JPH057127B2 - - Google Patents

Info

Publication number
JPH057127B2
JPH057127B2 JP58103074A JP10307483A JPH057127B2 JP H057127 B2 JPH057127 B2 JP H057127B2 JP 58103074 A JP58103074 A JP 58103074A JP 10307483 A JP10307483 A JP 10307483A JP H057127 B2 JPH057127 B2 JP H057127B2
Authority
JP
Japan
Prior art keywords
machining
electrode
time
control device
oscillating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58103074A
Other languages
Japanese (ja)
Other versions
JPS59227328A (en
Inventor
Shigeaki Naka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10307483A priority Critical patent/JPS59227328A/en
Publication of JPS59227328A publication Critical patent/JPS59227328A/en
Publication of JPH057127B2 publication Critical patent/JPH057127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/16Electric circuits specially adapted therefor, e.g. power supply for preventing short circuits or other abnormal discharges by altering machining parameters using adaptive control

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は、電極と被加工物との間に形成され
た所定寸法の加工間〓に、例えば直流RC放電回
路を用いてパルス性放電を繰り返し発生させるこ
とによつて生ずる導体抵抗による発熱、電子衝撃
による発熱、および蒸気発生による圧力などによ
り被加工物を溶融させて所定の加工を行なう放電
加工装置に関するもので、特にこの発明は電極を
X−Y平面上において一定の軌跡を描かせながら
Z軸方向に掘り進めるNC制御装置によるいわゆ
る「揺動加工法」を用いた放電加工装置に関する
ものである。 [従来の技術] 第1図はこの種放電加工装置の動作原理を説明
するための構成図で、まず、被加工物10は、絶
縁性を有する加工液12を満たした加工槽14内
のテーブル16上に固定されている。そして、こ
のテーブル16は、駆動モータ20,24によつ
てそれぞれ回転駆動されるX軸方向の送りねじ軸
18と、Y軸方向の送りねじ軸22とによつてX
軸方向とY軸方向とに自在に移動し得るように構
成されている。次に、上記被加工物10に加工液
12を介して対向する電極26は駆動モータ30
によつて回転駆動されるZ軸方向の送りねじ軸2
8によつて、上下方向、すなわちZ軸方向に自在
に昇降し得るように構成されている。また上記加
工槽14内から配管32を介して加工液タンク3
4内に返戻された加工液12は、配管36および
ポンプ38を介してノズル40から上記被加工物
10と、電極26との間に加工間〓に向つて噴射
されたあと、上述したように配管32を経て加工
液タンク34内に返戻され、この加工液タンク3
4と加工槽とを循環するように構成されている。
そして、上記被加工物10と、電極26との相対
運動は、被化合物10を固定しているテーブル1
6のX軸方向と、Y軸方向の移動と、電極26の
Z軸方向の移動とによる三次元運動であることは
いうまでもない。次に、上記被加工物10と、電
極26との間に電気エネルギを供給する加工電源
42は、たとえば直流電源E、スイツチング素子
Tr、コンデンサC、充電抵抗R、および上記ス
イツチング素子制御回路SCとによつて構成され
ている。さらに、上記テーブル16と電極26と
を所定の三次元運動させる各駆動モータ20,2
4,30は放電加工制御装置44によつて制御さ
れるようになされており、放電加工制御装置44
としては、たとえば従来周知のNC制御装置
(Numeric Control)(数値制御装置ともいう)、
または倣い装置、あるいは電子計算機等が用いら
れる。 次に、上記電極26をX−Y平面上(水平面
上)において一定の軌跡を描かせながら、Z軸方
向(上下方向)に掘り進める「揺動加工法」につ
いて説明する。 一般に、電極26によつて被加工物10を放電
加工するとき、間〓サーボを用いて電極26を被
加工物10に向つてZ軸方向(上下方向)に単純
に下降させながら加工した場合には、電極26自
体が加工途中で消耗される結果、電極26が所定
位置まで掘り進んだときには、最初の形状とは異
なつてしまうため充分な精度が得られない。この
ため、これに対処した放電加工方法として、電極
26をX−Y平面上(水平面上)において一定の
軌跡を描かせながらZ軸方向に掘り進めるいわゆ
る「揺動加工法」が用いられている。 従来のこの種「揺動加工法」は、上記放電加工
制御装置44内に組込まれたいわゆるNC制御装
置(Numeric Control)(数値制御装置ともい
う)からのNC指令によつて駆動制御されるよう
に構成されているが、このNC指令によつて指定
されるプログラムの一例を示すと次の通りであ
る。
[Industrial Application Field] The present invention is characterized by repeatedly generating a pulsed discharge using, for example, a DC RC discharge circuit between a machining gap of a predetermined size formed between an electrode and a workpiece. The present invention relates to an electric discharge machining apparatus that melts a workpiece using heat generated by conductor resistance, heat generated by electron impact, and pressure generated by steam generation to perform a predetermined machining process. This relates to an electric discharge machining machine that uses the so-called "oscillating machining method" using an NC control device that excavates in the Z-axis direction while drawing a trajectory. [Prior Art] Fig. 1 is a block diagram for explaining the operating principle of this type of electrical discharge machining apparatus. It is fixed on 16. The table 16 is rotated by a feed screw shaft 18 in the X-axis direction and a feed screw shaft 22 in the Y-axis direction, which are rotationally driven by drive motors 20 and 24, respectively.
