JPH07136849A - Electric discharge machining and device therefor - Google Patents

Electric discharge machining and device therefor

Info

Publication number
JPH07136849A
JPH07136849A JP28676993A JP28676993A JPH07136849A JP H07136849 A JPH07136849 A JP H07136849A JP 28676993 A JP28676993 A JP 28676993A JP 28676993 A JP28676993 A JP 28676993A JP H07136849 A JPH07136849 A JP H07136849A
Authority
JP
Japan
Prior art keywords
solid
electrode
electric discharge
workpiece
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28676993A
Other languages
Japanese (ja)
Other versions
JP2860050B2 (en
Inventor
Yasushi Fukuzawa
康 福澤
Naotake Mori
尚武 毛利
Nagao Saito
長男 斎藤
Takuji Magara
卓司 真柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5286769A priority Critical patent/JP2860050B2/en
Publication of JPH07136849A publication Critical patent/JPH07136849A/en
Application granted granted Critical
Publication of JP2860050B2 publication Critical patent/JP2860050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To carry out the work for an insulating body and carry out the deep hole work having a depth of several mm-cm without installing a special processing device and process for forming an electric conductive layer on the surface of a workpiece. CONSTITUTION:Electric discharge is generated between an electrode 1 and the joint surface between a workpiece 10 consisting of an insulating a member and a workpiece 11 consisting of an electric conductive member, and the workpiece 10 consisting of an insulating member, workpiece 11 consisting of an electric conductive member, and the electrode 1 are shifted relatively in the parallel direction to the joint surface between the workpieces 10 and 11, and electric discharge is carried out between the workpieces 10 and 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は絶縁材料の放電加工方
法およびその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric discharge machining method for an insulating material and an apparatus therefor.

【0002】[0002]

【従来の技術】従来、セラミックスなどの絶縁材料の放
電加工を行う方法として、例えば特開昭63−1501
09号公報があり、電気絶縁体の表面に導電体膜を形成
し、電極間で放電し加工液中の炭素などが電気絶縁物に
付着ないし含浸形成された導電層を介して放電加工する
ことが示されている。また、同様な発明として、電気絶
縁物表面に導電性の膜をコーティングして加工を行う例
が、特開平4−41120号公報に開示されている。図
6に特開昭63−150109号公報に記載の放電加工
方法を示す。図において、1は電気絶縁体、2は導電体
層、3は加工電極、4は導電体層を示す。
2. Description of the Related Art Conventionally, as a method for electric discharge machining of an insulating material such as ceramics, for example, Japanese Patent Laid-Open No. 63-1501
No. 09 publication, forming a conductor film on the surface of an electric insulator, and performing electric discharge machining through a conductive layer in which carbon or the like in a machining liquid adheres to or is impregnated in the electric insulator by discharging between electrodes. It is shown. As a similar invention, Japanese Patent Application Laid-Open No. 4-41120 discloses an example in which a surface of an electric insulator is coated with a conductive film for processing. FIG. 6 shows an electric discharge machining method described in JP-A-63-150109. In the figure, 1 is an electrical insulator, 2 is a conductor layer, 3 is a processing electrode, and 4 is a conductor layer.

【0003】次に動作について説明する。まず、図6
(A)に図示されているように、加工すべき電気絶縁体
1の表面に導電体層2を形成する。導電体層2は、例え
ば銅や鉄などの導電体を溶射、蒸着などの手段により上
記電気絶縁体1の表面に密着するように形成されたもの
である。なお、上記導電体層2の厚さとしては0.1m
mないし0.5mm程度が用いられる。
Next, the operation will be described. First, FIG.
As shown in (A), a conductor layer 2 is formed on the surface of the electrical insulator 1 to be processed. The conductor layer 2 is formed such that a conductor such as copper or iron is brought into close contact with the surface of the electric insulator 1 by means such as thermal spraying or vapor deposition. The thickness of the conductor layer 2 is 0.1 m.
A thickness of about m to 0.5 mm is used.

【0004】次いで、表面に導電体層2が形成されてい
る電気絶縁体1を放電加工機の加工テーブル上に載置
し、クランプ治具にて上記加工テーブルに固定した上
で、図6(B)に図示されているように放電加工を開始
する。即ち、上記導電体層2と加工電極3との間に放電
加工用電源装置からの加工電圧が印加され、油などの加
工液中にて放電加工が行われる。
Next, the electrical insulator 1 having the conductor layer 2 formed on the surface thereof is placed on a machining table of an electric discharge machine, fixed on the machining table by a clamp jig, and then, as shown in FIG. Start electrical discharge machining as shown in B). That is, a machining voltage from an electric discharge machining power source device is applied between the conductor layer 2 and the machining electrode 3 to perform electric discharge machining in a machining fluid such as oil.

【0005】上記放電加工の開始により、図6(C)に
図示されているように、まず上記導電体層2が加工され
る。そして、該導電体層2の加工終了時には、上記電気
絶縁体1の表面に上記加工電極3と対向する部分が現
れ、当該部分に導電層4が形成される。この導電層4
は、放電加工によって生じた加工粉や放電の熱エネルキ
ーにより析出された上記加工液中の炭素が付着し、さら
に内部に浸透することによって形成されたもの、また
は、上記電気絶縁体1の表面が放電の熱エネルギーによ
り高温となることによって導体化したものである。上記
導電層4は、放電加工の進行とともに広がりをみせ、上
記導電体2の加工が終了した時点においては、図6
(C)に図示されるように導電層4の周縁部分は上記導
電体層2と電気的に接続された状態となる。よって上記
導電層4と加工電極3との間に放電が発生することによ
り、導電層4、即ち電気絶縁体1が加工される。
When the electric discharge machining is started, the conductor layer 2 is first processed as shown in FIG. 6 (C). Then, when the processing of the conductor layer 2 is completed, a portion facing the processing electrode 3 appears on the surface of the electric insulator 1, and the conductive layer 4 is formed on the portion. This conductive layer 4
Is formed by the machining powder generated by electric discharge machining or the carbon in the machining fluid deposited by the thermal energy of discharge adheres and further penetrates into the inside, or the surface of the electric insulator 1 It is a conductor that becomes high temperature due to the thermal energy of discharge. The conductive layer 4 expands as the electric discharge machining progresses, and when the machining of the conductor 2 is completed, the conductive layer 4 shown in FIG.
As shown in (C), the peripheral portion of the conductive layer 4 is in a state of being electrically connected to the conductive layer 2. Therefore, by generating an electric discharge between the conductive layer 4 and the processing electrode 3, the conductive layer 4, that is, the electrical insulator 1 is processed.

