JP4017292B2 - Machining condition setting method and apparatus for electric discharge machine - Google Patents

Machining condition setting method and apparatus for electric discharge machine Download PDF

Info

Publication number
JP4017292B2
JP4017292B2 JP19309699A JP19309699A JP4017292B2 JP 4017292 B2 JP4017292 B2 JP 4017292B2 JP 19309699 A JP19309699 A JP 19309699A JP 19309699 A JP19309699 A JP 19309699A JP 4017292 B2 JP4017292 B2 JP 4017292B2
Authority
JP
Japan
Prior art keywords
machining
electrode
workpiece
processing
electric discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19309699A
Other languages
Japanese (ja)
Other versions
JP2001018122A (en
Inventor
恭一 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP19309699A priority Critical patent/JP4017292B2/en
Publication of JP2001018122A publication Critical patent/JP2001018122A/en
Application granted granted Critical
Publication of JP4017292B2 publication Critical patent/JP4017292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は放電加工機の加工条件設定方法および装置に関し、特に、加工槽内に充満した加工液中でまたは該加工液中に粉体を混入した加工液中で、電極とワークとの極間にパルス電圧を印加するとともに、これら電極とワークとを相対移動させながらワークを加工する放電加工機の加工条件設定方法および装置に関する。
【0002】
【従来の技術】
一般に、放電加工では加工効率および加工精度の向上を図るため、まず所望の荒加工条件でワークの加工を行い、その後、中加工条件および仕上げ加工条件と数段階に加工エネルギを変えながら(小さくしながら)、所望の加工寸法と加工面粗さが得られるようにワークを仕上げている。この加工エネルギは電極とワークとの極間に供給される加工電流のピーク値とパルス幅との積で決定されるものであるが、加工電流のパルス幅を小さくすることは難しく、加工電流のピーク値を小さくすることにより仕上げ加工における小さいエネルギを得るようにしている。また、仕上げ加工では小さい加工エネルギで電極とワークとの極間で安定した放電加工が得られるように、放電加工中の電極とワークとの極間の距離、所謂放電ギャップを微小にしている。通常、放電加工機では、電極とワークとの極間に加工電源からパルス電圧が印加され、電極とワークとの相対移動により電極とワークとの極間の距離が小さくなると、電極とワークとの極間で放電が発生し加工が行われる。
【0003】
このような放電加工機により加工されるワークの加工精度を向上させる技術が種々提案されている。例えば、特許第2667183号公報には、ワークに対して電極を所定の位置から所定の深さ方向に送り、荒加工から仕上げ加工まで一連の加工ステップ順に電極送りを制御しながらワークの加工を行い、加工中に生じる加工誤差を補正することにより加工精度を向上させる形彫放電加工における加工誤差補正制御方法が開示されている。
【0004】
特許第2667183号公報に記載の形彫放電加工における加工誤差補正制御方法は、加工前の位置合わせ誤差や加工中の間隙誤差を解消して放電加工の高精度化を図るものである。
上記特許の第1の加工誤差補正制御方法は、加工開始前に所定の位置に各々設定した電極とワークとの間隙が特定値になる間隙検出条件で所定時間だけ微小放電させて、その位置検出より加工深さ方向の基準面設定を行った後、所定の加工を開始し、その後さらに、最初の荒加工から仕上げ加工の終了に至る加工途中で、電極送りが指定の深さに達した時点での加工中の電極位置を測定し、その加工条件から、間隙が特定値になる間隙検出条件に切換え、微小放電を所定時間生じさせながら間隙を収束させた後、その時の電極位置を測定し、この両方の測定値の変化量より、加工計画時の所定値に対する加工間隙の誤差量あるいは加工深さの誤差量を算出し、その誤差量を補正するように電極送り量を制御してその後の加工を再開するものである。
【0005】
上記特許の第2の加工誤差補正制御方法は、上記と同様に基準面設定を行った後、所定の加工を開始し、その後さらに、最初の荒加工から仕上げ加工の終了に至るステップの過程で、深さ方向の電極位置が指定の目標値に達してそのステップの加工を終えた後に、間隙が特定値になる間隙検出条件に切換え、微小放電を所定時間生じさせながら間隙を収束させた後、その時の電極位置を測定して、その測定値より前記ステップの加工後の深さを求めた後、さらに加工計画時の加工深さの誤差量を算出し、この算出結果から補正加工が必要と判断された場合に、その誤差量を補正するように電極送り量を制御して加工を行うものである。
【0006】
一方、放電加工における加工終了判定方法に関する技術も種々提案されている。例えば、特許第2717474号公報に記載された放電加工方法は、加工開始から指定時間が経過したことにより加工終了を判定するものであり、電極とワークとの極間における放電中の実加工時間のみをカウントし、指定時間に達したら加工を終了する時間管理機能により、過不足なく加工を行うものである。
【0007】
【発明が解決しようとする課題】
一般に、放電加工に用いられる電極の材質、ワークの材質、電極とワークとの極間への印加電圧、電極とワークとの相対移動速度およびワークの加工面粗さ等の内の少なくとも1つから定まる加工条件が同一の放電加工において、電極とワークとの極間における放電面積が大きい程、電極とワークとの極間に介在する加工液中の単位体積当たりの加工屑の量が少なくなり、電極とワークとの間の電気絶縁度が小さくなるため、放電ギャップが小さくなり、電極消耗が多くなる。その結果、加工の取り残しが生じ、加工寸法が小さくなり再加工を要し、加工時間が長くなるという問題がある。
【0008】
また、油等の通常の加工液中に、グラファイト等の炭素系物質、クロム等の金属、またはシリコン等の半金属の導電性の粉体を混入した粉体混入加工液中で、電極とワークとの極間に上記のような粉体を介在させながら仕上げ加工を行う放電加工方法がある。この場合、上記加工条件が同一の放電加工において、加工液に混入させた粉体の濃度が濃い程、電極とワークとの極間に介在する加工液中の単位体積当たり粉体の量が多くなり、電極とワークとの間の電気絶縁度が大きくなるので、放電ギャップが大きくなり、実際の加工取代は過多となり、加工寸法が大きくなるため加工不良となるという問題がある。
【0009】
図7は粉体濃度が濃いときの従来技術によるワーク加工不良例を示す図である。粉体の濃度が濃いとき、加工過多が生じると、図7に示すように、入口部にダレ701が生じ直角度が悪くなるという問題がある。
上記特許第2667183号公報に記載された形彫放電加工における加工誤差補正制御方法は、放電面積が大きい程加工取り残しが生じ、加工液に混入する粉体の濃度が濃い程加工過多が生じるという加工精度の問題と、取り残しの再加工に相当する加工時間の増加による加工効率の低下の問題とについて何ら開示していない。
【0010】
また、上記特許第2717474号公報に記載された放電加工方法における時間管理機能を用いて、電極送りを指定の深さに達する前に加工を終了させて加工過多をなくし加工時間を短縮する方法では、放電面積および加工液に混入させた粉体の濃度の少なくとも一方に応じて、加工条件毎に短縮する加工時間の設定値をオペレータがその都度設定しなければならず、この設定にはオペレータの熟練度が要求され、かつ加工精度にオペレータの個人差が影響してしまうという問題がある。
【0011】
それゆえ、本発明は上述した問題をすべて解決し、上記加工条件が同一の放電加工において、放電面積または加工液に混入させた粉体の濃度を考慮し、指定された仕上げ加工に対して再加工を要することなく1度でその加工を終了させ、加工精度および加工効率を向上させた放電加工機の加工条件設定方法および装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
前記目的を達成する本発明による第1形態に係る放電加工機の加工条件設定方法は、加工槽内に充満した加工液中で、電極とワークとの極間にパルス電圧を印加するとともに、前記電極とワークとを相対移動させながら前記ワークを加工する放電加工機の加工条件設定方法において、入力手段により入力された前記電極の放電面積を読取り、読取った該電極の放電面積に対する加工の取り残し量を前記電極の放電面積との比例関係を示す実験データから演算し、加工深さ又は揺動半径を前記加工の取り残し量で増量補正して設定することを特徴とする。
【0013】
前記目的を達成する本発明による第1形態に係る放電加工機の加工条件設定装置は、加工槽内に充満した加工液中で、電極とワークとの極間にパルス電圧を印加するとともに、前記電極とワークとを相対移動させながら前記ワークを加工する放電加工機の加工条件設定装置において、入力手段により入力された前記電極の放電面積を読取り、読取った該電極の放電面積に対する加工の取り残し量を前記電極の放電面積との比例関係を示す実験データから演算し、加工深さ又は揺動半径を前記加工の取り残し量で増量補正して設定する相対移動量設定手段を具備することを特徴とする。
【0017】
【発明の実施の形態】
以下、添付図面を参照しつつ本発明の実施の形態について詳細に説明する。
図1は本発明による加工条件設定装置を有した放電加工機の一実施形態を示す概略ブロック構成図である。図1は、電極1とワーク3との極間に加工電源5からパルス電圧を印加し、発生する放電によりワーク3を加工する形彫放電加工機を示す。ワーク3はXY移動テーブル9上設けられた加工槽7内に載置される。ワーク3は、加工槽7内に充満され導電性物質の粉体が混入した加工液中に浸漬している。加工液は、図示しないが、加工液供給ポンプにより加工液タンクからホース等の供給管を通って加工槽7内に供給され、加工槽7内の使用済みの加工液は加工槽7に設けられた排出口からホース等の排出管を通って加工液タンク内に回収、収容さるようにして加工槽7と加工液タンクとの間を循環している。
【0018】
加工電源5は、極間に放電を点孤させるために使用されるサーチ電源および放電加工エネルギを供給するメイン電源を有し、加工条件設定手段19から極間への印加電圧、τON(放電時間)、τOFF(休止時間)等の加工電源用パラメータを受け、これらにしたがって電極1とワーク3との極間にパルス電圧を供給する。
【0019】
XY移動テーブル9は、X軸用サーボモータ11とY軸用サーボモータ13の駆動によりそれぞれX軸、Y軸方向に移動する。これにより、ワーク3のXY軸方向の移動または必要に応じて揺動が行われる。一方、電極1は、図示しない主軸に把持されており、図示しないコラムに取付けられたZ軸用サーボモータ15の駆動によりZ軸方向に主軸とともに移動する。これにより、非放電加工中における電極1のZ軸方向の位置決めと放電加工中における極間距離(放電ギャップ)の制御とが行われる。X軸用サーボモータ11、Y軸用サーボモータ13およびZ軸用サーボモータ15は、図示しないエンコーダをそれぞれ有し、サーボ制御手段17にX、Y、Z軸用モータの回転角度を示す信号、すなわち電極1のX、Y、Z軸方向の位置信号をそれぞれフィードバックする。
【0020】
サーボ制御手段17は、NCプログラムからの制御データに基づきX軸用送りモータ11、Y軸用送りモータ13およびZ軸用送りモータ15にサーボ出力をそれぞれ送出し、放電加工機の図示しない電極ヘッドおよび電極1を装着した主軸の移動を制御するためのものである。
サーボ制御手段17により制御されるZ軸用送りモータ15は、電極ヘッド内を移動する主軸に装着された電極1を加工進行方向へ移動させる。つまり、ワーク3に対して送り込み、または退避させるサーボモータであり、X軸用送りモータ11およびY軸用送りモータ13は、主軸に装着された電極1を加工進行方向と垂直な平面内で相互に直行する2軸方向に移動させるサーボモータである。こうして、X軸用送りモータ11およびY軸用送りモータ13による移動の合成により電極1をワーク3に対して相対的な二次元揺動運動をさせることができ、さらに、X軸用送りモータ11、Y軸用送りモータ13、Z軸用送りモータ15による移動の合成により電極1をワーク3に対して相対的な三次元揺動運動をさせることもできる。このように、本発明の放電加工装置は、加工液中で電極1とワーク3との極間に粉体を介在させ、電極1とワーク3との間で相対移動を行いながら必要に応じて揺動運動を与えてワーク3を放電加工するものである。
【0021】
加工条件設定手段19は、XY移動テーブル9をX軸およびY軸方向に移動するためのXY軸制御パラメータをテーブル送り制御手段21に送り、一方、電極1をZ軸方向に移動するためのZ軸制御パラメータを電極送り制御手段23に送る。
データ入力手段25は、加工条件設定手段19に種々のデータを入力するための手段であり、図示しないキーボード、CRT等から構成される。
【0022】
加工条件設定手段19はデータ入力手段25による入力データおよび極間状態検出手段27から受けた極間状態信号に基づき、ワーク3を加工するために必要な加工電源用パラメータ、各サーボモータへの制御パラメータを設定する。
また、加工条件設定手段19は、図示しない紙テープリーダやフロッピーディスクドライブ(FDD)により読取られた加工プログラムをブロック毎に読取ることもできる。
【0023】
極間状態検出手段27は、電極1とワーク3との極間の状態が、加工電源5から極間にサーチ電圧を印加した後でまだ放電を開始していない状態かまたは短絡状態か、あるいは極間にメイン電圧を印加した後の有効放電状態または異常放電状態か等を検出する機能を有する。加工条件設定手段19は、極間状態検出手段27から極間状態信号を受け、加工に適切な上記加工電源用パラメータを加工電源5に送る。
【0024】
極間状態検出手段27は、電極1とワーク3との極間に印加されたパルス電圧を検出して極間の状態を検出し、例えば極間の平均電圧を演算器29に送る。
演算器29は、極間状態検出手段27から受けた検出量と加工条件設定手段19から受けた目標基準値との差分である偏差量を示す信号を電極送り制御手段23に送る。電極送り制御手段23は、加工条件設定手段19から送られたZ軸制御パラメータと演算器29から送られた誤差量とに基づいて電極1の前進・後退量をサーボ制御手段17に出力する。
【0025】
加工深さ補正値演算手段31は、所定のワーク3の放電加工開始前にデータ入力手段25から入力された今回加工を行う電極1の放電(加工)面積のデータを受け、かつ予め加工深さ補正値格納手段33に格納された後述する図2に示すテーブルから、加工条件に応じた加工深さの設定値、すなわちZ軸方向の送り量を算出するためのデータ(底面残し量)を読取り、その加工深さの設定値を算出し、加工条件設定手段19から演算器29に送る目標基準値を上記算出した加工深さの設定値に置き換える。ここで、目標基準値とは、加工深さ補正値格納手段33に格納された図2に示すテーブルに基づき、加工条件設定手段19により加工条件に応じて算出される加工深さの設定値のことである。
【0026】
揺動半径補正値演算手段35は、所定のワーク3の放電加工開始前にデータ入力手段25から入力された今回加工を行う電極1の放電(加工)面積のデータを受け、かつ予め揺動半径補正値格納手段37に格納された図2に示すテーブルから、加工条件に応じた揺動半径の設定値、すなわちX軸およびY軸方向の揺動半径を算出するためのデータ(側面残し量)を読取り、その揺動半径の設定値を算出し、加工条件設定手段19からテーブル送り制御手段21に送るXY軸制御パラメータを上記算出した揺動半径の設定値で補正する。ここで、XY軸制御パラメータとは、揺動半径補正値格納手段37に格納された図2に示すテーブルに基づき、加工条件設定手段19により加工条件に応じて算出された揺動半径の設定値から求まるXY移動テーブル9をX軸およびY軸方向に移動するための制御パラメータである。
【0027】
以上説明した各手段の機能を遂行する放電加工制御装置100は、例えば図示しない双方向バスにより相互に接続されたCPU、ROM、RAM、B(バッテリバックアップ)RAM、各種入力インタフェースおよび各種出力インタフェースを備えたマイクロコンピュータシステムとして構成される。入力インタフェースには、キーボードおよびA/Dコンバータ等が接続される。A/Dコンバータには、例えば極間のアナログ電圧がアッテネータを介してローレベルで入力され、デジタルデータに変換される。出力インタフェースには、CRT等の表示装置、プリンタおよびD/Aコンバータ等が接続される。
【0028】
次に、前述した加工深さおよび揺動半径の設定値の算出方法について以下に説明する。
