JPS61128462A - Manufacture of hydrogen absorption electrode - Google Patents

Manufacture of hydrogen absorption electrode

Info

Publication number
JPS61128462A
JPS61128462A JP59250835A JP25083584A JPS61128462A JP S61128462 A JPS61128462 A JP S61128462A JP 59250835 A JP59250835 A JP 59250835A JP 25083584 A JP25083584 A JP 25083584A JP S61128462 A JPS61128462 A JP S61128462A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
pressure
hydrogen storage
hydrogen absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59250835A
Other languages
Japanese (ja)
Other versions
JPH0752646B2 (en
Inventor
Nobuyuki Yanagihara
伸行 柳原
Hiroshi Kawano
川野 博志
Munehisa Ikoma
宗久 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59250835A priority Critical patent/JPH0752646B2/en
Publication of JPS61128462A publication Critical patent/JPS61128462A/en
Publication of JPH0752646B2 publication Critical patent/JPH0752646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To simplify the manufacture of a hydrogen absorption electrode by activating a hydrogen absorption alloy having high equilibrium pressure and hydrogenating a hydrogen absorption alloy having low equilibrium pressure within a sealed container in which hydrogen pressure can be controlled. CONSTITUTION:A hydrogen absorption alloy which electrochemically absorbs and desorbs hydrogen in an alkaline solution is used for a negative electrode as hydrogen absorption electrode. Two or more kinds of hydrogen absorption alloy powder having different hydrogen equilibrium pressure are placed in a sealed container. The hydrogen atmosphere in the container is controlled higher than hydrogen absorption pressure of the hydrogen absorption alloy having low hydrogen equilibrium pressure and lower than hydrogen absorption pressure of the hydrogen absorption alloy having high hydrogen equilibrium pressure to perform hydrogenation and activation respectively. An alkali resistant polymer binder is added to the alloy powder, then they are molded together with a current collector. Thereby, the high performance electrode is obtained and the manufacturing process is simplified and the cost is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電池の負極活物質に用いられる水素を可逆的
に吸蔵・放出する合金を利用した電池の負極、いわゆる
水素吸蔵電極の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a battery negative electrode, a so-called hydrogen storage electrode, using an alloy that reversibly stores and releases hydrogen, which is used as a battery negative electrode active material.

従来の技術 一般にある種の水素吸蔵合金は、アルカリ溶液中で電気
化学的に水素を吸蔵しfcD、放出したすする性質を有
するので、水素吸蔵電極として利用することができる。
2. Description of the Related Art In general, certain hydrogen storage alloys have the property of electrochemically storing hydrogen in an alkaline solution, fcD, and releasing it, so that they can be used as hydrogen storage electrodes.

従来、この水素吸蔵電極の放電容量を向上させるために
、水素の吸蔵と放出を繰り返し、水素化による合金の微
砕化粉末を用いて水素吸蔵電極とする製造方法が提案さ
れている(特開昭63−103910)。この方法は前
もって合金を水素化する必要がある。このため、水素化
時及び水素化後の合金粉末の取り扱いにおいて、酸化防
止対策などの問題から製造工程がやや煩雑となる。しか
も初期放電容量は優九でいるが、充・放電サイクル寿命
が短いなどの欠点も有している。
Conventionally, in order to improve the discharge capacity of this hydrogen storage electrode, a manufacturing method has been proposed in which the hydrogen storage electrode is made by repeatedly storing and desorbing hydrogen and using pulverized powder of an alloy produced by hydrogenation (Unexamined Japanese Patent Publication No. (Sho 63-103910). This method requires prior hydrogenation of the alloy. Therefore, in handling the alloy powder during hydrogenation and after hydrogenation, the manufacturing process becomes somewhat complicated due to problems such as measures to prevent oxidation. Moreover, although the initial discharge capacity is excellent, it also has shortcomings such as a short charge/discharge cycle life.