It is configured to be able to freely move in the axial direction and the Y-axis direction. Next, the electrode 26 facing the workpiece 10 via the machining fluid 12 is connected to the drive motor 30.
The feed screw shaft 2 in the Z-axis direction is rotationally driven by
8, it is configured to be able to freely move up and down in the vertical direction, that is, in the Z-axis direction. Further, the machining liquid tank 3 is connected from the inside of the machining tank 14 via the piping 32.
The machining fluid 12 returned into the interior of the workpiece 4 is injected from the nozzle 40 toward the machining gap between the workpiece 10 and the electrode 26 via the piping 36 and the pump 38, and is then sprayed as described above. The machining fluid is returned to the machining fluid tank 34 through the piping 32, and the machining fluid tank 3
4 and the processing tank.
The relative movement between the workpiece 10 and the electrode 26 is controlled by the table 1 on which the workpiece 10 is fixed.
Needless to say, this is a three-dimensional movement due to the movement of the electrode 26 in the X-axis direction and the Y-axis direction, and the movement of the electrode 26 in the Z-axis direction. Next, a processing power source 42 that supplies electrical energy between the workpiece 10 and the electrode 26 includes, for example, a DC power source E and a switching element.
T r , a capacitor C, a charging resistor R, and the above-mentioned switching element control circuit SC. Furthermore, each drive motor 20, 2 moves the table 16 and the electrode 26 in a predetermined three-dimensional manner.
4 and 30 are controlled by an electrical discharge machining control device 44.
For example, the conventionally well-known NC control device (Numeric Control) (also called numerical control device),
Alternatively, a copying device, a computer, etc. may be used. Next, a "swinging machining method" in which the electrode 26 is moved in the Z-axis direction (vertical direction) while drawing a constant trajectory on the X-Y plane (horizontal plane) will be explained. Generally, when electrical discharge machining is performed on the workpiece 10 using the electrode 26, the electrode 26 is simply lowered in the Z-axis direction (vertical direction) toward the workpiece 10 using a servo. In this case, as a result of the electrode 26 itself being consumed during processing, when the electrode 26 digs into a predetermined position, the shape differs from the initial shape, so that sufficient accuracy cannot be obtained. Therefore, as an electric discharge machining method to deal with this, a so-called "oscillating machining method" is used in which the electrode 26 is drilled in the Z-axis direction while drawing a constant trajectory on the X-Y plane (horizontal plane). . This type of conventional "oscillating machining method" is driven by NC commands from a so-called NC control device (also referred to as a numerical control device) incorporated in the electrical discharge machining control device 44. An example of a program specified by this NC command is as follows.