図2は加工深さおよび揺動半径の設定値を算出するため予め加工条件に応じて設定されるデータのテーブルを示す図である。加工条件は、電極の材質、ワークの材質、電極とワークとの極間への印加電圧、電極とワークとの相対移動量およびワークの加工面粗さ等の内の少なくとも1つから選択される。図2に示す例では、加工条件としてワークの加工面の面粗さが選択され、テーブルには番号1〜4の加工条件に対するデータが格納されている。各加工条件における面粗さは、加工条件番号1のときは60μmRmax 、加工条件番号2のときは40μmRmax 、加工条件番号3のときは20μmRmax 、加工条件番号4のときは10μmRmax である。図2に示すテーブルは、4つの加工条件下で加工条件番号1〜4の順で合計4回の仕上げ加工が行われることを示している。図2に示すテーブルには、加工条件番号1〜4に対応した底面残し量および側面残し量が格納されている。次に、これら底面残し量および側面残し量について以下に説明する。
【0029】
図3は仕上げ加工の一例を示す図である。加工深さDは、ワークの上面301からこの仕上げ加工終了後のワークの加工面302までの電極の送り軸(Z軸)方向の距離である。加工深さDから底面残し量G1を減算したものがこの仕上げ加工における加工深さの設定値となる。例えば、加工深さが5mmで図2に示す加工条件番号1の場合、放電面積および加工液中に混入した粉体の濃度を無視したとき、加工深さの設定値は、5−0.28=4.72mmとなり、同加工条件番号2の場合、加工深さの設定値は、5−0.19=4.81mmとなる。
【0030】
一方、揺動半径は、Z軸に垂直なXY軸方向への移動量である。電極片側減寸量G2から側面残し量を減算したものが揺動半径の設定値となる。例えば、電極片側減寸量が0.25mmで図2に示す加工条件番号1の場合、放電面積および加工液中に混入した粉体の濃度を無視したとき、揺動半径の設定値は、0.25−0.18=0.07mmとなり、同加工条件番号2の場合、揺動半径の設定値は、0.25−0.13=0.12mmとなる。
【0031】
次に、放電面積を考慮し、加工液中に混入した粉体の濃度を無視した場合の加工深さおよび揺動半径の設定値の算出方法について以下に説明する。
図4は放電面積と加工の取り残し量との関係を示す図である。図4において、横軸は放電面積、縦軸は加工の取り残し量を示す。電極1とワーク3との間における放電面積を無視して仕上げ加工を行うと、放電面積が大きくなる程、放電ギャップが小さくなり、電極消耗が多くなるので、加工の取り残しが生じ、加工寸法が小さくなることについては先に説明した。図4は、放電面積が大きくなる程加工の取り残し量が大きくなり、これらが比例関係にあることを示す実験結果から得られた図である。この実験結果から放電面積に応じた加工の取り残し量を増量補正とすれば、その仕上げ加工における加工の取り残しをほぼ無くすことができる。
【0032】
それゆえ、放電面積を考慮し、加工液中に混入した粉体の濃度を無視した場合の加工深さの設定値は、例えば、放電面積が200mm2 、加工深さが5mmで図2に示す加工条件番号1の場合、放電面積が200mm2 に対する加工の取り残し量は図4から0.078mmであるので、加工深さの設定値は、5−0.28+0.078=4.798mmとなり、同加工条件番号2の場合、加工深さの設定値は、5−0.19+0.078=4.888mmとなる。
【0033】
一方、放電面積を考慮し、加工液中に混入した粉体の濃度を無視した場合の揺動半径の設定値は、例えば、電極片側減寸量が0.25mmで図2に示す加工条件番号1の場合、揺動半径の設定値は、0.25−0.18+0.078=0.148mmとなり、同加工条件番号2の場合、揺動半径の設定値は、0.25−0.13+0.078=0.198mmとなる。
【0034】
次に、加工液中に混入した粉体の濃度を考慮し、放電面積を無視した場合の加工深さおよび揺動半径の設定値の算出方法について以下に説明する。
図5は粉体濃度と放電ギャップ増加率との関係を示す図である。図5において、横軸は加工液中に混入させた粉体の濃度、縦軸は放電ギャップ増加率を示す。加工液に混入させた粉体の濃度を無視して仕上げ加工を行うと、加工液に混入させた粉体の濃度が濃い程、放電ギャップが大きくなり、加工の取代は過多となり、加工寸法が大きくなることについては先に説明した。図5は、粉体濃度が濃い程放電ギャップ増加率は増大し、これらが比例関係にあることを示す実験結果から得られた図である。この実験結果から粉体の濃度に応じて加工取代量が過多となることが判る。そこで、粉体の濃度に応じて底面残し量および側面残し量を減量補正すれば、その仕上げ加工における加工の過多をほぼ無くすことができる。図5から粉体濃度1g/l(グラム/リットル)のとき放電ギャップ増加率は10%、粉体濃度2g/l(グラム/リットル)のとき放電ギャップ増加率は20%、…、であるので、底面残し量および側面残し量の補正係数を図6に示すテーブルのように、それぞれ0.9、0.8、…のように設定する。
【0035】
それゆえ、加工液中に混入した粉体の濃度を考慮し、放電面積を無視した場合の加工深さの設定値は、例えば、粉体の濃度が1g/l、加工深さが5mmで図2に示す加工条件番号1の場合、粉体の濃度が1g/lに対する補正係数が0.9であるので、加工深さの設定値は、5−0.28×0.9=4.748mmとなり、粉体の濃度が1g/l、加工深さが5mmで図2に示す加工条件番号2の場合、加工深さの設定値は、5−0.19×0.9=4.829mmとなり、粉体の濃度が2g/l、加工深さが5mmで図2に示す加工条件番号1の場合、粉体の濃度が2g/lに対する補正係数が0.8であるので、加工深さの設定値は、5−0.28×0.8=4.776mmとなり、粉体の濃度が2g/l、加工深さが5mmで図2に示す加工条件番号2の場合、加工深さの設定値は、5−0.19×0.8=4.848mmとなる。
【0036】
一方、放電面積を考慮し、加工液中に混入した粉体の濃度を無視した場合の揺動半径の設定値は、例えば、粉体の濃度が1g/l、電極片側減寸量が0.25mmで図2に示す加工条件番号1の場合、揺動半径の設定値は、0.25−0.18×0.9=0.148mmとなり、粉体の濃度が1g/l、電極片側減寸量が0.25mmで図2に示す加工条件番号2の場合、揺動半径の設定値は、0.25−0.13×0.9=0.198mmとなり、粉体の濃度が2g/l、電極片側減寸量が0.25mmで図2に示す加工条件番号1の場合、揺動半径の設定値は、0.25−0.18×0.8=0.106mmとなり、粉体の濃度が2g/l、加工深さが5mmで図2に示す加工条件番号2の場合、揺動半径の設定値は、0.25−0.13×0.8=0.146mmとなる。
【0037】
次に、放電面積および加工液中に混入した粉体の濃度を考慮した場合の加工深さおよび揺動半径の設定値の算出方法について以下に説明する。
放電面積および加工液中に混入した粉体の濃度を考慮した場合の加工深さの設定値は、例えば、放電面積が20000mm2 (100mm×200mm)、粉体の濃度が1g/l、加工深さが5mmで図2に示す加工条件番号1の場合、放電面積が20000mm2 に対する加工の取り残し量は図4から0.078mmであり、かつ粉体の濃度が1g/lに対する補正係数が0.9であるので、加工深さの設定値は、5−0.28×0.9+0.078=4.826mmとなり、粉体の濃度が1g/l、加工深さが5mmで図2に示す加工条件番号2の場合、加工深さの設定値は、5−0.19×0.9+0.078=4.907mmとなり、放電面積が20000mm2 、粉体の濃度が2g/l、加工深さが5mmで図2に示す加工条件番号1の場合、放電面積が20000mm2 に対する加工の取り残し量は図4から0.078mmであり、粉体の濃度が2g/lに対する補正係数は0.8であるので、加工深さの設定値は、5−0.28×0.8+0.078=4.854mmとなり、粉体の濃度が2g/l、加工深さが5mmで図2に示す加工条件番号2の場合、加工深さの設定値は、5−0.19×0.8+0.078=4.926mmとなる。
【0038】
一方、放電面積および加工液中に混入した粉体の濃度を考慮した場合の揺動半径の設定値は、例えば、放電面積が20000mm2 、粉体の濃度が1g/l、電極片側減寸量が0.25mmで図2に示す加工条件番号1の場合、揺動半径の設定値は、0.25−0.18×0.9+0.078=0.226mmとなり、放電面積が20000mm2 、粉体の濃度が1g/l、電極片側減寸量が0.25mmで図2に示す加工条件番号2の場合、揺動半径の設定値は、0.25−0.13×0.9+0.078=0.276mmとなり、放電面積が20000mm2 、粉体の濃度が2g/l、電極片側減寸量が0.25mmで図2に示す加工条件番号1の場合、揺動半径の設定値は、0.25−0.18×0.8+0.078=0.184mmとなり、放電面積が20000mm2 、粉体の濃度が2g/l、加工深さが5mmで図2に示す加工条件番号2の場合、揺動半径の設定値は、0.25−0.13×0.8+0.078=0.224mmとなる。
【0039】
以上、油等の通常の加工液中に導電性の粉体を混入した粉体混入加工液中における放電加工を行う場合に、放電面積または加工液中に混入した粉体の濃度を考慮した加工深さまたは揺動半径の設定方法および該方法を実施する装置について説明した。これは、粉体を混入しない油等の通常の加工液中における放電加工にも適用できることは言うまでもない。
【0040】
【発明の効果】
以上説明したように、本発明の放電加工機の加工条件設定方法および装置によれば、放電面積および加工液に混入させた粉体の濃度の少なくとも一方を考慮し、指定された仕上げ加工に対して再加工を要することなく1度でその加工を終了させ、加工精度および加工効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明による加工条件設定装置を有した放電加工機の一実施形態を示す概略ブロック構成図である。
【図2】加工深さおよび揺動半径の設定値を算出するため予め加工条件に応じて設定されるデータのテーブルを示す図である。
【図3】仕上げ加工の一例を示す図である。
【図4】放電面積と加工の取り残し量との関係を示す図である。
【図5】粉体濃度と放電ギャップ増加率との関係を示す図である。
【図6】粉体濃度に対する底面残し量および側面残し量の補正係数のデータのテーブルを示す図である。
【図7】粉体濃度が濃いときの従来技術によるワーク加工不良例を示す図である。
【符号の説明】
1…電極
3…ワーク
5…加工電源
7…加工槽
19…加工条件設定手段
25…データ入力手段
31…加工深さ補正値演算手段
33…加工深さ補正値格納手段
35…揺動半径補正値演算手段
37…揺動半径補正値格納手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a machining condition setting method and apparatus for an electric discharge machine, and in particular, between an electrode and a workpiece in a machining liquid filled in a machining tank or in a machining liquid in which powder is mixed in the machining liquid. The present invention relates to a machining condition setting method and apparatus for an electric discharge machine that applies a pulse voltage to the workpiece and processes the workpiece while relatively moving the electrode and the workpiece.
[0002]
[Prior art]
In general, in order to improve machining efficiency and machining accuracy in electrical discharge machining, the workpiece is first machined under the desired rough machining conditions, and then the machining energy is changed (reduced) in several stages, including the medium machining conditions and finishing machining conditions. However, the workpiece is finished so that a desired processing dimension and surface roughness can be obtained. This machining energy is determined by the product of the peak value of the machining current supplied between the electrode and the workpiece and the pulse width. However, it is difficult to reduce the machining current pulse width. By reducing the peak value, small energy is obtained in the finishing process. Further, in the finish machining, the distance between the electrode and the workpiece during the electric discharge machining, that is, the so-called discharge gap is made minute so that stable electric discharge machining can be obtained between the electrode and the workpiece with a small machining energy. Normally, in an electric discharge machine, a pulse voltage is applied from the machining power supply between the electrode and the workpiece, and when the distance between the electrode and the workpiece becomes small due to relative movement between the electrode and the workpiece, Electric discharge is generated between the electrodes and processing is performed.
[0003]
Various techniques for improving the machining accuracy of a workpiece machined by such an electric discharge machine have been proposed. For example, in Japanese Patent No. 2667183, an electrode is fed to a workpiece from a predetermined position in a predetermined depth direction, and the workpiece is processed while controlling the electrode feed in the order of a series of machining steps from roughing to finishing. In addition, there is disclosed a machining error correction control method in die-sinking electric discharge machining that improves machining accuracy by correcting machining errors that occur during machining.
[0004]
The machining error correction control method in the sculpting electric discharge machining described in Japanese Patent No. 2667183 is intended to eliminate the alignment error before machining and the gap error during machining, thereby improving the accuracy of the electric discharge machining.