そこで、水素吸蔵合金とその水素化物とを混合して電極
を作る製造方法(特願昭59−171819 )も提案
されている。この方法に上り充・放電ノサイクル寿命の
点において改良されたが、水素吸蔵合金を水素化する工
程においては前者と同じ問題点金持っている。
Therefore, a method of manufacturing an electrode by mixing a hydrogen storage alloy and its hydride has been proposed (Japanese Patent Application No. 171,819/1981). Although this method has improved the charge/discharge cycle life, it still has the same problems as the former in the process of hydrogenating hydrogen storage alloys.

発明が解決しようとする問題点 上記の従来の方法においてはいずれも前もって水素化(
微細化)した水素吸蔵合金粉末を作り、単独又は合金粉
末と混合し次後、結着剤で導電性の電極支持体に結合さ
せて水素吸蔵電極を製造していた。この方法では、合金
の水素化と混合等に要する時間、合金粉末の酸化防止対
策などに要する設備などで製造工程の煩雑さとともに製
造のコストアップにつながる。また、水素吸蔵電極の放
電容量、サイクル寿命等においても十分とは云えない。
Problems to be Solved by the Invention In all of the above conventional methods, hydrogenation (
A hydrogen storage electrode was produced by making a finely divided hydrogen storage alloy powder, used alone or mixed with an alloy powder, and then bonding it to a conductive electrode support with a binder. This method complicates the manufacturing process and increases manufacturing costs due to the time required for hydrogenation and mixing of the alloy, equipment required to prevent oxidation of the alloy powder, etc. Furthermore, the discharge capacity, cycle life, etc. of the hydrogen storage electrode are not sufficient.

本発明は、以上のような問題を解消するもので、製造工
程の簡易化と製造コストの低減及び電極の高性能化を図
ることを目的とする。
The present invention solves the above problems, and aims to simplify the manufacturing process, reduce manufacturing costs, and improve the performance of the electrode.

問題点を解決するための手段 本発明は、水素平衡圧力の異なる2種類以上の水素吸蔵
合金粉末を密閉容器内に入n、水素平衡圧力の低い水素
吸蔵合金の水素吸蔵圧力以上で、しかも水素平衡圧力の
高い水素吸蔵合金の水素吸蔵圧力以下の範囲内にある水
素雰囲気中で水素化と活性化処理をした後、耐アルカリ
性の高分子結着剤を加え、加圧成形して集電体と一体に
結合するものである。
Means for Solving the Problems The present invention provides two or more types of hydrogen storage alloy powders with different hydrogen equilibrium pressures in a closed container, and the hydrogen absorption pressure is higher than the hydrogen storage pressure of the hydrogen storage alloy with a lower hydrogen equilibrium pressure. After hydrogenation and activation treatment in a hydrogen atmosphere below the hydrogen storage pressure of the hydrogen storage alloy with high equilibrium pressure, an alkali-resistant polymer binder is added and pressure formed to form a current collector. It is to be united with.

作  用 上記のように、水素圧力の制御された密閉容器内での処
理により、平衡圧力の高い水素吸蔵合金は水素活性化(
表面吸着、還元反応)がされ、平衡圧力の低い水素吸蔵
合金には水素化(水素吸蔵反応)がされるので、電気化
学的な水素の吸蔵・放出性能が優れると同時にサイクル
寿命の伸長ができる。また、水素化合金を未水素化合金
が包囲した状態になるので、大気中に触れる部分も少な
く、酸化等の反応を弱める役目もある。こうして、初期
水素化による電極の急激な膨張、わん曲も少なく、電極
の高性能化と共に製造工程の簡易化。
Effect As mentioned above, hydrogen storage alloys with high equilibrium pressure undergo hydrogen activation (
Hydrogen storage alloys with low equilibrium pressure are subjected to hydrogenation (hydrogen storage reaction), so they have excellent electrochemical hydrogen storage and release performance and can extend cycle life. . Furthermore, since the hydrogenated alloy is surrounded by the unhydrogenated alloy, there are few parts exposed to the atmosphere, which also serves to weaken reactions such as oxidation. In this way, there is less rapid expansion and bending of the electrode due to initial hydrogenation, improving the performance of the electrode and simplifying the manufacturing process.

コストダウンが可能となる。Cost reduction becomes possible.