【表】 上記プログラムによる電極26の軌跡を示す第
2図においては、放電加工が第2段まで進んだ状
態を示しており、上記プログラムは「揺動加
工」の開始を示すもので、Z軸方向に10000μm
掘り下げ、そのときL8000のラベル番号をもつサ
ブプログラムの内容にしたがつてX−Y平面上に
おいて揺動することを示しており、「R500」の
「R」はサブプログラムに対する倍率で、「500」
は2分の1を意味している。さらに、上記プログ
ラム〜はサブプログラムで、電極26に対し
第2図に示す四角形の揺動軌跡を指示するもので
ある。 [発明が解決しようとする問題点] 上述した従来のこの種「揺動加工法」は、NC
制御装置からの単に位置指令のみの制御によつて
揺動加工を行なうため、特に仕上げ加工において
は、所望の加工面の粗さを得る以前に電極が指令
位置に達してしまい放電加工が終了してしまう場
合がある。このため、作業者は指令値を入力し直
して再放電加工しなければならない欠点があつ
た。すなわち、放電加工は、基本的には間〓サー
ボによつて加工が進められ、位置指令はその中に
あつて、電極が進む距離のリミツトを指令する役
割を果たしている。 そして、上記間〓は加工液内に含まれるスラツ
ジ等加工間〓の状態によつて距離が変化するた
め、例えば加工の途中で加工状態を観察すべく加
工を中断し、電極を移動させた後は、間〓部分の
スラツジが減少し、加工中断前の間〓距離では放
電が生じなくなる。このため、加工再開と同時に
電極が放電なしで進行し、加工が完全に終了して
いないにもかかわらず、電極が指令された位置に
到達してしまつて、揺動加工の終了指令が出てし
まうという問題が生じる。そして、このような問
題は単位時間あたりの加工量が少なく電極位置が
ほとんど変化しない仕上げ加工において特に問題
になる。すなわち、ほんの僅かな電極位置指令の
違いであつても加工時間ひいては仕上げ面の加工
状態には極めて大きな差が出てくるからである。 この発明はかかる点に着目してなされたもの
で、所定の加工を終了させるまでの時間を任意に
指定し得るようにして所望の加工面の荒さに達す
るまで、放電加工を自動的に継続させるようにし
た放電加工装置を提供しようとするものである。 [問題点を解決するための手段] この発明に係わる放電加工装置は、電極の揺動
加工時間を設定する第一の操作キーボードと、こ
の揺動加工時間の設定に基づき電極の揺動加工時
間を制御するNC制御装置と、この電極の揺動加
工時間の経過に伴い上記設定された揺動加工時間
を減算して、電極の揺動加工の残り加工時間を算
出するタイマと、この残り加工時間を画面上に表
示する時間表示装置と、加工中、上記NC制御装
置に対し残り加工時間の変更指令を行い揺動加工
時間を変更する第二の操作キーボードとを備えた
ものである。 [作用] この発明においては、指定した化合時間が経過
するまでは間〓の状態変化に基づく距離の変化に
かかわらず加工を終了することがないので、加工
の途中で加工状態を観察すべく加工を中断し電極
を移動させたとしても、それによつて加工が完全
に終了していないにもかかわらず電極が指令され
た位置に到達してしまい揺動加工の終了指令が出
てしまうという問題が生じることはない。したが
つて、加工の途中で加工状態を観察すべく加工を
中断し電極を移動させたとしても、残りの加工時
間を正確に判断し、変更することが可能である。 [実施例] この発明は、第3図の一実施例に示すように、
放電加工制御装置44A内に組み込まれた上記
NC制御装置による電極26の「揺動加工」時
に、この電極26の揺動時間を制御しようとする
もので、この発明による電極26の揺動時間を指
定するプログラムは、
[Table] Figure 2, which shows the trajectory of the electrode 26 according to the above program, shows the state in which electrical discharge machining has progressed to the second stage.The above program indicates the start of "oscillating machining", and the Z axis 10000μm in the direction
This indicates that the image will be oscillated on the X-Y plane according to the contents of the subprogram with the label number L8000, and the "R" in "R500" is the magnification for the subprogram, and "500"
means 1/2. Furthermore, the above program ~ is a subprogram that instructs the electrode 26 to move in a rectangular swing trajectory shown in FIG. [Problems to be solved by the invention] The above-mentioned conventional "oscillating machining method" is
Since oscillating machining is performed by controlling only the position command from the control device, especially in finishing machining, the electrode reaches the command position before the desired machined surface roughness is obtained, and the electrical discharge machining ends. There are cases where this happens. For this reason, there was a drawback that the operator had to input the command values again and perform electric discharge machining again. That is, in electric discharge machining, machining is basically progressed by an interval servo, and the position command is included therein and plays the role of commanding the limit of the distance that the electrode can travel. The above-mentioned distance changes depending on the state of the machining process, such as sludge contained in the machining fluid, so for example, if the machining is interrupted in the middle of machining to observe the machining status, and