In the first machining error correction control method of the above-mentioned patent, a minute discharge is performed for a predetermined time under a gap detection condition in which a gap between an electrode and a workpiece set at a predetermined position is set to a predetermined value before the machining is started, and the position is detected. After setting the reference surface in the machining depth direction, start the prescribed machining, and then when the electrode feed reaches the specified depth during the machining from the first roughing to the end of finishing Measure the electrode position during machining in, and switch from the machining condition to the gap detection condition where the gap is a specific value, converge the gap while generating a micro discharge for a predetermined time, and then measure the electrode position at that time The amount of error in the machining gap or the amount of error in the machining depth with respect to the predetermined value at the time of machining planning is calculated from the amount of change in both measured values, and then the electrode feed amount is controlled so as to correct the error amount. To resume machining That.
[0005]
In the second machining error correction control method of the above-mentioned patent, after setting the reference surface in the same manner as described above, predetermined machining is started, and thereafter, in the process of steps from the first rough machining to the end of finishing machining. After the electrode position in the depth direction reaches the specified target value and finishes the processing of that step, after switching to the gap detection condition where the gap becomes a specific value and converging the gap while generating a minute discharge for a predetermined time Measure the electrode position at that time, find the depth after machining of the step from the measured value, calculate the error amount of the machining depth at the time of machining planning, and corrective processing is necessary from this calculation result If it is determined, the machining is performed by controlling the electrode feed amount so as to correct the error amount.
[0006]
On the other hand, various techniques related to a machining end determination method in electric discharge machining have been proposed. For example, in the electric discharge machining method described in Japanese Patent No. 2717474, the end of machining is determined when a specified time has elapsed from the start of machining, and only the actual machining time during discharge between the electrode and the workpiece is determined. With the time management function that finishes machining when the specified time is reached, machining is performed without excess or deficiency.
[0007]
[Problems to be solved by the invention]
Generally, from at least one of the material of the electrode used for electric discharge machining, the material of the workpiece, the applied voltage between the electrodes and the workpiece, the relative movement speed between the electrode and the workpiece, and the surface roughness of the workpiece. In electrical discharge machining with the same machining conditions, the larger the discharge area between the electrode and the workpiece, the smaller the amount of machining waste per unit volume in the machining fluid interposed between the electrode and the workpiece, Since the electrical insulation degree between an electrode and a workpiece | work becomes small, a discharge gap becomes small and electrode consumption increases. As a result, there is a problem that unprocessed parts are left, the processing dimensions are reduced, reworking is required, and the processing time is increased.
[0008]
In addition, the electrode and workpiece are mixed in a powder-mixed working fluid in which a carbon-based material such as graphite, a metal such as chromium, or a semi-metallic conductive powder such as silicon is mixed in a normal working fluid such as oil. There is an electric discharge machining method in which finishing is performed while interposing the above powder between the two. In this case, in electric discharge machining with the same machining conditions, the higher the concentration of the powder mixed in the machining fluid, the greater the amount of powder per unit volume in the machining fluid interposed between the electrode and the workpiece. As a result, the degree of electrical insulation between the electrode and the workpiece increases, so that there is a problem that the discharge gap increases, the actual machining allowance becomes excessive, and the machining dimension increases, resulting in machining failure.
[0009]
FIG. 7 is a diagram showing an example of a workpiece machining defect according to the conventional technique when the powder concentration is high. When excessive processing occurs when the concentration of the powder is high, as shown in FIG. 7, there is a problem that a sagging 701 occurs at the inlet and the squareness becomes worse.
The machining error correction control method in the sculpting electric discharge machining described in the above-mentioned Japanese Patent No. 2667183 is a machining in which machining is left behind as the discharge area is larger, and machining is more excessive as the concentration of powder mixed in the machining liquid is higher. There is no disclosure about the problem of accuracy and the problem of a decrease in machining efficiency due to an increase in machining time corresponding to the remaining machining.
[0010]
In addition, by using the time management function in the electric discharge machining method described in the above-mentioned Japanese Patent No. 2717474, in the method of terminating machining before the electrode feed reaches a specified depth, eliminating machining excess and reducing machining time Depending on the discharge area and / or the concentration of the powder mixed in the machining liquid, the operator must set the machining time set value to be shortened for each machining condition. There is a problem that skill level is required, and individual differences of operators affect processing accuracy.
[0011]
Therefore, the present invention solves all the above-mentioned problems, and considers the discharge area or the concentration of the powder mixed in the machining liquid in the electric discharge machining with the same machining conditions, and repeats the specified finishing machining. An object of the present invention is to provide a machining condition setting method and apparatus for an electric discharge machine that finishes machining at a time without requiring machining and improves machining accuracy and machining efficiency.
[0012]
[Means for Solving the Problems]
The machining condition setting method of the electric discharge machine according to the first embodiment of the present invention that achieves the above object is to apply a pulse voltage between the electrode and the workpiece in the machining liquid filled in the machining tank, and In the machining condition setting method of the electric discharge machine that processes the workpiece while relatively moving the electrode and the workpiece, Read the discharge area of the electrode input by the input means, For the discharge area of the electrode Against Leftover amount of processing Is calculated from experimental data indicating a proportional relationship with the discharge area of the electrode. Set the machining depth or rocking radius by increasing the machining remaining amount. Ruko And features.
[0013]
