JPH01316131A - Electric discharge machining - Google Patents

Electric discharge machining

Info

Publication number
JPH01316131A
JPH01316131A JP1481189A JP1481189A JPH01316131A JP H01316131 A JPH01316131 A JP H01316131A JP 1481189 A JP1481189 A JP 1481189A JP 1481189 A JP1481189 A JP 1481189A JP H01316131 A JPH01316131 A JP H01316131A
Authority
JP
Japan
Prior art keywords
electrode
workpiece
swing
voltage
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1481189A
Other languages
Japanese (ja)
Inventor
Junko Morishita
森下 順子
Hajime Ohashi
元 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPH01316131A publication Critical patent/JPH01316131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To carry out the working with high precision at a high speed by servodriving an electrode in the swing radial direction through a circular movement at a certain angular speed and moving the electrode in reciprocation in the working depth direction through the swing movement, keeping the gap from a workpiece constant. CONSTITUTION:A between-electrode voltage evaluation part 40 calculates the expansion quantity of the swing radius R represented by a primary function from the between-electrode voltage Vg between a workpiece 10 and an electrode 16, and the actual swing radius R is obtained by a swing radius calculation part 42, and the electrode 16 is moved in circular form at a certain angular speed by the X and Y-axis driving motors 24 and 26 through an output part 43, and servooperated in the swing radial direction. Further, an output part 41 in the depth direction outputs a certain speed output quantity for the vertical movement of the electrode 16 into a Z-axis driving motor 28, and moves the electrode 16 in reciprocation at a certain speed in the working depth direction. Therefore, the gap between the electrode is kept always constant, and the smooth and stable working can be carried out, and the working with high precision can be carried out at a high speed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は放電加工方法に係り、特に側面仕上げ加工方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electric discharge machining method, and particularly to a side surface finishing method.

[従来の技術] 第7図は、従来の放電加工方法を実現する加ニジステム
の全体の構成図である。
[Prior Art] FIG. 7 is an overall configuration diagram of a machining system that implements a conventional electrical discharge machining method.

図において、10は加工槽12内に蓄えられた絶縁性の
加工液14内に浸漬された被加工物であり、この被加工
物10は加工液14を介して電極16と対向している。
In the figure, 10 is a workpiece immersed in an insulating machining liquid 14 stored in a machining tank 12, and this workpiece 10 faces an electrode 16 with the machining liquid 14 in between.

加工液14は加工槽12と外部のタンク18の間を循環
されるもので、加工槽12からタンク18へと戻り、タ
ンク18に蓄えられた加工液14はポンプPによりノズ
ル20から加工槽12内の被加工物10と電極16との
間隙に噴射される。また、被加工物10と加工用の電極
16との相対運動は被加工物10が載置されるテーブル
22をX軸駆動モータ24とY軸駆動モータ26でテー
ブル22を含む平面内で移動させたり、あるいは電極1
6をX軸駆動モータ28で上下方向に移動させたり、ま
た、電極16をC軸駆動モータ30で任意の角度に回転
させることにより行われる。32は電気的エネルギを電
極16と被加工物10との間に供給する加工電源であり
、例えば、直流電源E、  l−ランジスタTr。
The machining fluid 14 is circulated between the machining tank 12 and an external tank 18, and returns from the machining tank 12 to the tank 18, and the machining fluid 14 stored in the tank 18 is transferred from the nozzle 20 to the machining tank 12 by the pump P. The liquid is sprayed into the gap between the workpiece 10 and the electrode 16 inside. Further, the relative movement between the workpiece 10 and the processing electrode 16 is achieved by moving the table 22 on which the workpiece 10 is placed within a plane including the table 22 using an X-axis drive motor 24 and a Y-axis drive motor 26. or electrode 1
6 in the vertical direction using the X-axis drive motor 28, or by rotating the electrode 16 to an arbitrary angle using the C-axis drive motor 30. 32 is a processing power supply that supplies electrical energy between the electrode 16 and the workpiece 10, such as a DC power supply E and an l-transistor Tr.