【0006】図6(D)および(E)は加工の進行とと
もに上記導電層4が順次深部に以降して行く様子を示し
たものである。このように、上記導電層4の形成と当該
導電層4に対する放電加工とが繰り返し行われることに
よって、上記電気絶縁体1に対する加工が進行する。
FIGS. 6 (D) and 6 (E) show a state in which the conductive layer 4 sequentially goes deeper and deeper as the processing progresses. In this manner, the formation of the conductive layer 4 and the electric discharge machining of the conductive layer 4 are repeatedly performed, whereby the machining of the electrical insulator 1 proceeds.

【0007】[0007]

【発明が解決しようとする課題】上記のような従来の放
電加工装置は、上記のように構成されており、常に予め
工作物表面に導電層を溶射、蒸着などにより形成してお
く必要があり、特別の処理装置、工程が必要となり、コ
ストが増大するなどの問題があった。また、従来の方法
では、比較的浅い深さの加工は可能であるが、加工深さ
の深い形状の加工は困難であり、加工深さとしてはせい
ぜい数mm程度しかできないなどの問題があった。即
ち、絶縁体の加工初期においては導電層4の形成が十分
であり、絶縁体1の加工は進行するが、加工深さが数m
m程度となると導電層4の形成が不十分となり、加工が
全く進行しなくなる。
The conventional electric discharge machine as described above is constructed as described above, and it is always necessary to previously form the conductive layer on the surface of the workpiece by thermal spraying, vapor deposition or the like. However, there is a problem in that a special processing device and process are required, and the cost increases. Further, in the conventional method, it is possible to machine a relatively shallow depth, but it is difficult to machine a shape having a deep machining depth, and there is a problem that the machining depth can be only a few mm at most. . That is, the formation of the conductive layer 4 is sufficient at the initial stage of processing the insulator, and the processing of the insulator 1 proceeds, but the processing depth is several meters.
When it is about m, the formation of the conductive layer 4 becomes insufficient and the processing does not proceed at all.

【0008】この発明は上記のような従来のものの課題
を解消するためになされたもので、工作物表面に導電層
を形成する特別の処理装置、工程を設けることなしに、
絶縁体の加工を行うことができるとともに、従来不可能
であった数mm〜数cmの深さの深穴形状の加工を可能
とする放電加工方法及びその装置を提供することを目的
としている。
The present invention has been made in order to solve the above-described problems of the conventional ones, and without providing a special processing device or process for forming a conductive layer on the surface of a workpiece,
It is an object of the present invention to provide an electric discharge machining method and apparatus capable of machining an insulator and capable of machining a deep hole shape having a depth of several mm to several cm, which has been impossible in the past.

【0009】[0009]

【課題を解決するための手段】本発明に係る放電加工方
法は、被加工物である絶縁物固体と前記被加工物である
電導物固体との接合面と、前記電極との間において放電
を発生させるとともに、前記絶縁物固体と電導物固体
と、前記電極とを、前記絶縁物固体と電導物固体との接
合面に対して平行な方向に相対移動させ、前記絶縁物固
体と電導物固体との両方に放電加工を行うものである。
According to the electric discharge machining method of the present invention, an electric discharge is generated between a joint surface between an insulator solid which is a workpiece and an electric conductor solid which is the workpiece, and the electrode. Along with the generation, the insulator solid, the conductor solid, and the electrode are relatively moved in a direction parallel to the joint surface between the insulator solid and the conductor solid, and the insulator solid and the conductor solid. Both are processed by electrical discharge machining.

【0010】また本発明に係る放電加工装置は、被加工
物である絶縁物固体と前記被加工物である電導材固体と
を、電極と被加工物との相対移動方向と直交する方向に
機械的に密着せしめる接合手段と、前記絶縁物固体と電
導物固体との接合部分と前記電極との間に放電電圧を印
加する電源と、前記絶縁物固体と電導物固体と、前記電
極とを、前記絶縁物固体と電導物固体との接合面に対し
て平行な方向に相対移動させる手段とを備える構成とし
たものである。
Further, the electric discharge machining apparatus according to the present invention is configured so that an insulator solid, which is a work piece, and a conductive material solid, which is the work piece, are machined in a direction orthogonal to a relative movement direction between an electrode and the work piece. , A power source for applying a discharge voltage between the electrode and the junction between the insulating solid and the conductive solid, the insulating solid and the conductive solid, and the electrode, And a means for relatively moving the insulating solid and the conductive solid in a direction parallel to the joint surface.

【0011】また本発明に係る放電加工方法は、被加工
物である電導物固体を前記被加工物である絶縁物固体の
表面に非接着状態で接触させ、前記絶縁物固体と電導物
固体との接触部分と前記電極との間において放電を発生
させるとともに、加工の進行にともなって前記電導物固
体を、電極と前記絶縁物固体との相対送り方向と直交す
る方向に、前記絶縁物固体に対し相対移動させながら、
放電加工を行うものである。
Further, in the electric discharge machining method according to the present invention, an electric conductor solid, which is a workpiece, is brought into contact with the surface of the insulator solid, which is the workpiece, in a non-adhesive state, and the insulator solid and the electric conductor solid are contacted with each other. While generating an electric discharge between the contact portion and the electrode, with the progress of processing, the conductive solid, in the direction orthogonal to the relative feed direction of the electrode and the insulating solid, in the insulating solid While moving relative to
Electric discharge machining is performed.