The machining condition setting device for an electric discharge machine according to the first embodiment of the present invention that achieves the above object applies a pulse voltage between the electrode and the workpiece in the machining liquid filled in the machining tank, and In the machining condition setting device of the electric discharge machine that processes the workpiece while relatively moving the electrode and the workpiece, Read the discharge area of the electrode input by the input means, For the discharge area of the electrode Against Leftover amount of processing Is calculated from experimental data indicating a proportional relationship with the discharge area of the electrode. Further, the present invention is characterized by comprising a relative movement amount setting means for setting the processing depth or the rocking radius by increasing the amount of the processing remaining amount.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic block diagram showing an embodiment of an electric discharge machine having a machining condition setting device according to the present invention. FIG. 1 shows a sculpting electric discharge machine that applies a pulse voltage from a machining power supply 5 between electrodes 1 and a workpiece 3 and processes the workpiece 3 by generated electric discharge. The workpiece 3 is placed in a processing tank 7 provided on the XY moving table 9. The workpiece 3 is immersed in a processing liquid filled in the processing tank 7 and mixed with powder of a conductive material. Although not shown, the processing liquid is supplied from the processing liquid tank through a supply pipe such as a hose to the processing tank 7 by the processing liquid supply pump, and the used processing liquid in the processing tank 7 is provided in the processing tank 7. From the exhaust port, it is circulated between the processing tank 7 and the processing liquid tank so as to be collected and stored in the processing liquid tank through a discharge pipe such as a hose.
[0018]
The machining power source 5 has a search power source used to ignite the discharge between the electrodes and a main power source for supplying electric discharge machining energy. An applied voltage from the machining condition setting means 19 to the electrodes, τON (discharge time) ), ΤOFF (resting time) and the like, and a pulse voltage is supplied between the electrode 1 and the workpiece 3 in accordance with these parameters.
[0019]
The XY movement table 9 moves in the X-axis and Y-axis directions by driving the X-axis servomotor 11 and the Y-axis servomotor 13, respectively. As a result, the workpiece 3 is moved in the XY-axis direction or is swung as necessary. On the other hand, the electrode 1 is held by a main shaft (not shown), and moves together with the main shaft in the Z-axis direction by driving a Z-axis servo motor 15 attached to a column (not shown). Thereby, the positioning of the electrode 1 in the Z-axis direction during non-electric discharge machining and the control of the inter-electrode distance (discharge gap) during electric discharge machining are performed. The X-axis servo motor 11, the Y-axis servo motor 13 and the Z-axis servo motor 15 each have an encoder (not shown), and a signal indicating the rotation angle of the X, Y and Z-axis motors to the servo control means 17, That is, the position signals of the electrodes 1 in the X, Y, and Z axis directions are fed back.
[0020]
The servo control means 17 sends servo outputs to the X-axis feed motor 11, the Y-axis feed motor 13 and the Z-axis feed motor 15 based on the control data from the NC program, and the electrode head (not shown) of the electric discharge machine. And for controlling the movement of the spindle on which the electrode 1 is mounted.
The Z-axis feed motor 15 controlled by the servo control means 17 moves the electrode 1 mounted on the main shaft moving in the electrode head in the machining progress direction. In other words, it is a servo motor that feeds or retracts the workpiece 3, and the X-axis feed motor 11 and the Y-axis feed motor 13 are configured so that the electrodes 1 mounted on the spindle are mutually connected in a plane perpendicular to the machining progress direction. This is a servo motor that moves in the direction of two axes perpendicular to the axis. In this way, by combining the movements by the X-axis feed motor 11 and the Y-axis feed motor 13, the electrode 1 can be moved in a two-dimensional swing relative to the work 3. The electrode 1 can be moved relative to the work 3 in a three-dimensional swinging manner by combining the movements by the Y-axis feed motor 13 and the Z-axis feed motor 15. As described above, the electric discharge machining apparatus of the present invention interposes the powder between the electrode 1 and the workpiece 3 in the machining liquid and performs relative movement between the electrode 1 and the workpiece 3 as needed. The workpiece 3 is subjected to electric discharge machining by giving a swing motion.
[0021]
The machining condition setting means 19 sends XY axis control parameters for moving the XY movement table 9 in the X-axis and Y-axis directions to the table feed control means 21, while Z for moving the electrode 1 in the Z-axis direction. The axis control parameter is sent to the electrode feed control means 23.
The data input unit 25 is a unit for inputting various data to the machining condition setting unit 19 and includes a keyboard, a CRT, and the like (not shown).
[0022]
The machining condition setting means 19 is based on the input data from the data input means 25 and the inter-pole state signal received from the inter-pole state detection means 27, and parameters for the machining power source necessary for machining the workpiece 3 and control to each servo motor. Set the parameters.
The processing condition setting means 19 can also read a processing program read by a paper tape reader or floppy disk drive (FDD) (not shown) for each block.
[0023]
The inter-electrode state detection means 27 indicates that the inter-electrode state between the electrode 1 and the workpiece 3 has not yet started discharging after applying the search voltage between the processing power source 5 or the short-circuit state, or It has a function of detecting whether it is an effective discharge state or an abnormal discharge state after the main voltage is applied between the electrodes. The machining condition setting unit 19 receives the inter-electrode state signal from the inter-electrode state detection unit 27 and sends the above-described machining power source parameters suitable for processing to the machining power source 5.
[0024]
The inter-electrode state detection unit 27 detects a state between the electrodes by detecting a pulse voltage applied between the electrodes 1 and the workpiece 3, and sends, for example, an average voltage between the electrodes to the calculator 29.
The arithmetic unit 29 sends a signal indicating a deviation amount, which is a difference between the detection amount received from the inter-electrode state detection unit 27 and the target reference value received from the machining condition setting unit 19, to the electrode feed control unit 23. The electrode feed control means 23 outputs the advance / retreat amount of the electrode 1 to the servo control means 17 based on the Z-axis control parameter sent from the machining condition setting means 19 and the error amount sent from the calculator 29.
[0025]
The machining depth correction value calculation means 31 receives the data of the discharge (machining) area of the electrode 1 that performs the current machining input from the data input means 25 before the start of the electric discharge machining of the predetermined workpiece 3, and the machining depth in advance. From the table shown in FIG. 2, which will be described later, stored in the correction value storage means 33, a set value of the machining depth corresponding to the machining conditions, that is, data for calculating the feed amount in the Z-axis direction (bottom surface remaining amount) is read. Then, the machining depth set value is calculated, and the target reference value sent from the machining condition setting means 19 to the calculator 29 is replaced with the calculated machining depth set value. Here, the target reference value is a set value of the machining depth calculated by the machining condition setting means 19 according to the machining conditions based on the table shown in FIG. 2 stored in the machining depth correction value storage means 33. That is.
[0026]