コンデンサC1抵抗R及びトランジスタTrをスイッチ
ングする制御回路34から構成されている。
It is composed of a control circuit 34 that switches a capacitor C1, a resistor R, and a transistor Tr.

36はX軸駆動モータ24.Y軸駆動モータ26゜X軸
駆動モータ28.C軸駆動モータ30を予め定められた
プログラムに従って駆動する数値制御倣い装置や電算機
等の数値制御装置である。
36 is the X-axis drive motor 24. Y-axis drive motor 26°X-axis drive motor 28. This is a numerical control device such as a numerical control copying device or a computer that drives the C-axis drive motor 30 according to a predetermined program.

次に動作について説明する。今、第8図(a)に示すよ
うに、被加工物10の板厚しよりも電極16の板厚dが
小さな場合の側面加工において被加工物10の加工面を
仕上げようとする時、−Cに揺動加工が用いられる。こ
れは、同図(b)に示すように、電極16をZ軸方向に
ステップ的に下げなからXY平面上で半径Rの円運動を
させる動きを繰り返しながら加工を進めていく。ここで
、Rを揺動半径と言う。しかしながら放電加工を行う場
合、電極16自体も消耗するため、−回に下げるステッ
プ距離ΔZの値にかかわらず加工面に筋50が発生しや
すい。
Next, the operation will be explained. Now, as shown in FIG. 8(a), when attempting to finish the machined surface of the workpiece 10 in side processing when the plate thickness d of the electrode 16 is smaller than the plate thickness of the workpiece 10, - Swing processing is used for C. As shown in FIG. 5(b), the machining is performed by repeatedly lowering the electrode 16 stepwise in the Z-axis direction and then moving it in a circular motion with a radius R on the XY plane. Here, R is called the swing radius. However, when electrical discharge machining is performed, the electrode 16 itself is also worn out, so streaks 50 are likely to occur on the machined surface regardless of the value of the step distance ΔZ that is lowered to - times.

[発明が解決しようとする課題] 従来の放電加工方法は以上のように行われているので、
被加工物10の加工面に筋50が付くという問題点があ
った。
[Problem to be solved by the invention] Since the conventional electrical discharge machining method is performed as described above,
There was a problem in that streaks 50 were formed on the machined surface of the workpiece 10.

この発明は上記のような問題点を解消するためになされ
たもので、被加工物の加工面に筋の発生しない放電加工
方法を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an electric discharge machining method that does not generate streaks on the machined surface of a workpiece.

[課題を解決するための手段] この発明に係る放電加工方法は、上記電極を一定角速度
で円運動させて揺動半径方向にサーボし、上記被加工物
と電極との間隙を一定に保って揺動運動させつつ、加工
深さ方向に一定速度で往復運動を繰り返すようにしたも
のである。
[Means for Solving the Problems] The electric discharge machining method according to the present invention includes servoing the electrode in a radial direction of swing by circularly moving the electrode at a constant angular velocity, and maintaining a constant gap between the workpiece and the electrode. It is designed to repeat reciprocating motion at a constant speed in the direction of the machining depth while making an oscillating motion.

この発明の別の発明に係る放電加工方法は、電極と被加
工物間の極間電圧から加工状態を評価し、この評価結果
による極間電圧が設定電圧と同じ間は上記電極を一定の
周回速度で揺動運動させ、かつ上記評価結果による極間
電圧と設定電圧に差がある間は該電圧差に応じて被加工
物と電極との間隙を一定に保つように揺動半径を増減さ
せた後−定周回速度で揺動運動させるようにしたもので
ある。
The electric discharge machining method according to another aspect of the present invention evaluates the machining state from the voltage between the electrode and the workpiece, and rotates the electrode a certain number of times while the voltage between the electrodes and the workpiece is the same as the set voltage based on the evaluation result. While there is a difference between the inter-electrode voltage and the set voltage based on the above evaluation results, the oscillation radius is increased or decreased to keep the gap between the workpiece and the electrode constant according to the voltage difference. After that, it is made to oscillate at a constant rotational speed.