the electrode is moved, , the sludge in the gap area is reduced, and no electrical discharge occurs in the gap distance before machining is interrupted. For this reason, the electrode advances without electrical discharge at the same time that machining is restarted, and even though machining has not completely finished, the electrode reaches the commanded position, causing a command to end oscillating machining to be issued. The problem of putting it away arises. Such a problem becomes particularly problematic in finishing machining where the amount of machining per unit time is small and the electrode position hardly changes. In other words, even a slight difference in the electrode position command will result in an extremely large difference in the machining time and the machining state of the finished surface. This invention has been made with attention to this point, and allows the time until the end of a predetermined machining to be arbitrarily specified to automatically continue electrical discharge machining until the desired roughness of the machined surface is reached. It is an object of the present invention to provide an electric discharge machining apparatus as described above. [Means for Solving the Problems] The electrical discharge machining apparatus according to the present invention includes a first operation keyboard for setting an electrode oscillating machining time, and a first operation keyboard for setting an electrode oscillating machining time based on the setting of the oscillating machining time. an NC control device that controls this, a timer that calculates the remaining machining time of the electrode oscillation machining by subtracting the above-set oscillation machining time as the oscillation machining time of this electrode passes, and a timer that calculates the remaining machining time of the oscillation machining of the electrode. The machine is equipped with a time display device that displays the time on the screen, and a second operation keyboard that commands the NC control device to change the remaining machining time during machining to change the swing machining time. [Operation] In this invention, the machining is not completed until the specified combination time has elapsed, regardless of the change in the distance based on the change in the state of the gap, so the machining is performed in order to observe the machining state in the middle of the machining. Even if the process is interrupted and the electrode is moved, the problem is that the electrode reaches the commanded position even though the machining has not completely finished, resulting in a command to end the oscillating machining. It will never occur. Therefore, even if machining is interrupted and the electrode is moved to observe the machining state during machining, the remaining machining time can be accurately determined and changed. [Embodiment] This invention, as shown in an embodiment in FIG.
The above incorporated in the electric discharge machining control device 44A
The purpose is to control the oscillation time of the electrode 26 when the NC control device performs oscillation machining of the electrode 26, and the program for specifying the oscillation time of the electrode 26 according to the present invention is as follows:

【表】 であつて、上記のように「B20」と指定すること
によつて加工が20分継続して行なわれるようにし
たもので、この時間の設定は、放電加工制御装置
44A内の減算用タイマ45によつて行なわれ、
また、残り時間はCRTデイスプレイ装置46の
画面上に表示されるように構成され、また操作キ
ーボード47の入力操作によつて加工残り時間の
増減を行なうことができるように構成されてい
る。 この発明の放電加工装置は上記のように構成さ
れているので、NC制御装置からのNC指令によ
り電極26の揺動時間の指定がなされたとき、上
記プログラムの「B」の値で示された時間を放
電加工制御装置44内の減算用タイマ45に初期
設定されるとともに、この時点から減算が開始さ
れ、電極26の揺動加工も開始される。そして、
このあと、操作キーボード47のキー操作によつ
て残りの時間の変更が入力されると、その値が上
記減算用タイマ45にセツトされ、電極26の揺
動加工の進行と共に、減算が進み、残り時間が
「0」となつたときに、所定の揺動放電加工が終
了するようになされたものである。 なお、上記実施例においても、従来例同様位置
指令により電極移動のリミツトがかかるようにな
つているが、この位置指令は特に仕上げ加工時に
おいて時間指令によるリミツトが先にかかるよう
に予め大きく設定されていることは言うまでもな
い。 [発明の効果] 以上述べたように、この発明によれば特に「揺
動加工法」による仕上げ加工において、加工の終
了を時間で制御するようにしたので、従来の様に
NC制御装置からの単なる位置指令のみの制御の
場合と比較して、所望の荒さの加工面が得られる
優れた効果を有するものである。またこの発明に
よれば、放電加工の残り時間をCRTデイスプレ
イ装置46の画面上に表示することができ、しか
も、残り時間を操作キーボード47によつて簡単
に行なうことができるので、放電加工装置の操作
性が著しく向上する効果も有している。
[Table] By specifying "B20" as mentioned above, machining is performed continuously for 20 minutes, and this time setting is determined by subtraction in the electrical discharge machining control device 44A. is carried out by the timer 45 for
Further, the remaining time is displayed on the screen of the CRT display device 46, and the remaining machining time can be increased or decreased by inputting from the operation keyboard 47. Since the electric discharge machining apparatus of the present invention is configured as described above, when the swing time of the electrode 26 is specified by an NC command from the NC control device, the time indicated by the value "B" in the above program is The time is initially set in the subtraction timer 45 in the electric discharge machining control device 44, and subtraction is started from this point, and swinging machining of the electrode 26 is also started. and,
After this, when a change in the remaining time is input by key operation on the operation keyboard 47, that value is set in the subtraction timer 45, and as the oscillation machining of the electrode 26 progresses, the subtraction progresses and the remaining time is changed. The predetermined oscillating electrical discharge machining is completed when the time reaches "0". In the above embodiment, as in the conventional example, a limit on electrode movement is applied by a position command, but this position command is set large in advance so that the limit by a time command is applied first, especially during finishing machining. Needless to say, it is. [Effects of the Invention] As described above, according to the present invention, the end of machining is controlled by time, especially in finishing machining using the "oscillating machining method", so it is possible to
This method has an excellent effect in that a machined surface with a desired roughness can be obtained compared to control using only a simple position command from an NC control device. Further, according to the present invention, the remaining time of electrical discharge machining can be displayed on the screen of the CRT display device 46, and the remaining time can be easily controlled using the operation keyboard 47. It also has the effect of significantly improving operability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の放電加工装置を示す構成図、第
2図はプログラムによつて生成される電極の揺動
軌跡図、第3図はこの発明の一実施例を示す要部
構成図である。 図面中、10は被加工物、26は電極、28は
Z軸方向の送りねじ軸、30は駆動モータ、44
Aは放電加工制御装置、45は減算用タイマ、4
6はCRTデイスプレイ装置、47は操作キーボ
ードである。なお、図中同一符号は同一または相
当部分を示す。
FIG. 1 is a configuration diagram showing a conventional electric discharge machining device, FIG. 2 is a diagram of an electrode oscillation locus generated by a program, and FIG. 3 is a configuration diagram of main parts showing an embodiment of the present invention. . In the drawing, 10 is a workpiece, 26 is an electrode, 28 is a feed screw shaft in the Z-axis direction, 30 is a drive motor, and 44
A is an electric discharge machining control device, 45 is a subtraction timer, 4
6 is a CRT display device, and 47 is an operation keyboard. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 電極の揺動加工時間を設定する第一の操作キ
ーボードと、 この揺動加工時間の設定に基づき電極の揺動加
工時間を制御するNC制御装置と、 この電極の揺動加工時間の経過に伴い上記設定
された揺動加工時間を減算して、電極の揺動加工
の残り加工時間を算出するタイマと、 この残り加工時間を画面上に表示する時間表示
装置と、 加工中、上記NC制御装置に対し残り加工時間
の変更指令を行い揺動加工時間を変更する第二の
操作キーボードと、 を備えたことを特徴とする放電加工装置。
[Claims] 1. A first operation keyboard for setting the electrode swing processing time, an NC control device that controls the electrode swing processing time based on the setting of the swing processing time, and a first operation keyboard for setting the electrode swing processing time; a timer that calculates the remaining machining time for oscillating electrode machining by subtracting the set oscillating machining time as the dynamic machining time elapses; a time display device that displays this remaining machining time on a screen; An electrical discharge machining device comprising: a second operation keyboard that issues a command to change the remaining machining time to the NC control device during machining to change the swing machining time.
JP10307483A 1983-06-09 1983-06-09 Electric discharge machine Granted JPS59227328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10307483A JPS59227328A (en) 1983-06-09 1983-06-09 Electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10307483A JPS59227328A (en) 1983-06-09 1983-06-09 Electric discharge machine