【0012】また本発明に係る放電加工方法は、被加工
物である電導物固体を前記被加工物である絶縁物固体の
表面に非接着状態で接触させ、まず前記電導物固体と前
記電極との間において放電を発生させて放電加工を行い
前記電導物固体を貫通加工した後、前記絶縁物固体と電
導物固体との接触部分と前記電極との間において放電を
発生させるとともに、加工の進行にともなって前記電導
物固体を、電極と前記絶縁物固体との相対送り方向と直
交する方向に、前記絶縁物固体に対し相対移動させなが
ら、放電加工を行うものである。
Further, in the electric discharge machining method according to the present invention, the electric conductor solid, which is the workpiece, is brought into contact with the surface of the insulator solid, which is the workpiece, in a non-adhesive state, and first, the electric conductor solid and the electrode are contacted with each other. After performing electric discharge machining by generating an electric discharge between the conductive solids, the electric discharge is generated between the electrode and the contact portion between the insulating solid and the conductive solid, and the progress of the machining. Accordingly, the electric discharge machining is performed while the electric conductor solid is relatively moved with respect to the insulator solid in a direction orthogonal to the relative feed direction of the electrode and the insulator solid.

【0013】更にまた、本発明に係る放電加工装置は、
被加工物である電導物固体を前記被加工物である絶縁物
固体の表面に非接着状態で接触保持させる保持手段と、
前記電導物固体と前記電極との間、及び前記絶縁物固体
と前記電導物固体との接合部分と前記電極との間に放電
電圧を印加する電源と、加工の進行にともなって前記電
導物固体を、電極と前記絶縁物固体との相対送り方向と
直交する方向に、前記絶縁物固体に対し相対移動させる
電導物固体移動手段とを備える構成としたものである。
Furthermore, the electric discharge machine according to the present invention is
Holding means for holding an electrically conductive solid, which is a workpiece, in contact with the surface of an insulating solid, which is the workpiece in a non-adhesive state,
A power supply for applying a discharge voltage between the conductive solid and the electrode, and between the electrode and the junction between the insulating solid and the conductive solid, and the conductive solid with the progress of processing. Is provided with an electric conductor solid moving means for moving relative to the insulating solid in a direction orthogonal to the relative feed direction of the electrode and the insulating solid.

【0014】[0014]

【作用】本発明に係わる放電加工方法は、先ず電導物固
体と電極との間で放電が発生し、次いで絶縁物固体の電
導物固体側に最も近いところで、熱影響により加工と電
極材成分の転写が行われる。その後、その転写部分にも
放電が行われ、絶縁物固体も放電の衝撃及び熱の影響で
加工が進行する。以上の連続により絶縁物固体加工が進
行する。
In the electric discharge machining method according to the present invention, first, electric discharge is generated between the conductor solid and the electrode, and then, at a place closest to the conductor solid side of the insulator solid, the machining and the electrode material component Transfer is performed. After that, the transfer portion is also discharged, and the insulating solid is also processed by the impact of the discharge and the effect of heat. By the above sequence, solid processing of the insulator proceeds.

【0015】また、本発明に係わる放電加工装置は、接
合手段により、被加工物である絶縁物固体と被加工物で
ある電導材固体とを、電極と被加工物との相対移動方向
と直交する方向に機械的に密着せしめた後、電源より絶
縁物固体と電導物固体との接合部分と電極との間に放電
電圧を印加して放電を発生させるとともに、絶縁物固体
と電導物固体と、電極とを、絶縁物固体と電導物固体と
の接合面に対して平行な方向に相対移動させ、絶縁物固
体と電導物固体との両方に放電加工を行う。
Further, in the electric discharge machining apparatus according to the present invention, by means of the joining means, the insulator solid, which is the workpiece, and the conductive material solid, which is the workpiece, are orthogonal to the relative movement direction of the electrode and the workpiece. After mechanically adhering in the direction of, the discharge voltage is applied between the electrode and the junction between the insulator solid and the conductor solid from the power source to generate discharge, and the insulator solid and the conductor solid , The electrodes are relatively moved in a direction parallel to the joint surface between the insulating solid and the conductive solid, and electric discharge machining is performed on both the insulating solid and the conductive solid.

【0016】また本発明に係る放電加工方法は、電導物
固体と電極との間で放電が発生し、次いで絶縁物固体の
電導物固体側に最も近いところで、熱影響により加工と
電極材成分の転写が行われる。その後、その転写部分に
も放電が行われ、絶縁物固体も放電の衝撃及び熱の影響
で加工が行われる。なお、この放電加工時に、電導物固
体を、電極と絶縁物固体との相対送り方向と直交する方
向に、絶縁物固体に対し相対移動させるので、極間部分
には常時電導粉末が供給されることになり、絶縁物固体
の連続的加工が進行する。
Further, in the electric discharge machining method according to the present invention, electric discharge is generated between the conductor solid and the electrode, and then the insulator solid is closest to the conductor solid side, so that the machining and the electrode material composition of the electrode material component are affected by heat. Transfer is performed. After that, the transferred portion is also discharged, and the insulator solid is also processed by the impact of the discharge and the effect of heat. During the electric discharge machining, the conductive solid is moved relative to the insulating solid in a direction orthogonal to the relative feed direction between the electrode and the insulating solid, so that the conductive powder is always supplied to the inter-electrode portion. As a result, continuous processing of the insulator solid proceeds.