[作 用] この発明においては、一定角速度で円運動する電極を揺
動半径方向にサーボ動作することにより、被加工物との
間隙を一定に保つ揺動運動をさせながら加工深さ方向に
一定速度で往復運動させるから、加工面に筋の発生する
ことのない均一な放電加工が可能になる。
[Function] In this invention, by servo-operating the electrode that moves circularly at a constant angular velocity in the oscillating radial direction, the electrode moves at a constant distance in the machining depth direction while making an oscillating movement that keeps the gap with the workpiece constant. Since it is reciprocated at high speed, uniform electrical discharge machining is possible without creating streaks on the machined surface.

また、この発明においては、被加工物に対して電極との
間隙を一定に保つために電極を揺動半径方向にサーボを
かけ、その後一定角速度で周回運動させるようにするか
ら、X、Y平面での極間電圧に対する評価が正しくなり
、常に極間の間隙が一定に保たれ、より円滑で安定な角
が得られると共に、高速で斉精度の加工が可能になる。
In addition, in this invention, in order to keep the gap between the electrode and the workpiece constant, the electrode is servoed in the radial direction of the oscillation, and then the electrode is rotated at a constant angular velocity. The evaluation of the voltage between the electrodes is now accurate, the gap between the electrodes is always kept constant, smoother and more stable corners can be obtained, and high-speed, uniform precision machining is possible.

[実施例] 以下、この発明の゛実施例を図について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は、この発明方法による放電加ニジステムの一実
施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a discharge application system according to the method of the present invention.

図において、40は極間電圧評価部であり、被加工物1
0と電極16間の極間電圧Vgを読み込んで、例えば第
2図の特性図に示すような一次関数で揺動半径Rの拡大
量を算出する。
In the figure, 40 is a machining voltage evaluation section, and the workpiece 1
0 and the electrode 16, and calculate the amount of expansion of the swing radius R using a linear function as shown in the characteristic diagram of FIG. 2, for example.

揺動半径演算部42は揺動半径只の拡大量に基づいて実
際の揺動半径Rを演算する。これは、前回の揺動半径R
に今回の揺動半径Rの拡大量を加算して行われる。揺動
方向出力部43では揺動半径演算部42で求められた揺
動半径Rを基にしてX軸駆動モータ24.Y軸駆動モー
フ26に対してそれぞれの駆動量の出力を行う。
The swing radius calculating section 42 calculates the actual swing radius R based on the amount of expansion of the swing radius. This is the previous swing radius R
This is done by adding the current enlargement amount of the swing radius R to the above. The swing direction output section 43 outputs the X-axis drive motor 24 based on the swing radius R determined by the swing radius calculation section 42 . Each drive amount is output to the Y-axis drive morph 26.

深さ方向出力部41は、電極16の上下運動に対する一
定速度出力量をX軸駆動モータ28に出力する。同図に
おける、極間電圧評価部40.深さ方向出力部41.揺
動半径演算部42及び揺動方向出力部43による演算は
加工中常時実行されており、電極16の上下動のみなら
ず揺動半径Rの変化に関する制御も連続的に行われる。
The depth direction output unit 41 outputs a constant speed output amount for the vertical movement of the electrode 16 to the X-axis drive motor 28. In the same figure, the electrode-to-electrode voltage evaluation section 40. Depth direction output section 41. The calculations by the swing radius calculation section 42 and the swing direction output section 43 are constantly executed during processing, and control regarding not only the vertical movement of the electrode 16 but also the change in the swing radius R is performed continuously.

揺動平面におけるX、Y軸の動きを第3図に基づいて説
明する。今、電極16がP点を中心とした最終目標半径
R2角速度ωで揺動している過程において、揺動半径は
第2図を基にして、Ri + 1 = Ri h l 
+ΔR1で求められる。第3図において、P、に電極が
あり極間電圧Vgが短絡ぎみで拡大量ΔR5がマイナス
値になった時、P、からR2への移動において揺動半径
R2はR9より小さくなる。
The movement of the X and Y axes in the swing plane will be explained based on FIG. 3. Now, in the process in which the electrode 16 is oscillating at the final target radius R2 angular velocity ω centered on point P, the oscillation radius is Ri + 1 = Ri h l based on Fig. 2.
It is determined by +ΔR1. In FIG. 3, when there is an electrode at P and the interelectrode voltage Vg is close to a short circuit and the expansion amount ΔR5 becomes a negative value, the swing radius R2 becomes smaller than R9 when moving from P to R2.