実施例 水素平衡圧力の高い水素吸蔵合金としてMmN 12 
、a CO2、s (Mxn:希土類金属の混合物〕を
、また水素平衡圧力の低い水素吸蔵合金としてLaNi
3Co2を用いる。各々の合金は各元素を所定の組成に
なる様に秤量し、アーク溶解炉中でアーク溶解して得た
。さらに、アルゴン雰囲気中のドライボックス中で粉砕
し、篩分けして300メツシュ通過の合金粉末を作り、
両合金粉末を適当な比率、例えば、水素平衡圧力の高い
合金40、低い合金60の重量比で混合した0この混合
粉末を密閉容器内に入れ、MmN i 2.5Co 2
.sの水素吸蔵圧力(20℃)3気圧以下の圧力で、し
かも、L aN i 3Co2の水素吸蔵圧力(20℃
)0.5 気圧以上の水素印加圧力として2気圧を選ん
だ0水素平衡圧力の低いLaNi3Co2のみ水素化し
、水素平衡圧力の高いMI!IN 12.5CO2、s
は活性化した。ここで活性化とは水素は未吸蔵1表面に
のみ水素が吸着し、又は表面の一部を還元し、活性の状
態を作ることを云う。
Example MmN 12 as a hydrogen storage alloy with high hydrogen equilibrium pressure
, a CO2, s (Mxn: mixture of rare earth metals), and LaNi as a hydrogen storage alloy with low hydrogen equilibrium pressure.
3Co2 is used. Each alloy was obtained by weighing each element so as to have a predetermined composition, and arc melting it in an arc melting furnace. Furthermore, it is crushed in a dry box in an argon atmosphere and sieved to produce an alloy powder that passes 300 mesh.
Both alloy powders are mixed in an appropriate ratio, for example, alloy 40 with high hydrogen equilibrium pressure and alloy 60 with low hydrogen equilibrium pressure. This mixed powder is placed in a closed container, and MmN i 2.5Co 2
.. The hydrogen storage pressure of L aN i 3Co2 (20°C) is 3 atm or less, and the hydrogen storage pressure of L aN i 3Co2 (20°C)
) We chose 2 atm as the hydrogen applied pressure above 0.5 atm. 0 Only LaNi3Co2 with low hydrogen equilibrium pressure was hydrogenated, and MI with high hydrogen equilibrium pressure! IN 12.5CO2,s
was activated. Here, activation means that hydrogen is adsorbed only on one unoccluded surface, or a part of the surface is reduced to create an active state.

この混合粉末に結着剤としてフッ素樹脂の水分散液を固
形分で5重量%程混合してペースト状とし、これ1ニツ
ケルの発泡状多孔体に加圧充填し、常温で減圧乾燥して
電極とした。この電極の大きさは40 X 50 ms
、厚さ1.5態であり、合金混合粉末の充填量は約6?
である。この電極を負極とし、公知の酸化ニッケル極を
正極としてアルカリ蓄電池を組み立て、充放電性能とサ
イクル寿命を測定した。
This mixed powder is mixed with an aqueous dispersion of fluororesin as a binder at a solid content of approximately 5% by weight to form a paste, which is then filled into a 1-nickel foam porous material under pressure and dried under reduced pressure at room temperature to form an electrode. And so. The size of this electrode is 40 x 50 ms
, the thickness is 1.5 mm, and the filling amount of the alloy mixed powder is about 6?
It is. An alkaline storage battery was assembled using this electrode as a negative electrode and a known nickel oxide electrode as a positive electrode, and the charge/discharge performance and cycle life were measured.

比較例として、合金としてLaNi3Co2のみ金用い
、これをすべて水素化して製造した電極iA、前記水素
化合金粉末とMmNi2.5CO2,5合金粉末i50
 :50の重量比で混合したものを用いた電極をBとし
、上記本発明による電極をCとする。
As a comparative example, electrode iA was produced by using only LaNi3Co2 as an alloy and completely hydrogenating it, and the hydrogenated alloy powder and MmNi2.5CO2,5 alloy powder i50 were prepared.
An electrode using the mixture at a weight ratio of :50 is designated as B, and an electrode according to the present invention is designated as C.

充・放電電流は2oomAとし、初期容量と100サイ
クル後の容量の比較を次表に示す。
The charging/discharging current was 2 oomA, and the following table shows a comparison of the initial capacity and the capacity after 100 cycles.