【0017】また本発明に係る放電加工方法は、まず電
導物固体と電極との間において放電を発生させて放電加
工を行い電導物固体を貫通加工させる。その後、電導物
固体と電極との間で放電が発生し、次いで絶縁物固体の
電導物固体側に最も近いところで、熱影響により加工と
電極材成分の転写が行われる。その後、その転写部分に
も放電が行われ、絶縁物固体も放電の衝撃及び熱の影響
で加工が行われる。なお、電導物固体を貫通加工後に、
電導物固体を、電極と絶縁物固体との相対送り方向と直
交する方向に、絶縁物固体に対し相対移動させるので、
極間部分には常時電導粉末が供給されることになり、絶
縁物固体の連続的加工が進行する。
Further, in the electric discharge machining method according to the present invention, first, electric discharge is generated between the electric conductor solid and the electrode to perform electric discharge machining, and the electric conductor solid is perforated. After that, a discharge is generated between the conductive material solid and the electrode, and then processing and transfer of the electrode material component are performed by the heat effect at the position closest to the conductive material solid side of the insulating material solid. After that, the transferred portion is also discharged, and the insulator solid is also processed by the impact of the discharge and the effect of heat. In addition, after the conductor solid is penetrated,
Since the conductor solid is moved relative to the insulator solid in a direction orthogonal to the relative feed direction between the electrode and the insulator solid,
The electrically conductive powder is constantly supplied to the inter-electrode portion, and the continuous processing of the insulating solid proceeds.

【0018】更にまた、本発明に係る放電加工装置は、
保持手段により、被加工物である電導物固体を前記被加
工物である絶縁物固体の表面に非接着状態で接触保持さ
せた後、電源より、前記電導物固体と前記電極との間、
及び前記絶縁物固体と前記電導物固体との接合部分と前
記電極との間に放電電圧を印加して放電を発生させる。
また、電導物固体移動手段により、加工の進行にともな
って前記電導物固体を、電極と前記絶縁物固体との相対
送り方向と直交する方向に、前記絶縁物固体に対し相対
移動させることにより放電加工を行う。
Furthermore, the electric discharge machining apparatus according to the present invention is
By the holding means, after holding the conductive solid which is the workpiece in contact with the surface of the insulating solid which is the workpiece in a non-adhesive state, from the power supply, between the conductive solid and the electrode,
A discharge voltage is applied between the electrode and the junction between the insulator solid and the conductor solid to generate a discharge.
Further, the electric conductor solid moving means causes the electric conductor solid to move relative to the electric insulator solid in a direction orthogonal to the relative feed direction between the electrode and the electric insulator solid as the machining progresses, thereby causing discharge. Perform processing.

【0019】[0019]

【実施例】【Example】

実施例1.以下、本発明の第1の実施例を図1及び図2
に基づき説明する。図1は本発明の第1の実施例を示す
構成図、図2は本発明の第1の実施例の動作説明図で、
図において、1は銅からなる電極、10はサイアロンか
らなる絶縁材工作物(絶縁物固体)、11はニッケルか
らなる電導材工作物(電導物固体)、12は工作物を横
方向に拘束する固定部材、13は工作物11、12をは
さんで前記固定部材12の反対側に設置され、絶縁材工
作物10と電導材工作物11を機械的に密着、固定せし
める圧着機構で、固定部材12とともに接合手段を構成
している。14は加工油、15は加工電源、4は直流電
源、5は抵抗、16はスイッチング素子、17a、17
b、18a、18bは加工電源の極性を切り換える極性
切り換え用コンタクタ、19は電極1を矢印方向に移動
させるZ軸モータで、電極1と被加工物との相対移動手
段を構成している。
Example 1. Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
It will be explained based on. FIG. 1 is a block diagram showing a first embodiment of the present invention, and FIG. 2 is an operation explanatory view of the first embodiment of the present invention.
In the figure, 1 is an electrode made of copper, 10 is an insulating material workpiece made of sialon (insulating solid), 11 is an electrically conductive material workpiece made of nickel (electrically conductive solid), and 12 is a lateral restraint of the workpiece. The fixing member 13 is installed on the opposite side of the fixing member 12 with the workpieces 11 and 12 sandwiched therebetween, and is a crimping mechanism that mechanically adheres and fixes the insulating material workpiece 10 and the conductive material workpiece 11 to each other. Together with 12, the joining means is constituted. 14 is processing oil, 15 is processing power source, 4 is DC power source, 5 is resistance, 16 is switching element, 17a, 17
b, 18a and 18b are polarity switching contactors for switching the polarity of the machining power source, and 19 is a Z-axis motor for moving the electrode 1 in the direction of the arrow, which constitutes relative movement means between the electrode 1 and the workpiece.