The oscillating radius correction value calculating means 35 receives the data of the discharge (machining) area of the electrode 1 to be processed this time, which is input from the data input means 25 before the start of the electric discharge machining of the predetermined workpiece 3, and previously oscillates the radius. From the table shown in FIG. 2 stored in the correction value storage means 37, data for calculating the set value of the rocking radius according to the machining conditions, that is, the rocking radius in the X-axis and Y-axis directions (side surface remaining amount). , The set value of the rocking radius is calculated, and the XY axis control parameter sent from the machining condition setting unit 19 to the table feed control unit 21 is corrected with the calculated set value of the rocking radius. Here, the XY axis control parameter is the set value of the swing radius calculated by the processing condition setting unit 19 according to the processing conditions based on the table shown in FIG. 2 stored in the swing radius correction value storage unit 37. This is a control parameter for moving the XY movement table 9 obtained from the above in the X-axis and Y-axis directions.
[0027]
The electric discharge machining control apparatus 100 that performs the functions of the respective means described above includes, for example, a CPU, ROM, RAM, B (battery backup) RAM, various input interfaces, and various output interfaces connected to each other by a bidirectional bus (not shown). It is configured as a provided microcomputer system. A keyboard and an A / D converter are connected to the input interface. For example, an analog voltage between the electrodes is input to the A / D converter at a low level via an attenuator and is converted into digital data. A display device such as a CRT, a printer, a D / A converter, and the like are connected to the output interface.
[0028]
Next, a method for calculating the set values of the machining depth and the rocking radius will be described below.
FIG. 2 is a diagram showing a table of data set in advance according to the machining conditions in order to calculate the set values of the machining depth and the rocking radius. The machining conditions are selected from at least one of the following: electrode material, workpiece material, applied voltage between the electrode and workpiece, relative movement between the electrode and workpiece, and workpiece surface roughness. . In the example shown in FIG. 2, the surface roughness of the work surface of the workpiece is selected as the processing condition, and data for the processing conditions of numbers 1 to 4 is stored in the table. The surface roughness under each processing condition is 60 μm Rmax when the processing condition number is 1, 40 μm Rmax when the processing condition number is 2, 20 μm Rmax when the processing condition number is 3, and 10 μm Rmax when the processing condition number is 4. The table shown in FIG. 2 indicates that a total of four finishing processes are performed in the order of the processing condition numbers 1 to 4 under the four processing conditions. The table shown in FIG. 2 stores the bottom surface remaining amount and side surface remaining amount corresponding to the processing condition numbers 1 to 4. Next, the bottom surface remaining amount and the side surface remaining amount will be described below.
[0029]
FIG. 3 is a diagram showing an example of finishing. The processing depth D is the distance in the feed axis (Z-axis) direction of the electrode from the upper surface 301 of the workpiece to the processed surface 302 of the workpiece after finishing. A value obtained by subtracting the bottom surface remaining amount G1 from the processing depth D is a set value of the processing depth in the finishing processing. For example, when the processing depth is 5 mm and the processing condition number is 1 shown in FIG. 2, when the discharge area and the concentration of the powder mixed in the processing liquid are ignored, the set value of the processing depth is 5 to 0.28. = 4.72 mm, and in the case of the machining condition number 2, the set value of the machining depth is 5-0.19 = 4.81 mm.
[0030]
On the other hand, the swing radius is the amount of movement in the XY axis direction perpendicular to the Z axis. The value obtained by subtracting the remaining side surface amount from the electrode one side reduction amount G2 is the set value of the oscillation radius. For example, when the electrode one side reduction amount is 0.25 mm and the processing condition number is 1 shown in FIG. 2, when the discharge area and the concentration of the powder mixed in the processing liquid are ignored, the set value of the oscillation radius is 0. .25−0.18 = 0.07 mm, and in the case of the machining condition number 2, the set value of the swing radius is 0.25−0.13 = 0.12 mm.
[0031]
Next, a method of calculating the set values of the processing depth and the rocking radius when the density of the powder mixed in the processing liquid is ignored in consideration of the discharge area will be described below.
FIG. 4 is a diagram showing the relationship between the discharge area and the amount of machining remaining. In FIG. 4, the horizontal axis represents the discharge area, and the vertical axis represents the remaining amount of machining. If the finishing process is performed while ignoring the discharge area between the electrode 1 and the workpiece 3, the larger the discharge area, the smaller the discharge gap and the more the electrode is consumed. As described above, it becomes smaller. FIG. 4 is a diagram obtained from an experimental result showing that the remaining amount of machining increases as the discharge area increases, and these are in a proportional relationship. From this experimental result, if the remaining amount of machining corresponding to the discharge area is corrected to increase, the remaining machining in the finishing process can be almost eliminated.
[0032]
Therefore, in consideration of the discharge area, the set value of the processing depth when the concentration of the powder mixed in the processing liquid is ignored is, for example, a discharge area of 200 mm. 2 When the machining depth is 5 mm and the machining condition number 1 shown in FIG. 2 is, the discharge area is 200 mm. 2 4 is 0.078 mm from FIG. 4, the processing depth setting value is 5-0.28 + 0.078 = 4.798 mm. In the case of the same processing condition number 2, the processing depth is set. The value is 5-0.19 + 0.078 = 4.888 mm.
[0033]
On the other hand, in consideration of the discharge area, the set value of the rocking radius when the concentration of the powder mixed in the machining liquid is ignored is, for example, the machining condition number shown in FIG. In the case of 1, the setting value of the rocking radius is 0.25−0.18 + 0.078 = 0.148 mm, and in the case of the same machining condition number 2, the setting value of the rocking radius is 0.25−0.13 + 0. 0.08 = 0.198 mm.
[0034]
Next, a method for calculating the set values of the processing depth and the rocking radius when the discharge area is ignored in consideration of the concentration of the powder mixed in the processing liquid will be described below.