表に示すように、Aは初期容量が優れているが、100
サイクル目の容量が著しく低下している。
As shown in the table, A has an excellent initial capacity, but 100
The capacity of the first cycle has decreased significantly.

これに対してBは初期容量は低いが100サイクル目の
容量はAより約2倍程度優れている。しかし、実用上ま
だ不十分である。本発明による電極Cは、Bよジは初期
容量も向上し、100サイクル目の容量も向上している
。水素平衡圧力の異なる合金の混合物を同時に水素化と
活性化を行なうことによジ製造工程の簡易化と電極性能
の向上を図ることができる。
On the other hand, B has a low initial capacity, but the capacity at the 100th cycle is about twice as good as that of A. However, it is still insufficient for practical use. In the electrode C according to the present invention, the initial capacity is improved in the B direction, and the capacity at the 100th cycle is also improved. By simultaneously hydrogenating and activating a mixture of alloys with different hydrogen equilibrium pressures, it is possible to simplify the production process and improve electrode performance.

実施例では水素平衡圧力の高い合金40に対して、水素
平衡圧力の低い合金60の比率で混合したが、水素平衡
圧力の低い合金の割合は40〜80重量%が最適な範囲
であり、40重量%以下では水素化合金の効果が少なく
、放電容量が少なくなり、80重量%以上となるとサイ
クル寿命が著しく短くなる。さらには製造上常温におけ
る水素平衡解離圧力が1気圧以下の水素吸蔵合金を含む
ことが望ましく、とくに実施例の様に水素平衡圧力の低
い合金の水素平衡解離圧力が1気圧以下が適している。
In the example, alloy 40 with high hydrogen equilibrium pressure was mixed with alloy 60 with low hydrogen equilibrium pressure, but the optimal range for the proportion of alloy with low hydrogen equilibrium pressure is 40 to 80% by weight, If it is less than 80% by weight, the effect of the hydrogenated alloy will be small and the discharge capacity will be reduced, and if it is more than 80% by weight, the cycle life will be significantly shortened. Furthermore, for production purposes, it is desirable to include a hydrogen storage alloy whose hydrogen equilibrium dissociation pressure at room temperature is 1 atm or less, and it is particularly suitable that the hydrogen equilibrium dissociation pressure of an alloy with a low hydrogen equilibrium pressure is 1 atm or less as in the example.

一方、水素化した合金より水素が出来るだけ解離しない
方が好ましいが、水素化し友合金から一部分水素を除去
しても従来の方法よりは優れている。いずれにしても水
素化した後、水素が吸蔵した状態には殆んど関係なく1
度以上水素を吸蔵させるところに本発明の効果がある。
On the other hand, it is preferable that hydrogen is not dissociated as much as possible compared to a hydrogenated alloy, but even if hydrogen is partially removed from a friend alloy by hydrogenation, it is still better than the conventional method. In any case, after hydrogenation, 1
The effect of the present invention lies in the fact that hydrogen is occluded more than once.

水素吸蔵合金としては上記のものに限らず他の合金を用
いてもよい。結着剤としてフッ素樹脂を用いたがポリエ
チレンの様な熱溶着型のものや溶液型の結着剤、たとえ
ばメチルセルロース、ポリビニルアルコールなども利用
可能である。
The hydrogen storage alloy is not limited to those mentioned above, and other alloys may be used. Although a fluororesin is used as the binder, heat-welding type binders such as polyethylene and solution type binders such as methyl cellulose and polyvinyl alcohol can also be used.

発明の効果 以上のように本発明によれば、水素吸蔵電極の製造工程
の簡易化、製造コストの低減、電極性能の向上が図れ、
高性能なアルカリ蓄電池の製造が可能となる。
Effects of the Invention As described above, according to the present invention, the manufacturing process of a hydrogen storage electrode can be simplified, the manufacturing cost can be reduced, and the electrode performance can be improved.
It becomes possible to manufacture high-performance alkaline storage batteries.