【0020】次に、動作について説明する。加工に先だ
って絶縁材工作物10と電導材工作物11は固定部材1
2と圧着機構13により機械的に圧着・接合された状態
で固定される。ついで、電極1を絶縁材工作物10と電
導材工作物11の接合部分に位置決めされ、電極1が接
合部分にかかるような形で加工を行う。次に、加工原理
について図2に基づいて説明する。例えば、図のように
絶縁材工作物10としてサイアロン、電導材工作物とし
てニッケル(Ni)を加工する場合において、まず、
(1)に示すように電極1を絶縁材工作物10と電導材
工作物11の接合部分に位置決めし、電圧を電極1と工
作物10、11の間に印加する。その際、極性は電極
(−)の極性の電圧を印加する。この電圧により(2)
に示すようにまず電導材工作物(ニッケル)の部分のみ
放電が発生し、次いで(3)に示すようにセラミックス
(サイアロン)の金属側に最も近いところで、熱影響に
より加工と電極材成分の転写が行われる。その後、
(4)に示すようにその転写部分にも放電が行われ、
(5)に示すようにセラミックスも放電の衝撃及び熱の
影響で加工が進行する。以上の連続によりセラミックス
加工が進行するが、これは表皮効果によりセラミックス
表面に電流が流れセラミックス側に放電が起こり、セラ
ミックスも加工されるものである。実際の加工後のセラ
ミックス表面をEPMAで分析したところ、セラミック
ス表面に電極材である銅(Cu)の成分が多く含まれて
いることが確認された。
Next, the operation will be described. Prior to processing, the insulating material workpiece 10 and the conductive material workpiece 11 are fixed members 1
2 and the crimping mechanism 13 are fixed in a mechanically crimped and joined state. Then, the electrode 1 is positioned at the joint portion between the insulating material workpiece 10 and the electrically conductive material workpiece 11, and processing is performed so that the electrode 1 is applied to the joint portion. Next, the processing principle will be described with reference to FIG. For example, when processing sialon as the insulating material workpiece 10 and nickel (Ni) as the electrically conductive material workpiece as shown in the figure, first,
As shown in (1), the electrode 1 is positioned at the joint between the insulating material workpiece 10 and the electrically conductive material workpiece 11, and a voltage is applied between the electrode 1 and the workpieces 10, 11. At that time, as the polarity, a voltage having the polarity of the electrode (−) is applied. With this voltage (2)
As shown in Fig. 3, first, electric discharge is generated only in the conductive material work piece (nickel), and then, as shown in (3), at the place closest to the metal side of the ceramics (sialon), processing and transfer of electrode material components due to heat influence. Is done. afterwards,
As shown in (4), the transfer area is also discharged.
As shown in (5), ceramics are also processed under the influence of electric shock and heat. The ceramics machining progresses as a result of the above continuation. This is because the skin effect causes an electric current to flow on the ceramics surface, causing an electric discharge on the ceramics side, so that the ceramics is also machined. When the ceramic surface after actual processing was analyzed by EPMA, it was confirmed that the ceramic surface contained a large amount of the component of copper (Cu) as an electrode material.

【0021】前述したように、従来のように絶縁性工作
物表面に導電膜を形成した後加工を行う方法では、上記
の方法にて加工を行った結果、直径5mmの銅電極を用
いて深さ10mm以上の深穴を加工することができた。
As described above, in the conventional method of forming a conductive film on the surface of an insulative workpiece and then performing the processing, as a result of performing the processing by the above method, a copper electrode having a diameter of 5 mm is used. A deep hole having a size of 10 mm or more could be processed.

【0022】なお、本加工方法は加工する材料の組み合
わせにより加工特性が異なる。表1は各材料の組み合わ
せと加工の可否を示したものである。
In this processing method, the processing characteristics differ depending on the combination of materials to be processed. Table 1 shows combinations of materials and availability of processing.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例2.次に、本発明の第2の実施例を
図3〜図5に基づき説明する。図において、1は電極、
10は絶縁材工作物(絶縁物固体)、11は絶縁材工作
物10の上面に非接着状態で設けられた電導材板(電導
物固体)、14は加工液、15は加工用電源、20は電
導材11を絶縁材工作物10の上面に非接着状態で保持
すると共に、電導材11を水平方向に移動する駆動機構
で、保持手段と電導物固体移動手段を構成している。2
1は電導材板11の加工によって発生する電導材粉末、
19は電極1を矢印方向に移動させるZ軸モータで、電
極1と被加工物との相対移動手段を構成している。
Example 2. Next, a second embodiment of the present invention will be described with reference to FIGS. In the figure, 1 is an electrode,
10 is an insulating material work (insulating solid), 11 is a conductive material plate (electric conductive solid) provided on the upper surface of the insulating work 10 in a non-bonded state, 14 is a working fluid, 15 is a power source for processing, 20 Is a drive mechanism that holds the conductive material 11 on the upper surface of the insulating material workpiece 10 in a non-bonded state, and moves the conductive material 11 in the horizontal direction, and constitutes a holding means and a solid conductive material moving means. Two
1 is a conductive material powder generated by processing the conductive material plate 11,
A Z-axis motor 19 moves the electrode 1 in the direction of the arrow, and constitutes a relative moving means for moving the electrode 1 and the workpiece.

【0025】次に、動作について説明する。加工に先だ
って絶縁材工作物10の上に電導材板11が設置され状
態にて加工を開始する。加工は図4(1)に示すように
まず電導材板11の加工から開始されるが、この段階で
は駆動機構20による電導材板11の水平移動は行わな
い状態にて加工が進行する。ついで、図4(2)に示す
ように電極1が電導材板11を貫通した後、駆動機構2
0により電導材板11の水平移動を開始する。図4
(3)からも判るように、極間部分には電導材板11の
加工に伴って発生した電導材粉末21が浮遊しているた
め、絶縁材工作物接合面において熱影響により加工と電
極材成分の転写が行われる。その後、その転写部分にも
放電が行われ、絶縁材工作物10も放電の衝撃及び熱の
影響で加工が進行する。絶縁物工作物10の加工が開始
された後は、前述したように電導材板11の水平移動が
継続的に行われるため、極間部分には常時電導材粉末2
1が供給されるため、絶縁材工作物10の連続的加工が
進行する。
Next, the operation will be described. Prior to processing, the conductive material plate 11 is installed on the insulating material workpiece 10 and the processing is started. As shown in FIG. 4 (1), the processing is started from the processing of the conductive material plate 11, but at this stage, the processing proceeds in a state where the drive mechanism 20 does not horizontally move the conductive material plate 11. Next, as shown in FIG. 4B, after the electrode 1 penetrates the conductive material plate 11, the drive mechanism 2
When 0, the horizontal movement of the conductive material plate 11 is started. Figure 4
As can be seen from (3), since the conductive material powder 21 generated due to the processing of the conductive material plate 11 floats in the inter-electrode portion, the processing and the electrode material due to the thermal influence on the insulating material workpiece bonding surface. The transfer of the components takes place. After that, electric discharge is also performed on the transferred portion, and the insulating material workpiece 10 is also processed by the impact of the electric discharge and the effect of heat. After the processing of the insulator work 10 is started, the horizontal movement of the conductive material plate 11 is continuously performed as described above.
Since 1 is supplied, the continuous machining of the insulating material workpiece 10 proceeds.