また、実際の移動計算においては揺動中心Pを座標値(
x、y)= (0,O)として、θ、。1=θ8+ωよ
りP1+1 の座標値をPL、+(X、  y)=(R
+、+cosθi+l+  Rt、+stnθ1+1)
で計算し、X、Y軸駆動モータ24,25への出力は (x、y)=Pt、+ (x、y) −P= (χ、y
)で行う。
In addition, in actual movement calculation, the swing center P is set to the coordinate value (
x, y) = (0, O), θ,. From 1=θ8+ω, the coordinate value of P1+1 is PL, +(X, y)=(R
+, +cosθi+l+ Rt, +stnθ1+1)
The output to the X and Y axis drive motors 24 and 25 is (x, y) = Pt, + (x, y) - P = (χ, y
).

また、電極16は上記X、Y軸の動作と共にZ軸方向に
対しては、一定の速度で決められた距離の上下運動を行
い、゛Z軸方向の移動出力量が深さ方向出力部4工から
X軸駆動モータ28へ出力されている。
Further, the electrode 16 performs vertical movement in the Z-axis direction at a constant speed and a predetermined distance in addition to the above-mentioned X- and Y-axis movements, and the amount of movement output in the Z-axis direction is determined by the depth direction output section 4. It is output from the machine to the X-axis drive motor 28.

ここで、深さ方向出力部41と揺動方向出力部43とは
互いに独立した制御を行っており、それぞれの制御は常
に行われている。
Here, the depth direction output section 41 and the swing direction output section 43 are controlled independently from each other, and each control is always performed.

なお、上記実施例では加工軸をZ軸、揺動平面としてX
Y平面のものを示したが、加工軸をX軸。
In the above embodiment, the processing axis is the Z axis, and the swing plane is the X axis.
Although the Y plane is shown, the processing axis is the X axis.

揺動平面をYZ平面としてもよく、また、加工軸をY軸
、揺動平面をZX平面としてもよい。
The oscillating plane may be the YZ plane, or the processing axis may be the Y axis and the oscillating plane may be the ZX plane.

また、上記実施例では貫通加工を例にあげたが、底付き
加工でもよい。
Further, in the above embodiment, a through-hole machining is taken as an example, but a bottom-finishing machining may also be used.

上述のような本実施例にあっては、被加工物に対して電
極を一定速度で往復運動させつつ、上記往復運動の方向
と直交角方向に対して↑8動運動させる様にしたので、
側面仕上げ加工面に筋が発生しなくなり、高精度な加工
が得られる。
In this embodiment as described above, while the electrode is reciprocated with respect to the workpiece at a constant speed, it is also moved by ↑8 motions in a direction perpendicular to the direction of the reciprocating motion.
There are no streaks on the side finishing surface, and highly accurate machining can be achieved.

第4図は、この発明の別の発明方法による放電加ニジス
テムの実施例を示すブロック図である。
FIG. 4 is a block diagram showing an embodiment of a discharge heating system according to another method of the present invention.

同図において、第1図と同一符号は同一部分を表わして
いる。また、半径方向出力部44では揺動半径演算部4
2で求められた揺動半径を基にしてX軸駆動モータ24
.Y軸駆動モータ26に対してそれぞれの駆動量の出力
を行う。
In this figure, the same reference numerals as in FIG. 1 represent the same parts. In addition, in the radial direction output section 44, the swing radius calculation section 4
Based on the swing radius obtained in step 2, the X-axis drive motor 24
.. Each drive amount is outputted to the Y-axis drive motor 26.

周回方向出力部45は、揺動半径演算部42で得られた
新しい揺動半径を基にして、X軸駆動モータ24.Y軸
駆動モータ26に対しそれぞれの周回方向の駆動量の出
力を行う。
The circumferential direction output section 45 outputs the X-axis drive motor 24. based on the new swing radius obtained by the swing radius calculation section 42. The drive amount in each circumferential direction is outputted to the Y-axis drive motor 26.