FIG. 5 is a graph showing the relationship between the powder concentration and the discharge gap increase rate. In FIG. 5, the horizontal axis represents the concentration of the powder mixed in the working fluid, and the vertical axis represents the discharge gap increase rate. If the finishing process is performed ignoring the concentration of the powder mixed in the machining fluid, the higher the concentration of the powder mixed in the machining fluid, the larger the discharge gap, the more machining allowance, and the machining dimension I explained about the growth earlier. FIG. 5 is a diagram obtained from experimental results showing that the discharge gap increase rate increases as the powder concentration increases, and these are in a proportional relationship. From this experimental result, it can be seen that the machining allowance is excessive depending on the concentration of the powder. Therefore, if the bottom surface residual amount and the side surface residual amount are corrected so as to decrease in accordance with the concentration of the powder, it is possible to substantially eliminate the excessive processing in the finishing process. From FIG. 5, the discharge gap increase rate is 10% when the powder concentration is 1 g / l (gram / liter), and the discharge gap increase rate is 20% when the powder concentration is 2 g / l (gram / liter). Further, the correction coefficients for the bottom surface remaining amount and the side surface remaining amount are respectively set as 0.9, 0.8,... As shown in the table of FIG.
[0035]
Therefore, in consideration of the concentration of the powder mixed in the machining liquid, the set values of the machining depth when the discharge area is ignored are, for example, a powder concentration of 1 g / l and a machining depth of 5 mm. In the case of processing condition number 1 shown in FIG. 2, since the correction coefficient for the powder concentration of 1 g / l is 0.9, the setting value of the processing depth is 5-0.28 × 0.9 = 4.748 mm. When the powder concentration is 1 g / l, the processing depth is 5 mm, and the processing condition number is 2 shown in FIG. 2, the setting value of the processing depth is 5-0.19 × 0.9 = 4.829 mm. When the powder concentration is 2 g / l, the processing depth is 5 mm, and the processing condition number is 1 shown in FIG. 2, the correction coefficient for the powder concentration is 2 g / l is 0.8. The set value is 5-0.28 × 0.8 = 4.776 mm, the concentration of the powder is 2 g / l, and the processing depth is 5 mm. If the machining condition number 2, the processing depth of the setting value becomes 5-0.19 × 0.8 = 4.848mm.
[0036]
On the other hand, in consideration of the discharge area, the set value of the rocking radius when the concentration of the powder mixed in the machining liquid is ignored is, for example, a powder concentration of 1 g / l and an electrode one-side reduction amount of 0. In the case of the processing condition number 1 shown in FIG. 2 at 25 mm, the set value of the swing radius is 0.25-0.18 × 0.9 = 0.148 mm, the powder concentration is 1 g / l, and the electrode one side is reduced. In the case of the machining condition number 2 shown in FIG. 2 when the size is 0.25 mm, the set value of the rocking radius is 0.25−0.13 × 0.9 = 0.198 mm, and the concentration of the powder is 2 g / l, when the electrode one side reduction amount is 0.25 mm and the machining condition number is 1 shown in FIG. 2, the set value of the swing radius is 0.25−0.18 × 0.8 = 0.106 mm, Is 2 g / l, the machining depth is 5 mm, and the machining condition number 2 shown in FIG. 2 is 0.25 to 0.13. A 0.8 = 0.146mm.
[0037]
Next, a method for calculating the processing depth and the set value of the rocking radius in consideration of the discharge area and the concentration of the powder mixed in the processing liquid will be described below.
The processing depth setting value in consideration of the discharge area and the concentration of the powder mixed in the machining fluid is, for example, a discharge area of 20000 mm 2 (100 mm × 200 mm), powder concentration is 1 g / l, processing depth is 5 mm, and processing condition number 1 shown in FIG. 2 4 is 0.078 mm from FIG. 4, and the correction coefficient for the powder concentration of 1 g / l is 0.9. Therefore, the set value of the processing depth is 5−0.28 × 0. .9 + 0.078 = 4.826 mm, when the powder concentration is 1 g / l, the processing depth is 5 mm, and the processing condition number is 2 shown in FIG. 2, the setting value of the processing depth is 5-0.19 × 0.9 + 0.078 = 4.907mm and discharge area is 20000mm 2 When the powder concentration is 2 g / l, the processing depth is 5 mm, and the processing condition number is 1 shown in FIG. 2, the discharge area is 20000 mm. 2 4 is 0.078 mm from FIG. 4 and the correction coefficient for the powder concentration of 2 g / l is 0.8. Therefore, the processing depth setting value is 5−0.28 × 0. In the case of 8 + 0.078 = 4.854 mm, the powder concentration is 2 g / l, the processing depth is 5 mm, and the processing condition number is 2 shown in FIG. 2, the setting value of the processing depth is 5-0.19 × 0. .8 + 0.078 = 4.926 mm.
[0038]
On the other hand, the setting value of the rocking radius when considering the discharge area and the concentration of the powder mixed in the machining fluid is, for example, a discharge area of 20000 mm 2 When the powder concentration is 1 g / l, the electrode one-side reduction amount is 0.25 mm, and the processing condition number is 1 shown in FIG. 2, the setting value of the rocking radius is 0.25-0.18 × 0.9 + 0 .078 = 0.226mm and discharge area is 20000mm 2 When the powder concentration is 1 g / l, the electrode one-side reduction amount is 0.25 mm, and the processing condition number 2 shown in FIG. 2, the setting value of the rocking radius is 0.25-0.13 × 0.9 + 0 .078 = 0.276mm and discharge area is 20000mm 2 In the case where the concentration of the powder is 2 g / l, the reduction amount on one side of the electrode is 0.25 mm, and the processing condition number is 1 shown in FIG. .078 = 0.184mm and discharge area is 20000mm 2 When the powder concentration is 2 g / l, the processing depth is 5 mm, and the processing condition number is 2 shown in FIG. 2, the set value of the swing radius is 0.25−0.13 × 0.8 + 0.078 = 0. .224 mm.
[0039]
As described above, when electric discharge machining is performed in a powder-mixed machining fluid in which conductive powder is mixed in a normal machining fluid such as oil, the processing takes into account the discharge area or the concentration of the powder mixed in the machining fluid. The method for setting the depth or the rocking radius and the apparatus for carrying out the method have been described. Needless to say, this can also be applied to electric discharge machining in a normal machining fluid such as oil not containing powder.
[0040]
【The invention's effect】
As described above, according to the machining condition setting method and apparatus for an electric discharge machine according to the present invention, a specified finishing process is performed in consideration of at least one of the discharge area and the concentration of the powder mixed in the machining liquid. Thus, the machining can be completed at once without requiring reworking, and the machining accuracy and the machining efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram showing an embodiment of an electric discharge machine having a machining condition setting device according to the present invention.
FIG. 2 is a diagram showing a table of data set in advance according to machining conditions in order to calculate set values of machining depth and rocking radius.
FIG. 3 is a diagram showing an example of finishing.
FIG. 4 is a diagram showing a relationship between a discharge area and a remaining amount of machining.
FIG. 5 is a graph showing the relationship between powder concentration and discharge gap increase rate.
FIG. 6 is a view showing a table of correction coefficient data for the bottom surface amount and the side surface remaining amount with respect to the powder concentration.
FIG. 7 is a diagram showing an example of a workpiece machining defect according to the prior art when the powder concentration is high.
[Explanation of symbols]
1 ... Electrode
3 ... Work
5 ... Processing power supply
7 ... Processing tank
19 ... Machining condition setting means
25. Data input means
31 ... Machining depth correction value calculation means
33 ... Processing depth correction value storage means
35 ... Oscillation radius correction value calculation means
37 ... Oscillation radius correction value storage means