【0026】上記の方法にて加工を行ったところ、φ2
0mmの比較的大きな形状の電極により、絶縁体の中央
部分に10mm以上の深さの加工を行うことができた。
When processed by the above method, φ2
With the relatively large electrode of 0 mm, it was possible to process the central portion of the insulator to a depth of 10 mm or more.

【0027】なお、電導材板10の水平移動として、図
5に示すような揺動的移動を行うようにすることによ
り、電極1の全周に渡って電導材粉末21が発生するた
め、より安定した加工を行うことが可能である。また、
加工初期に電導材板11の側面と絶縁材工作物10との
接合部分と電極1との間で放電加工を行い、しかる後電
導材板11を上述したように移動させることにより、電
導材板11の貫通加工を廃止してもよい。
As the horizontal movement of the conductive material plate 10 is performed by oscillating movement as shown in FIG. 5, since the conductive material powder 21 is generated over the entire circumference of the electrode 1, It is possible to perform stable processing. Also,
At the initial stage of processing, electrical discharge machining is performed between the side surface of the conductive material plate 11 and the joint between the insulating material workpiece 10 and the electrode 1, and then the conductive material plate 11 is moved as described above to obtain the conductive material plate. The penetration processing of 11 may be eliminated.

【0028】[0028]

【発明の効果】以上のように本発明によれば、被加工物
である絶縁物固体と前記被加工物である電導物固体との
接合面と、前記電極との間において放電を発生させると
ともに、前記絶縁物固体と電導物固体と、前記電極と
を、前記絶縁物固体と電導物固体との接合面に対して平
行な方向に相対移動させ、前記絶縁物固体と電導物固体
との両方に放電加工を行うようにしたので、絶縁体表面
に導電層を形成する特別の処理装置、工程を設けること
なしに、絶縁体の加工を行うことができるとともに、従
来不可能であった数mm〜数cmの深さの深穴形状の加
工を行うことができる。また従来の電解放電による方法
と比較しても加工液の管理が容易で、加工速度、加工精
度などの加工特性も飛躍的に改善された加工を行うこと
のできる効果がある。さらには、絶縁体表面に電極材料
を含んだ均一な改質層を容易に形成することができる効
果もある。
As described above, according to the present invention, an electric discharge is generated between the electrode and the joint surface between the insulating solid which is the workpiece and the conductive solid which is the workpiece. , The insulator solid, the conductor solid, and the electrode are relatively moved in a direction parallel to the joint surface of the insulator solid and the conductor solid, and both the insulator solid and the conductor solid. Since the electric discharge machining is performed on the insulator, the insulator can be processed without providing a special treatment device or process for forming a conductive layer on the insulator surface, and it is possible to perform machining by several mm, which was impossible in the past. A deep hole shape having a depth of several cm can be processed. Further, compared with the conventional method using electrolytic discharge, there is an effect that the working fluid can be easily managed and the working characteristics such as working speed and working accuracy can be dramatically improved. Furthermore, there is an effect that a uniform modified layer containing an electrode material can be easily formed on the surface of the insulator.

【0029】また本発明によれば、被加工物である電導
物固体を前記被加工物である絶縁物固体の表面に非接着
状態で接触させ、前記絶縁物固体と電導物固体との接触
部分と前記電極との間において放電を発生させるととも
に、加工の進行にともなって前記電導物固体を、電極と
前記絶縁物固体との相対送り方向と直交する方向に、前
記絶縁物固体に対し相対移動させながら、放電加工を行
うようにしたので、上記の効果に加えて、より大きな加
工面積の電極においても絶縁材の加工が可能となるとと
もに、より深い加工深さまで加工することができる効果
がある。また、複雑形状の電極についても精度良く転写
加工を行うことが可能となるなどの効果がある。さら
に、上記の発明では形状的な制約があった(横方向から
電導材を密着させるため、絶縁材料の端面近傍でしか加
工できない)のに対し、この発明では、絶縁体の任意の
位置に任意形状が精度良く加工できる効果もある。
Further, according to the present invention, the electrically conductive solid which is the workpiece is brought into contact with the surface of the insulating solid which is the workpiece in a non-adhesive state, and the contact portion between the insulating solid and the electrically conductive solid. While generating electric discharge between the electrode and the electrode, as the machining progresses, the conductive solid is moved relative to the insulating solid in a direction orthogonal to the relative feed direction between the electrode and the insulating solid. In addition to the above effects, it is possible to process the insulating material even in an electrode having a larger processing area, and it is possible to perform processing to a deeper processing depth. . Further, there is an effect that it becomes possible to perform transfer processing with high precision even for electrodes having a complicated shape. Further, in the above invention, there is a shape restriction (since the conductive material is closely attached from the lateral direction, it can be processed only in the vicinity of the end face of the insulating material). There is also an effect that the shape can be processed with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の構成を示す図である。FIG. 1 is a diagram showing a configuration of a first exemplary embodiment of the present invention.

【図2】本発明の第1の実施例の動作説明図である。FIG. 2 is an operation explanatory diagram of the first embodiment of the present invention.

【図3】本発明の第2の実施例の構成を示す図である。FIG. 3 is a diagram showing a configuration of a second exemplary embodiment of the present invention.

【図4】本発明の第2の実施例の動作説明図である。FIG. 4 is an operation explanatory diagram of the second embodiment of the present invention.

【図5】本発明の第2の実施例の動作説明図である。FIG. 5 is an operation explanatory diagram of the second embodiment of the present invention.

【図6】従来の絶縁材放電加工方法を示す図である。FIG. 6 is a diagram showing a conventional electric discharge machining method for an insulating material.