また、極間電圧評価部40.深さ方向出力部41、揺動
半径演算部42及び半径方向出力部44゜周回方向出力
部45による演算は加工中常時実行されており、電極1
6の上下動のみならず、揺動半径の変化に関する制御も
連続的に行われる。
Also, the inter-electrode voltage evaluation section 40. Calculations by the depth direction output section 41, the oscillation radius calculation section 42, the radial direction output section 44, and the circumferential direction output section 45 are constantly executed during machining.
Control regarding not only the vertical movement of 6 but also the change in the swing radius is performed continuously.

次に、上記構成の放電加ニジステムによる揺動平面にお
けるX、Y軸の動きを第5図及び第6図を参照して説明
する。
Next, the movement of the X and Y axes in the oscillating plane by the discharge heating system having the above configuration will be explained with reference to FIGS. 5 and 6.

第6図は本実施例における電極の動きを制御する手順を
示すフローチャートであって、揺動加工の開始に際して
は、まず、ステップ51において、電極16がP点を中
心にして初期揺動半径R8を設定し、次のステップでこ
の揺動半径RI、角速度ωにより周回運動を開始する。
FIG. 6 is a flowchart showing the procedure for controlling the movement of the electrode in this embodiment. When starting the oscillating machining, first, in step 51, the electrode 16 is moved with an initial oscillating radius R8 around point P. is set, and in the next step, circular motion is started using this swing radius RI and angular velocity ω.

この揺動している過程において、揺動半径は、第2図を
基にして揺動半径演算部42で、 Ri + l 冨R3十ΔRi から求められる。
During this oscillating process, the oscillation radius is determined by the oscillation radius calculation unit 42 from Ri + l + R3 + ΔRi based on FIG.

第5図は、揺動加工時の電極の移動経路を示すもので、
今、電極16がP I+にあり、この時の極間電圧Vg
を評価するとする。即ち、まず、ステップ53において
、極間電圧から加工が正常かを判定する。ここで、正常
、即ち極間電圧が設定電圧と同じと判定された時はステ
ップ52に戻って一定の周回速度で揺動運動されるよう
にX、Y軸モータ24,25を制御する。また、正常で
ないと判定された場合はステップ54に移行して、加工
しないかを判定する。
Figure 5 shows the movement path of the electrode during swing machining.
Now, the electrode 16 is at P I+, and the voltage between the electrodes at this time is Vg
Suppose we want to evaluate. That is, first, in step 53, it is determined from the machining voltage whether the machining is normal or not. Here, when it is determined that the voltage between the electrodes is normal, that is, the voltage between the electrodes is the same as the set voltage, the process returns to step 52 and the X and Y axis motors 24 and 25 are controlled so as to swing at a constant rotation speed. Further, if it is determined that it is not normal, the process moves to step 54, and it is determined whether or not to process it.

ここで、rNo、の時、即ち、極間電圧に加工粉等が滞
留するなどして極間の間隙が小さくなり、低い極間電圧
で放電が行われる時は、ステップ57に進み、rYEs
JO時はステップS55に移行して目標半径Rかを判定
する。目標半径であると判定された時はステップ59に
進み揺動加工を終了する。、また、rNo、の時はステ
ップ56に移行して揺動半径R,を拡大する方向、即ち
極間の間隙が設定値になるようにX、Y軸駆動モータ2
4゜26をサーボ制御して、電極を揺動半径方向に増大
させ、ステップ52に戻って極間電圧の評価を行う。
Here, when rNo, that is, when the gap between the electrodes becomes small due to processing powder etc. staying in the voltage between the electrodes and discharge is performed at a low voltage between the electrodes, the process proceeds to step 57, and rYEs
When the radius is JO, the process moves to step S55 and it is determined whether the radius is the target radius R or not. When it is determined that the radius is the target radius, the process proceeds to step 59 and the swing machining is completed. , When rNo, the process moves to step 56 and the X- and Y-axis drive motors 2 are operated in the direction of enlarging the swing radius R, that is, so that the gap between the poles reaches the set value.
4.degree. 26 is servo-controlled to increase the electrode in the radial direction of oscillation, and the process returns to step 52 to evaluate the voltage between the electrodes.