Claims (3)

【特許請求の範囲】[Claims] (1)水素平衡圧力の異なる2種類以上の水素吸蔵合金
粉末を密閉容器内に入れ、前記水素平衡圧力の低い水素
吸蔵合金の水素吸蔵圧力以上で前記水素平衡圧力の高い
水素吸蔵合金の水素吸蔵圧力以下の範囲にある水素雰囲
気中で水素化と活性化処理を施した後、耐アルカリ性の
高分子結着剤を加え、加圧成形して集電体と一体に結合
することを特徴とする水素吸蔵電極の製造法。
(1) Two or more types of hydrogen storage alloy powders with different hydrogen equilibrium pressures are placed in a closed container, and the hydrogen storage alloy with the high hydrogen equilibrium pressure absorbs hydrogen at a hydrogen storage pressure higher than the hydrogen storage pressure of the hydrogen storage alloy with the lower hydrogen equilibrium pressure. After hydrogenation and activation treatment in a hydrogen atmosphere within a range of pressure or less, an alkali-resistant polymer binder is added, and the product is press-molded to be integrally bonded to the current collector. Method for manufacturing hydrogen storage electrodes.
(2)前記水素吸蔵合金粉末の混合物中における水素平
衡圧力の低い合金の比率が40〜80重量%である特許
請求の範囲第1項記載の水素吸蔵電極の製造法。
(2) The method for producing a hydrogen storage electrode according to claim 1, wherein the proportion of the alloy having a low hydrogen equilibrium pressure in the mixture of hydrogen storage alloy powder is 40 to 80% by weight.
(3)前記水素吸蔵合金粉末の混合物が、常温における
水素平衡圧力1気圧以下の水素吸蔵合金を含む特許請求
の範囲第1項記載の水素吸蔵電極の製造法。
(3) The method for manufacturing a hydrogen storage electrode according to claim 1, wherein the mixture of hydrogen storage alloy powders contains a hydrogen storage alloy with a hydrogen equilibrium pressure of 1 atm or less at room temperature.
JP59250835A 1984-11-28 1984-11-28 Manufacturing method of hydrogen storage electrode Expired - Lifetime JPH0752646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59250835A JPH0752646B2 (en) 1984-11-28 1984-11-28 Manufacturing method of hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59250835A JPH0752646B2 (en) 1984-11-28 1984-11-28 Manufacturing method of hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS61128462A true JPS61128462A (en) 1986-06-16
JPH0752646B2 JPH0752646B2 (en) 1995-06-05

Family

ID=17213724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59250835A Expired - Lifetime JPH0752646B2 (en) 1984-11-28 1984-11-28 Manufacturing method of hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0752646B2 (en)

Also Published As

Publication number Publication date
JPH0752646B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
JPS60185362A (en) Manufacture of hydrogen storage electrode
JPH0638333B2 (en) Electrochemical battery
JPS62234876A (en) Manufacture of battery
JPS59181459A (en) Metal oxide hydrogen battery
JPS61128462A (en) Manufacture of hydrogen absorption electrode
JPS6164068A (en) Manufacture of hydrogen-absorbing electrode
US5401463A (en) Hydrogen-occlusion alloy electrode
JPS6215769A (en) Nickel-hydrogen alkaline battery
JP3373989B2 (en) Hydrogen storage alloy powder and manufacturing method
JPH0562676A (en) Alkaline storage battery
JPS61140075A (en) Manufacture of alkaline battery
JP3342699B2 (en) Hydride battery and method for charging negative electrode thereof
JPH02220355A (en) Hydrogen storage alloy electrode
JPS6149375A (en) Manufacture of hydrogen absorbing electrode
JPH0690922B2 (en) Sealed alkaline storage battery
JP2634859B2 (en) Electrode manufacturing method
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH0752645B2 (en) Manufacturing method of hydrogen storage electrode
JP2001035526A (en) Nickel hydrogen storage battery
JP3176387B2 (en) Method for producing hydride secondary battery
JPH0456426B2 (en)
JPS5931834B2 (en) Hydrogen storage electrode
JPS61168871A (en) Hydrogen occlusion electrode
JPH04259762A (en) Hydride secondary battery and manufacture thereof
JPS6332856A (en) Closed nickel-hydrogen storage battery