Claims (2)

加工槽内に充満した加工液中で、電極とワークとの極間にパルス電圧を印加するとともに、前記電極とワークとを相対移動させながら前記ワークを加工する放電加工機の加工条件設定方法において、
入力手段により入力された前記電極の放電面積を読取り、読取った該電極の放電面積に対する加工の取り残し量を前記電極の放電面積との比例関係を示す実験データから演算し、加工深さ又は揺動半径を前記加工の取り残し量で増量補正して設定する、
ことを特徴とした放電加工機の加工条件設定方法。
In a machining condition setting method for an electric discharge machine that applies a pulse voltage between the electrode and the workpiece in the machining liquid filled in the machining tank and processes the workpiece while moving the electrode and the workpiece relative to each other. ,
Reads the discharge area of the electrode which is input by the input means, a removal failure of working against the discharge area of the electrode read calculated from the experimental data indicating a proportional relationship between the discharge area of the electrode, machining depth or rocking Set the dynamic radius by correcting the increase with the amount of unprocessed machining,
A machining condition setting method for an electric discharge machine characterized by
加工槽内に充満した加工液中で、電極とワークとの極間にパルス電圧を印加するとともに、前記電極とワークとを相対移動させながら前記ワークを加工する放電加工機の加工条件設定装置において、
入力手段により入力された前記電極の放電面積を読取り、読取った該電極の放電面積に対する加工の取り残し量を前記電極の放電面積との比例関係を示す実験データから演算し、加工深さ又は揺動半径を前記加工の取り残し量で増量補正して設定する相対移動量設定手段を具備することを特徴とした放電加工機の加工条件設定装置。
In a machining condition setting device for an electric discharge machine that applies a pulse voltage between electrodes and a workpiece in a machining fluid filled in a machining tank and processes the workpiece while moving the electrode and the workpiece relative to each other. ,
Reads the discharge area of the electrode which is input by the input means, a removal failure of working against the discharge area of the electrode read calculated from the experimental data indicating a proportional relationship between the discharge area of the electrode, machining depth or rocking A machining condition setting device for an electric discharge machine, comprising: a relative movement amount setting means for setting a moving radius to be corrected by increasing the machining remaining amount.
JP19309699A 1999-07-07 1999-07-07 Machining condition setting method and apparatus for electric discharge machine Expired - Lifetime JP4017292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19309699A JP4017292B2 (en) 1999-07-07 1999-07-07 Machining condition setting method and apparatus for electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19309699A JP4017292B2 (en) 1999-07-07 1999-07-07 Machining condition setting method and apparatus for electric discharge machine