また、ステップ57において、極間電圧Vgが低く短絡
ぎみで、かつ拡大量ΔR8がマイナス値になったと判定
された時は、ステップ58に進み、R1+からP2Iへ
の移動において、揺動半径R2をR9より小さくなるよ
うに、X、Y軸をサーボ制御することで、電極16と被
加工物10の短絡ぎみを解消する。そして、ステップ5
3に戻り、再び加工状態が正常かを判定し、短絡気味が
解消された時点、即ち正常の時はR2で再び周回運動に
入る。
Further, when it is determined in step 57 that the inter-electrode voltage Vg is low and almost short-circuited, and that the expansion amount ΔR8 has become a negative value, the process proceeds to step 58, and the swing radius R2 is changed in the movement from R1+ to P2I. By servo-controlling the X and Y axes so that R9 is smaller, the short circuit between the electrode 16 and the workpiece 10 is eliminated. And step 5
Returning to step 3, it is determined again whether the machining state is normal, and when the short circuit is resolved, that is, when it is normal, the circular movement is started again at R2.

また実際の移動計算においては、揺動中心Pを座標値(
X、Y)= (0,O)として、θ3.I=θ、+ωよ
り、P、。11、。1の座標値を、P I+++jl(
X、  y)=(R,、cosθi+l+ Rj+1s
ln Oi++)で計算し、そして、半径方向へのサー
ボ制御時のX、Y軸駆動モータへの出力は、 (x、y)=Pt、J、+(x、y)−Pi+j(X+
  y)で行い、また、周回方向への移動時は、(x、
  y) =Pi+l+j(X+  y)  P+、、
(X、  y)で行う。
In addition, in actual movement calculation, the swing center P is set to the coordinate value (
As X, Y) = (0, O), θ3. From I=θ, +ω, P. 11. The coordinate value of 1 is expressed as P I+++jl(
X, y) = (R,, cosθi+l+ Rj+1s
ln Oi++), and the output to the X and Y axis drive motors during radial servo control is (x, y) = Pt, J, + (x, y) - Pi + j (X +
y), and when moving in the circumferential direction, (x,
y) =Pi+l+j(X+y) P+,,
Perform with (X, y).

上述のような本実施例にあっては、電極16と被加工物
10間の極間電圧■9から加工状態(ステップ53,5
4,55.57)を評価し、この評価結果による極間電
圧が設定電圧と同じ間は一定の周回速度で揺動運動し、
極間電圧と設定電圧に差がある間は該電圧差に応じて揺
動半径を増減した後、周回運動させるようにしたので、
極間電圧に対する評価が正しく行われ、常に極間の間隙
が一定に保たれると共に、より円滑で安定な加工が得ら
れる結果、より高速で高精度な加工が期待できる。
In this embodiment as described above, the machining state (steps 53, 5
4, 55, 57), and as long as the inter-electrode voltage according to the evaluation result is the same as the set voltage, the oscillating motion is performed at a constant orbiting speed,
While there is a difference between the inter-electrode voltage and the set voltage, the swing radius is increased or decreased according to the voltage difference, and then the circular motion is performed.
The evaluation of the voltage between the electrodes is performed correctly, the gap between the electrodes is always kept constant, and smoother and more stable machining can be achieved, resulting in faster and more accurate machining.

なお、上記実施例では、加工軸をZ軸、揺動平面として
XY千面のもので示したが、加工軸をX軸、揺動平面を
YZ平面としてもよく、また、加工軸をY軸、揺動平面
をZX平面としてもよい。
In the above embodiment, the machining axis is the Z axis and the swing plane is XY thousand planes, but the machining axis may be the X axis and the swing plane may be the YZ plane, or the machining axis may be the Y axis. , the swing plane may be the ZX plane.

