gas atmosphere, etc. Furthermore, water-soluble synthetic resins such as polyvinyl alcohol and carboxymethyl cellulose can also be used as the binder. In this example, La 0.8 Ca 0.2 Ni 5 was used as an example alloy exhibiting a pressure of 1 atm at normal temperature, but another hydrogen storage alloy having a hydrogen dissociation pressure of 1 atm or less at room temperature may be used.

発明の効果 以上のように、本発明によれば初期容量も向上
し、サイクル寿命も優れ、しかも密閉型アルカリ
蓄電池を構成した時、充・放電時の電池内圧の上
昇を抑制するなどの性能の優れた水素吸蔵電極が
えられる。
Effects of the Invention As described above, according to the present invention, the initial capacity is improved, the cycle life is excellent, and when a sealed alkaline storage battery is constructed, performance such as suppressing the increase in battery internal pressure during charging and discharging is achieved. An excellent hydrogen storage electrode can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の蓄電池の縦断面図、第2図は
水素吸蔵電極を構成する合金とその水素化物中の
水素化物の比率と初期容量及び200サイクル後の
放電容量との関係を示した図である。 1……正極、2……負極、3……セパレータ、
4……電解液。
Figure 1 is a longitudinal cross-sectional view of the storage battery of the example, and Figure 2 shows the relationship between the alloy constituting the hydrogen storage electrode and the ratio of hydride in the hydride, initial capacity, and discharge capacity after 200 cycles. It is a diagram. 1...Positive electrode, 2...Negative electrode, 3...Separator,
4... Electrolyte.

Claims (1)

【特許請求の範囲】 1 常温において水素解離圧力が1気圧以下であ
る水素吸蔵能を有する合金粉末と、この合金の水
素化物粉末の混合物に、耐アルカリ性の高分子結
着剤を加え、加圧成形して集電体と一体に結合す
る水素吸蔵電極の製造法。 2 耐アルカリ性の高分子結着剤を含む合金粉末
とその水素化物粉末の混合物がペースト状混合物
からなる特許請求の範囲第1項記載の水素吸蔵電
局の製造法。 3 合金粉末とその水素化物粉末の混合割合にお
いて、水素化物粉末の比率が10〜60重量%である
特許請求の範囲第1項記載の水素吸蔵電極の製造
法。
[Claims] 1. An alkali-resistant polymer binder is added to a mixture of an alloy powder having a hydrogen storage capacity with a hydrogen dissociation pressure of 1 atm or less at room temperature and a hydride powder of this alloy, and the mixture is pressurized. A method for manufacturing a hydrogen storage electrode that is molded and integrally bonded to a current collector. 2. The method for manufacturing a hydrogen storage power station according to claim 1, wherein the mixture of an alloy powder containing an alkali-resistant polymeric binder and its hydride powder is a paste-like mixture. 3. The method for manufacturing a hydrogen storage electrode according to claim 1, wherein in the mixing ratio of the alloy powder and its hydride powder, the ratio of the hydride powder is 10 to 60% by weight.
JP59171819A 1984-08-17 1984-08-17 Manufacture of hydrogen absorbing electrode Granted JPS6149375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59171819A JPS6149375A (en) 1984-08-17 1984-08-17 Manufacture of hydrogen absorbing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59171819A JPS6149375A (en) 1984-08-17 1984-08-17 Manufacture of hydrogen absorbing electrode

Publications (2)

Publication Number Publication Date
JPS6149375A JPS6149375A (en) 1986-03-11
JPH0479473B2 true JPH0479473B2 (en) 1992-12-16

Family

ID=15930320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59171819A Granted JPS6149375A (en) 1984-08-17 1984-08-17 Manufacture of hydrogen absorbing electrode

Country Status (1)

Country Link
JP (1) JPS6149375A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103910A (en) * 1977-02-23 1978-09-09 Matsushita Electric Ind Co Ltd Production of hydrogen occluded electrode
JPS53111439A (en) * 1977-03-03 1978-09-29 Philips Nv Rechargeable electrochemical battery enclosed from outer atmosphere and method of manufacturing same
JPS5413938A (en) * 1977-07-04 1979-02-01 Matsushita Electric Ind Co Ltd Method of making hydrogen occlusion electrode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734678Y2 (en) * 1976-09-07 1982-07-30

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103910A (en) * 1977-02-23 1978-09-09 Matsushita Electric Ind Co Ltd Production of hydrogen occluded electrode
JPS53111439A (en) * 1977-03-03 1978-09-29 Philips Nv Rechargeable electrochemical battery enclosed from outer atmosphere and method of manufacturing same
JPS5413938A (en) * 1977-07-04 1979-02-01 Matsushita Electric Ind Co Ltd Method of making hydrogen occlusion electrode

Also Published As

Publication number Publication date
JPS6149375A (en) 1986-03-11

Similar Documents

Publication Publication Date Title
EP0522297B1 (en) Hydrogen storage electrode
JP2926734B2 (en) Alkaline storage battery using hydrogen storage alloy
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2752970B2 (en) Hydrogen storage electrode
JPS5944748B2 (en) Chikudenchi
JPH11162459A (en) Nickel-hydrogen secondary battery
JPH0479473B2 (en)
JPS6215769A (en) Nickel-hydrogen alkaline battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
KR100207618B1 (en) Negative electrode manufacturing method and secondary battery having it
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP3373989B2 (en) Hydrogen storage alloy powder and manufacturing method
JP3343417B2 (en) Metal oxide / hydrogen secondary battery
JP2713881B2 (en) Sealed metal oxide / hydrogen battery
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JPH0810596B2 (en) Metal oxide / hydrogen battery
JPS6164068A (en) Manufacture of hydrogen-absorbing electrode
JPH0763004B2 (en) Sealed alkaline storage battery
JP2642144B2 (en) Method for producing hydrogen storage electrode
JP2679441B2 (en) Nickel-metal hydride battery
JPH06150919A (en) Metallic oxide-hydrogen secondary battery
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JPH0690922B2 (en) Sealed alkaline storage battery
JPH0690924B2 (en) Storage battery electrode
JPH04319258A (en) Hydrogen storage alloy electrode