Publications (2)

Publication Number Publication Date
JPS59227328A JPS59227328A (en) 1984-12-20
JPH057127B2 true JPH057127B2 (en) 1993-01-28

Family

ID=14344495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10307483A Granted JPS59227328A (en) 1983-06-09 1983-06-09 Electric discharge machine

Country Status (1)

Country Link
JP (1) JPS59227328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180095874A (en) * 2015-12-15 2018-08-28 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 Chip-bonding system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158793A (en) * 1974-11-18 1976-05-22 Mitsubishi Electric Corp TSUDENKAKOHOHO
JPS55164433A (en) * 1979-05-30 1980-12-22 Mitsubishi Electric Corp Electric discharge machining system
JPS55164435A (en) * 1979-05-30 1980-12-22 Mitsubishi Electric Corp Electric discharge machining system
JPS56102428A (en) * 1980-01-21 1981-08-15 Mitsubishi Electric Corp Discharge machining apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158793A (en) * 1974-11-18 1976-05-22 Mitsubishi Electric Corp TSUDENKAKOHOHO
JPS55164433A (en) * 1979-05-30 1980-12-22 Mitsubishi Electric Corp Electric discharge machining system
JPS55164435A (en) * 1979-05-30 1980-12-22 Mitsubishi Electric Corp Electric discharge machining system
JPS56102428A (en) * 1980-01-21 1981-08-15 Mitsubishi Electric Corp Discharge machining apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180095874A (en) * 2015-12-15 2018-08-28 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 Chip-bonding system and method

Also Published As

Publication number Publication date
JPS59227328A (en) 1984-12-20

Similar Documents

Publication Publication Date Title
EP2258516B1 (en) Method and system for automated software control of waterjet orientation parameters
JP4569973B2 (en) Electric discharge machining apparatus and method, and method for determining occurrence of electric discharge
JPH057127B2 (en)
JP2003340652A (en) Electric discharge machine
JP2011070538A (en) Machining control device and laser beam machining device
JPH0363475B2 (en)
JP3036337B2 (en) Wire electric discharge machine
JPH06315833A (en) Electric discharge machining device and machining condition setting method for the discharge machining device
JPS59169717A (en) Electric discharge machining device
JP2604461B2 (en) Electric discharge machining method and apparatus
JP2002331426A (en) Depth designating machining method in thin hole electric discharge machine and thin hole electric discharge machine having depth designating machining means
JPS61293751A (en) Electric discharge machine
JP4017292B2 (en) Machining condition setting method and apparatus for electric discharge machine
JPH01316131A (en) Electric discharge machining
JP2767671B2 (en) EDM control device
JP2605427B2 (en) Processing condition setting method
JPH03149134A (en) Electrode position control method for electric discharge machine
JPH10156630A (en) Electrical discharge machining method
JPH0430920A (en) Electric discharging method and device
JP2001269821A (en) Additional machining method and device by discharge
JPH03149137A (en) Swivel machining method for electric discharge machine
JPS63180422A (en) Electric discharge machine for narrow hole
EP0471086A1 (en) Electrolytic finishing method
JPS5854944B2 (en) Electrical discharge machining method and equipment
JPS6034223A (en) Electric discharge machine