また、電極を一定の周回運動をさせながらZ軸方向に一
定の速度で往復動させてもよく、さらにZ軸方向の加工
が終了した後に別の発明の加工方法を実行するようにし
てもよい。
Further, the electrode may be reciprocated at a constant speed in the Z-axis direction while making a constant circular motion, and furthermore, a machining method of another invention may be executed after machining in the Z-axis direction is completed. .

[発明の効果] 以上のように、この発明によれば、被加工物に対して電
極を一定速度で往復運動させつつ、上記往復運動の方向
と直角方向に対して揺動運動させるようにしたので、加
工面に筋が発生しなくなり、高い加工精度の被加工物が
得られるという効果がある。
[Effects of the Invention] As described above, according to the present invention, the electrode is reciprocated with respect to the workpiece at a constant speed, while being oscillated in a direction perpendicular to the direction of the reciprocating movement. Therefore, there is an effect that streaks are not generated on the machined surface and a workpiece with high machining accuracy can be obtained.

また、極間の電圧を一定に保つために、極間電圧を評価
した位置で、その結果が反映されるように揺動半径方向
にサーボをかけ、その後、一定の周回運動させるように
するから、極間の間隙が常に一定に保たれ、より円滑で
安定な加工が得られると共に、高速で高精度の加工が可
能になるという効果がある。
In addition, in order to keep the voltage between the poles constant, a servo is applied in the radial direction of the swing so that the result is reflected at the position where the voltage between the poles is evaluated, and then a constant circular motion is applied. This has the effect that the gap between the poles is always kept constant, resulting in smoother and more stable machining, and also enables high-speed, high-precision machining.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明方法による放電加工方法の一実施例を
示す全体の構成図、第2図はこの実施例における種間電
圧評価内容を示す説明図、第3図はこの実施例における
電極の移動量を求める様子を示す図、第4図はこの発明
の別の発明方法による放電加工方法の一実施例を示す全
体の構成図、第5図はこの実施例における揺動加工時の
電極の移動経路を示す説明図、第6図はこの実施例にお
ける電極の動きを制御する加工手順を示すフローチャー
ト、第7図は従来の放電加工方法による電極の移動を示
す図、第8図(a)、 (b)は従来の放電加工装置を
示す概略構成図である゛。 10・・・被加工物、16・・・電極、24・・・X軸
駆動モータ、26・・・Y軸駆動モータ、28・・・Z
!lll駆動モータ、40・・・極間電圧評価部、41
・・・深さ方向出力部、42・・・揺動半径演算部、4
3・・・揺動方向出力部、44・・・半径方向出力部、
45・・・周回方向出力部。 なお、図中、同一符号は同一または相当部分を示す。
Fig. 1 is an overall configuration diagram showing an embodiment of the electrical discharge machining method according to the method of the present invention, Fig. 2 is an explanatory diagram showing the content of interspecies voltage evaluation in this embodiment, and Fig. 3 is an illustration of the electrode in this embodiment. FIG. 4 is a diagram showing the overall configuration of an embodiment of the electric discharge machining method according to another invention method of the present invention, and FIG. 5 is a diagram showing how the amount of movement is determined. An explanatory diagram showing the movement path, FIG. 6 is a flowchart showing the machining procedure for controlling the movement of the electrode in this embodiment, FIG. 7 is a diagram showing the movement of the electrode by the conventional electric discharge machining method, and FIG. 8 (a) , (b) is a schematic configuration diagram showing a conventional electrical discharge machining device. DESCRIPTION OF SYMBOLS 10... Workpiece, 16... Electrode, 24... X-axis drive motor, 26... Y-axis drive motor, 28... Z
! lll drive motor, 40... electrode voltage evaluation section, 41
... Depth direction output section, 42 ... Oscillation radius calculation section, 4
3... Swinging direction output part, 44... Radial direction output part,
45...Revolving direction output section. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)被加工物と電極を相対運動させ、上記被加工物と
電極間に供給された電気エネルギによって放電を発生さ
せ、上記被加工物を所望の形状に加工する放電加工方法
において、上記電極を一定角速度で円運動させて揺動半
径方向にサーボ動作し、上記被加工物と電極との間隙を
一定に保って揺動運動させつつ、加工深さ方向に一定速
度で往復運動を繰り返すことを特徴とする放電加工方法
(1) In an electric discharge machining method in which a workpiece and an electrode are moved relative to each other, electrical energy is generated between the workpiece and the electrode, and the workpiece is machined into a desired shape. is moved circularly at a constant angular velocity and servo operated in the oscillating radial direction, and while the gap between the workpiece and the electrode is kept constant and the oscillating motion is made, the reciprocating motion is repeated at a constant speed in the machining depth direction. An electric discharge machining method characterized by:
(2)被加工物と電極を相対運動させ、上記被加工物と
電極間に供給された電気エネルギによって放電を発生さ
せ、上記被加工物を所望の形状に加工する放電加工方法
において、上記電極と被加工物間の極間電圧から加工状
態を評価し、この評価結果による極間電圧が設定電圧と
同じ間は上記電極を一定の周回速度で揺動運動させ、か
つ上記評価結果による極間電圧と設定電圧に差がある間
は該電圧差に応じて上記被加工物と電極との間隙を一定
に保つように揺動半径を増減させた後一定周回速度で揺
動運動させることを特徴とする放電加工方法。
(2) In an electrical discharge machining method in which a workpiece and an electrode are moved relative to each other, electrical energy is supplied between the workpiece and the electrode to generate an electric discharge, and the workpiece is machined into a desired shape. The machining condition is evaluated from the voltage between the electrodes and the workpiece, and while the voltage between the electrodes and the workpiece is the same as the set voltage, the electrode is oscillated at a constant rotational speed, and While there is a difference between the voltage and the set voltage, the oscillation radius is increased or decreased in accordance with the voltage difference so as to keep the gap between the workpiece and the electrode constant, and then the oscillation movement is performed at a constant rotation speed. electrical discharge machining method.
JP1481189A 1988-03-15 1989-01-24 Electric discharge machining Pending JPH01316131A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6077288 1988-03-15
JP63-60772 1988-03-15