Publications (2)

Publication Number Publication Date
JP2001018122A JP2001018122A (en) 2001-01-23
JP4017292B2 true JP4017292B2 (en) 2007-12-05

Family

ID=16302179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19309699A Expired - Lifetime JP4017292B2 (en) 1999-07-07 1999-07-07 Machining condition setting method and apparatus for electric discharge machine

Country Status (1)

Country Link
JP (1) JP4017292B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947039A (en) * 2010-06-22 2013-02-27 三菱电机株式会社 Electro-discharge machining control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947039A (en) * 2010-06-22 2013-02-27 三菱电机株式会社 Electro-discharge machining control device
CN102947039B (en) * 2010-06-22 2015-07-29 三菱电机株式会社 Electric discharge Working control device

Also Published As

Publication number Publication date
JP2001018122A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
JPH0241872A (en) Numerical control grinder
JP2006123065A (en) Control device for wire electric discharge machine
US5021622A (en) Wire cut electrical discharge machine
JP3575087B2 (en) Electric discharge machine
Kaneko et al. Three-dimensional numerically controlled contouring by electric discharge machining with compensation for the deformation of cylindrical tool electrodes
JP4017292B2 (en) Machining condition setting method and apparatus for electric discharge machine
JPH1043948A (en) Method of finish working by electrochemical machining
JP2604461B2 (en) Electric discharge machining method and apparatus
JPS61219529A (en) System of controlling form of wire electric discharge machining
JP4348506B2 (en) Electric discharge machining method and apparatus
JP3902713B2 (en) Electric discharge machine and jump control method for electric discharge machine
JP3542233B2 (en) Die-sinker EDM method and device
JP2667183B2 (en) Machining error correction control method in Die-sinker EDM
JP2650771B2 (en) Electric discharge machining method and equipment
JPH079261A (en) Method and device for wire electric discharge machining
JP2632950B2 (en) Adaptive control device for electric discharge machine
JP3715116B2 (en) Electric discharge machining apparatus and electric discharge machining method
JP3732290B2 (en) Electric discharge machining apparatus and electric discharge machining method
CN114571019B (en) Electric spark milling method
JP3851332B2 (en) EDM machine
JP3549688B2 (en) Electric discharge machining method and electric discharge machine
JP3882810B2 (en) EDM machine
JP3805139B2 (en) Electric discharge machining method and apparatus
JP3980625B2 (en) EDM machine
JP2559789B2 (en) Method of detecting machining error in die-sinking electric discharge machining

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4017292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

EXPY Cancellation because of completion of term