【符号の説明】[Explanation of symbols]

1 電極 10 絶縁材工作物 11 電導材工作物 12 固定部材 13 圧着機構 14 加工油 15 加工電源 16 スイッチング素子 17a、17b、18a、18b 極性切り換え用コン
タクタ 19 Z軸モータ 20 駆動機構 21 電導材粉末
DESCRIPTION OF SYMBOLS 1 Electrode 10 Insulating material work piece 11 Electroconductive material work piece 12 Fixing member 13 Crimping mechanism 14 Processing oil 15 Processing power supply 16 Switching element 17a, 17b, 18a, 18b Polarity switching contactor 19 Z-axis motor 20 Drive mechanism 21 Conductive material powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 毛利 尚武 名古屋市天白区八事石坂661−51 (72)発明者 斎藤 長男 愛知県春日井市岩成台9−12−12 (72)発明者 真柄 卓司 名古屋市東区矢田南五丁目1番14号 三菱 電機株式会社名古屋製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naotake Mohri 661-51 Yakuji Ishizaka, Tenpaku-ku, Nagoya City (72) Inventor Nagao Saito 9-12-12 Iwaseidai, Kasugai City, Aichi Prefecture (72) Inventor Takuji Maji Nagoya City East 5-14 Yanda Minami-ku, Mitsubishi Electric Co., Ltd. Nagoya Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電極と被加工物間に電圧を印加しつつ加
工を行う放電加工方法において、前記被加工物である絶
縁物固体と前記被加工物である電導物固体との接合面
と、前記電極との間において放電を発生させるととも
に、前記絶縁物固体と電導物固体と、前記電極とを、前
記絶縁物固体と電導物固体との接合面に対して平行な方
向に相対移動させ、前記絶縁物固体と電導物固体との両
方に放電加工を行うことを特徴とする放電加工方法。
1. In an electric discharge machining method for machining while applying a voltage between an electrode and a workpiece, a joint surface between an insulator solid that is the workpiece and a conductive solid that is the workpiece, While generating a discharge between the electrode, the insulating solid and the conductive solid, the electrode, relative movement in a direction parallel to the joint surface of the insulating solid and the conductive solid, An electric discharge machining method characterized by performing electric discharge machining on both the insulator solid and the conductor solid.
【請求項2】 電極と被加工物間に電圧を印加しつつ加
工を行う放電加工装置において、前記被加工物である絶
縁物固体と前記被加工物である電導材固体とを、電極と
被加工物との相対移動方向と直交する方向に機械的に密
着せしめる接合手段と、前記絶縁物固体と電導物固体と
の接合部分と前記電極との間に放電電圧を印加する電源
と、前記絶縁物固体と電導物固体と、前記電極とを、前
記絶縁物固体と電導物固体との接合面に対して平行な方
向に相対移動させる手段とを備えてなる放電加工装置。
2. An electric discharge machining apparatus for machining while applying a voltage between an electrode and a workpiece, wherein an insulator solid, which is the workpiece, and a conductive material solid, which is the workpiece, are attached to the electrode and the workpiece. Joining means for mechanically adhering in a direction orthogonal to the relative movement direction to the workpiece, a power source for applying a discharge voltage between the electrode and the joining portion between the insulator solid and the conductor solid, and the insulation An electric discharge machine comprising: a solid material, a conductive solid material, and a means for relatively moving the electrode in a direction parallel to a joint surface between the insulating solid material and the conductive solid material.
【請求項3】 電極と被加工物間に電圧を印加しつつ加
工を行う放電加工方法において、前記被加工物である電
導物固体を前記被加工物である絶縁物固体の表面に非接
着状態で接触させ、前記絶縁物固体と電導物固体との接
触部分と前記電極との間において放電を発生させるとと
もに、加工の進行にともなって前記電導物固体を、電極
と前記絶縁物固体との相対送り方向と直交する方向に、
前記絶縁物固体に対し相対移動させながら、放電加工を
行うことを特徴とする放電加工方法。
3. An electric discharge machining method for machining while applying a voltage between an electrode and a work piece, wherein a conductive material solid, which is the work piece, is not adhered to a surface of an insulator solid, which is the work piece. And generate electric discharge between the electrode and the contact portion between the insulator solid and the conductor solid, and the progress of the machining causes the conductor solid to move relative to the electrode and the insulator solid. In the direction orthogonal to the feed direction,
An electric discharge machining method, wherein electric discharge machining is performed while moving relative to the insulating solid.
【請求項4】 電極と被加工物間に電圧を印加しつつ加
工を行う放電加工方法において、前記被加工物である電
導物固体を前記被加工物である絶縁物固体の表面に非接
着状態で接触させ、まず前記電導物固体と前記電極との
間において放電を発生させて放電加工を行い前記電導物
固体を貫通加工した後、前記絶縁物固体と電導物固体と
の接触部分と前記電極との間において放電を発生させる
とともに、加工の進行にともなって前記電導物固体を、
電極と前記絶縁物固体との相対送り方向と直交する方向
に、前記絶縁物固体に対し相対移動させながら、放電加
工を行うことを特徴とする放電加工方法。
4. In an electric discharge machining method for machining while applying a voltage between an electrode and a workpiece, a conductive material solid, which is the workpiece, is not adhered to a surface of an insulating solid, which is the workpiece. , First, by generating an electric discharge between the conductor solid and the electrode to perform electric discharge machining to penetrate the conductor solid, and then a contact portion between the insulator solid and the conductor solid and the electrode. While generating an electric discharge between and, as the processing progresses, the solid conductive material,
An electric discharge machining method, characterized in that electric discharge machining is performed while moving relative to the insulator solid in a direction orthogonal to a relative feed direction of an electrode and the insulator solid.
【請求項5】 電極と被加工物間に電圧を印加しつつ加
工を行う放電加工装置において、前記被加工物である電
導物固体を前記被加工物である絶縁物固体の表面に非接
着状態で接触保持させる保持手段と、前記電導物固体と
前記電極との間、及び前記絶縁物固体と前記電導物固体
との接合部分と前記電極との間に放電電圧を印加する電
源と、加工の進行にともなって前記電導物固体を、電極
と前記絶縁物固体との相対送り方向と直交する方向に、
前記絶縁物固体に対し相対移動させる電導物固体移動手
段とを備えてなる放電加工装置。
5. In an electric discharge machining apparatus for machining while applying a voltage between an electrode and a work piece, a non-adhesive state in which a conductor solid, which is the work piece, is attached to a surface of an insulator solid, which is the work piece. Holding means for contacting and holding at, a power source for applying a discharge voltage between the conductive solid and the electrode, and a junction between the insulating solid and the conductive solid and the electrode, and With the progress of the conductive solid, in the direction orthogonal to the relative feed direction of the electrode and the insulating solid,
An electric discharge machine comprising: an electric conductor solid moving means for moving relative to the insulator solid.
JP5286769A 1993-11-16 1993-11-16 Electric discharge machining method and apparatus Expired - Fee Related JP2860050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5286769A JP2860050B2 (en) 1993-11-16 1993-11-16 Electric discharge machining method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5286769A JP2860050B2 (en) 1993-11-16 1993-11-16 Electric discharge machining method and apparatus