Publications (1)

Publication Number Publication Date
JPH01316131A true JPH01316131A (en) 1989-12-21

Family

ID=13151912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1481189A Pending JPH01316131A (en) 1988-03-15 1989-01-24 Electric discharge machining

Country Status (1)

Country Link
JP (1) JPH01316131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136849A (en) * 1993-11-16 1995-05-30 Yasushi Fukuzawa Electric discharge machining and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136849A (en) * 1993-11-16 1995-05-30 Yasushi Fukuzawa Electric discharge machining and device therefor

Similar Documents

Publication Publication Date Title
KR960031041A (en) Discharge machining method and apparatus thereof
JPS6161932B2 (en)
CN114417535A (en) Laser welding head dynamic track generation method based on platform motion tangent angle
JPH01316131A (en) Electric discharge machining
JPH10337638A (en) Shape creating method
JP3875253B2 (en) EDM machine
JP2962583B2 (en) Strain-free precision numerical control processing method and apparatus by radical reaction
JP2969028B2 (en) Electric discharge machining method and apparatus
JP3512577B2 (en) Electric discharge machining apparatus and electric discharge machining method
JPH09108945A (en) Electric discharge machining device and method
JPH01171727A (en) Oscillation machining method for electric discharge machine
JPH02212026A (en) Method and device for electric discharge machining
JPH03149137A (en) Swivel machining method for electric discharge machine
JP3732290B2 (en) Electric discharge machining apparatus and electric discharge machining method
JP4017292B2 (en) Machining condition setting method and apparatus for electric discharge machine
JP2002066875A (en) Machining device and machining method
JPH057127B2 (en)
JPH11170118A (en) Wire-cut electric discharge machining method, and device therefor
JP3980625B2 (en) EDM machine
Tong et al. On-Machine Process of Rough-And-Finishing SS-3D Micro EDM
JP3851332B2 (en) EDM machine
JP3547618B2 (en) Computer-readable recording medium storing electric discharge machining apparatus, electric discharge machining method, and program for causing computer to execute electric discharge machining method
JPH03166021A (en) Method of electric discharge machining
JPS63191519A (en) Control of electric discharge machining
JPH11320262A (en) Method and device for controlling electric discharge machining