Publications (2)

Publication Number Publication Date
JPH07136849A true JPH07136849A (en) 1995-05-30
JP2860050B2 JP2860050B2 (en) 1999-02-24

Family

ID=17708815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5286769A Expired - Fee Related JP2860050B2 (en) 1993-11-16 1993-11-16 Electric discharge machining method and apparatus

Country Status (1)

Country Link
JP (1) JP2860050B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569394A (en) * 1994-06-20 1996-10-29 Research Development Corporation Of Japan Electric discharge machining method for insulating material using electroconductive layer formed thereon
US6946615B2 (en) 2002-01-24 2005-09-20 Mitsubishi Denki Kabushiki Kaisha Method and system for electric discharge machining insulating material or high resistance material
JP2016087786A (en) * 2014-11-05 2016-05-23 國立台灣科技大學 Cutting device of semiconductor material or non-conductive material using wire electric discharge processing, and method of the same
CN112317892A (en) * 2020-10-28 2021-02-05 宁波震裕科技股份有限公司 Straight locking ring wire cut electrical discharge machining process method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602308A (en) * 1983-06-20 1985-01-08 初鹿野 清 Method of working ceramics
JPS63150109A (en) * 1986-12-15 1988-06-22 Hoden Seimitsu Kako Kenkyusho Ltd Electric discharge machining for electric insulator
JPH01316131A (en) * 1988-03-15 1989-12-21 Mitsubishi Electric Corp Electric discharge machining

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602308A (en) * 1983-06-20 1985-01-08 初鹿野 清 Method of working ceramics
JPS63150109A (en) * 1986-12-15 1988-06-22 Hoden Seimitsu Kako Kenkyusho Ltd Electric discharge machining for electric insulator
JPH01316131A (en) * 1988-03-15 1989-12-21 Mitsubishi Electric Corp Electric discharge machining

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569394A (en) * 1994-06-20 1996-10-29 Research Development Corporation Of Japan Electric discharge machining method for insulating material using electroconductive layer formed thereon
US6946615B2 (en) 2002-01-24 2005-09-20 Mitsubishi Denki Kabushiki Kaisha Method and system for electric discharge machining insulating material or high resistance material
JP2016087786A (en) * 2014-11-05 2016-05-23 國立台灣科技大學 Cutting device of semiconductor material or non-conductive material using wire electric discharge processing, and method of the same
CN112317892A (en) * 2020-10-28 2021-02-05 宁波震裕科技股份有限公司 Straight locking ring wire cut electrical discharge machining process method
CN112317892B (en) * 2020-10-28 2022-02-18 宁波震裕科技股份有限公司 Straight locking ring wire cut electrical discharge machining process method

Also Published As

Publication number Publication date
JP2860050B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
US10829856B2 (en) Electro-spark deposition surface modification process and apparatus
AU2010282911B2 (en) Methods and systems for resistance spot welding using direct current micro pulses
JPS63150109A (en) Electric discharge machining for electric insulator
JPH07136849A (en) Electric discharge machining and device therefor
TWI571339B (en) The methodology of cutting semi/non-conductive material using wedm
JP3241936B2 (en) EDM method for insulating material
JPH10202431A (en) Machining method for workpiece having insulating ceramic coat
KR100550249B1 (en) Method and system for electric discharge machining insulating material or high resistance material
US6020568A (en) Electro mechanical process and apparatus for metal deposition
CN112139656A (en) Current-assisted friction additive manufacturing device and method
JPH11511695A (en) Ultrasonic welding method, ultrasonic welding device, and welded joint formed by ultrasonic welding
US3444347A (en) Method for solder reflow connection of insulated conductors
US4006707A (en) Ultrasonic coating apparatus
JPH09253935A (en) Wire-edm method and device
US4596719A (en) Multilayer coating method and apparatus
CN110192313B (en) Method for manufacturing spark plug
GB2389554A (en) Machining apparatus and a method for machining
JPH08215934A (en) Discharge point moving type electrode
JP6349597B2 (en) Molten metal electroplating method and cathodic protection method against molten metal
JP4442944B2 (en) EDM method for non-conductive materials
SU959178A1 (en) Method of producing contact elements
US3430331A (en) Apparatus and process for ultrasonically welding a wire to the surface of an object
US4147609A (en) Apparatus for electrochemical machining of metal parts
JP6454770B1 (en) Method for producing flexible conductor
RU2074796C1 (en) Method of electric spark coating application

Legal Events

Date Code Title Description
FPAY Renewal fee payment

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071204

FPAY Renewal fee payment

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081204

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20091204

Year of fee payment: 11

FPAY Renewal fee payment

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091204

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20101204

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees